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In traffic image target detection, unusual targets like a running dog has not been paid 

sufficient attention. The mature detection methods for general targets cannot be directly 

applied to detect unusual targets, owing to their high complexity, poor feature expression 

ability, and requirement for numerous manual labels. To effectively detect unusual targets 

in traffic images, this paper proposes a multi-level semi-supervised one-class extreme 

learning machine (ML-S2OCELM). Specifically, the extreme learning machine (ELM) was 

chosen as the basis to develop a classifier, whose variables could be calculated directly at 

the cost of limited computing resources. The hypergraph Laplacian array was employed to 

improve the depiction of data smoothness, making semi-supervised classification more 

accurate. Furthermore, a stack auto-encoder (AE) was introduced to implement a multi-level 

neural network (NN), which can extract discriminative eigenvectors with suitable 

dimensions. Experiments show that the proposed method can efficiently screen out traffic 

images with unusual targets with only a few positive labels. The research results provide a 

time-efficient, and resource-saving instrument for feature expression and target detection. 
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1. INTRODUCTION

The rapid expansion of automobile industry has led to 

severe traffic congestion and a surge in traffic accidents, 

making traffic safety a social concern. To improve traffic 

safety, the concept of assisted driving came into being. 

Assisted driving systems have been gradually introduced to 

driving. The cornerstone of these assisted driving systems is 

the real-time detection and ranging of traffic targets. As a 

major branch of image processing and computer vision, target 

detection and ranging integrate cutting-edge technology in 

various fields. 

Like other image detection methods, traffic target detection 

algorithm first captures the information of the original image, 

and then realizes advanced expression of image features 

through complex spatial transform, e.g., point-to-point or 

window-to-window mapping. In recent years, deep learning, 

manifested as neural networks (NNs), have been widely 

applied in such fields as image recognition, voice and audio 

analysis, and natural language processing. The accuracy of 

image recognition could be increased by more than 10% 

through deep learning. In particular, deep learning can elevate 

the accuracy of face recognition to 99.47% [1].  

Apart from medical image classification [2], face 

recognition [3], and remote sensing [4], deep NNs have made 

remarkable achievements in pedestrian and vehicle target 

detection in the traffic field. The target detection is generally 

realized in the following steps: identifying the regions of 

interest (ROIs) in the original image by sliding window 

traversal or complex region selection algorithm, and checking 

for the presence of targets in each ROI. Based on convolution 

NN (CNN), Sermanet et al. [5] proposed an unsupervised 

learning method for pedestrian detection; the CNN improves 

the discrimination ability of the original target detection 

algorithm, without undermining its robustness in detecting 

occluded or deformed targets. Hosang et al. [6] designed an 

adaptive image classification network for line detection, which 

effectively improves the detection accuracy of local features 

in independent channels. Girshick et al. [7] developed a 

region-based CNN (R-CNN) that classifies the ROIs 

preliminarily selected by the CNN. 

Image target detection is often treated as a multi-class 

classification problem. The labeling of positive classes 

(unusual targets) in the original image is usually easier and 

more accurate than that of negative classes (non-targets). 

Hence, this problem has been recently treated by many as a 

one-class (OC) classification problem, a.k.a. novelty or outlier 

detection [8]. Different from those in multi-class classification, 

the data samples of OC classification mainly come from only 

one class, i.e., the target class, while those of other classes are 

either too few or uncredible. In other words, the classes of non-

target samples are unknown. OC classification is being widely 

applied in machine fault detection [9], disease detection [10], 

and credit score [11]. During OC classification, the classifiers 

observes the target samples carefully, learns how to select 

unknown samples similar to the target class, and determines 

the class of each test sample. In general, each classification 

task is equivalent to describing the data distribution of the 

target class. The most representative OC classification method 

is support vector data description (SVDD) [12]. 

At present, various OC classification methods have been 

developed and implemented. Early on, OC classification was 

achieved by estimating the probability density function of the 

training data [13]. For example, Robert [14] superimposed the 

estimation of Parzen window density on only one training 

sample to derive the probability density function, and rejected 
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any test sample whose estimated probability is below the 

threshold. However, it often requires a huge number of 

training samples to deduce the true density distribution. A 

much simpler method is to find the data distribution domain. 

For instance, Scholkopf et al. [15] constructed a hyperplane 

with the largest distance from the origin to separate areas with 

no or sparse data. Another method is to find a hypersphere that 

covers most of the target data with the smallest radius [12]. 

Both methods could be realized through quadratic 

programming, or sometimes through linear programming [16]. 

For example, Juszczak et al. [17] designed an OC classifier 

based on the minimum spanning tree, which determines the 

class of each sample based on the shortest distance from the 

sample to the nearest edge of the tree. 

Over the years, many OC algorithms have been developed 

based on artificial NNs (ANNs). For instance, Gutoski et al. 

[18] proposed a self-encoding (AE) OC classifier from a 

feedforward NN with only one implicit level; the training of 

the classifier depends heavily on the backpropagation (BP) 

algorithm. In addition, much research attention has been paid 

to the training of ANNs through iterative update, random 

variable assignment, and least squares algorithm. Extreme 

learning machine (ELM) is the most representative algorithm 

for OC. It obtains the implicit level export from the random 

variables of neurons in the implicit level, and solves export 

weights by least squares method [19]. Leng et al. [20] put 

forward an OC ELM that outshines many traditional OC 

classifiers on various benchmark datasets.  

Nevertheless, the existing ELMs cannot be directly applied 

to our problem of detecting unusual targets in traffic images, 

mainly due to the following problems: (1) High computing 

complexity: deep NNs consume lots of computing resources, 

and a large amount of power, reducing the continuous running 

time of many battery-powered portable devices; (2) High need 

for manual labeling: the images collected by the surveillance 

cameras must be labeled manually to provide sufficient 

labeled samples for the training of deep NNs, pushing up the 

workload of personnel; (3) Weak capability of feature 

expression: Most ELMs adopt an NN with only one implicit 

level, whose capability of feature extraction is poor. In our 

problem, if the array of numerous traffic images are vectorized 

and directly imported to the ELM, the curse of dimensionality 

will occur and result in the failure of classification. 

Therefore, this paper proposes a multi-level semi-

supervised OC ELM (ML-S2OCEML) for detecting unusual 

targets in traffic images. As shown in Figure 1, each original 

image is segmented into a series of sub-images by one or 

several fixed-size windows, with the expectation that each 

sub-image contains as many targets in the same class as 

possible. Then, the sub-images with unusual targets are 

processed manually. 

 

 
 

Figure 1. The workflow of the ML-S2OCEML 
Note: The blue arrows indicate the training process; the red arrows indicate the online prediction process 

 

The main innovations of the ML-S2OCELM are as follows: 

(1) The classifier was developed based on the ELM. The 

closed solutions of ELM variables could be directly calculated, 

saving lots of computing resources. 

(2) The hypergraph Laplacian array was employed to 

improve the depiction of data smoothness, making semi-

supervised classification more accurate. 

(3) A stack auto-encoder (AE) was introduced to implement 

a multi-level NN, which can extract discriminative 

eigenvectors with suitable dimensions. 

2. METHODOLOGY 

 

2.1 ELM 

 

Proposed by Prof. G.B. Huang, the ELM [21] could be 

mathematically described as follows: The ELM aims to learn 

decision rules or approximate functions from a labelled 

training dataset {(x𝑖 , t𝑖)|x𝑖 ∈ ℝ𝑑 , t𝑖 ∈ ℝ𝑚, 𝑖 = 1, … , 𝑁} , 

where xi and t𝑖 are the import and export vectors, respectively; 

𝑁 and 𝑑 are the total number and dimension of the samples, 
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respectively; 𝑚 is the number of classes.  

The ELM is generally trained in two phases. In the first 

phase, an implicit level is built with a fixed number of 

randomly generated mapping neurons. The mapping could be 

any nonlinear piecewise continuous function, namely, sigmoid 

function and Gaussian function: 

 

𝑔(x; w, 𝑏) =
1

1 +  exp (−(w𝑇𝑥 + 𝑏))
 (1a) 

 

𝑔(x; w, 𝑏) =  exp (−𝑏‖x − w‖) (1b) 

 

where, x is a sample; w is the vector of the import weight; b is 

the bias. Let L be the number of neurons in the implicit level. 

The weight vectors and biases of L neurons could be generated 

as {w1, … , w𝐿} and {𝑏1, … , 𝑏𝐿}, respectively. For each x, the 

corresponding implicit level export vector (i.e., ELM features) 

could be formulated as: 

 

ℎ(x) = [𝑔(x; w1, 𝑏1), … , 𝑔(x; w𝐿 , 𝑏𝐿)] ∈ ℝ1×𝐿 (2) 

 

Then, the implicit level export array is: 

 

H = [ℎ(x1); … ; ℎ(x𝑁)] ∈ ℝ𝑁×𝐿 (3) 

 

A significant feature of the ELM is that the mapping 

function variables from the import level to the implicit level 

could be generated by random based on arbitrary distribution 

of continuous probabilities. During training, the only variable 

to be optimized is the weight of the export from the implicit 

level to the export level. The variable optimization could be 

analogized to a regularized least squares problem. Therefore, 

it is much more efficient to construct an ELM model than NN 

back-propagation learning. 

Let β ∈ ℝ𝐿×𝑚 be the export weight of the implicit level to 

the export level. Then, the ELM model could be established as: 

 

𝑓(x) = ℎ(x)β (4) 

 

Consequently, the export weight array could be optimized 

by minimizing the deviation of network export from target β*: 

 

min
β

‖Hβ − T‖F
2 (5) 

 

where, ‖⋅‖F  is the Frobenius norm; β and T are the export 

weight array and target array, respectively. 

The export weight array β* could be optimized through least 

squares method: 

 

β∗ = H†T (6) 

 

where, H† is the pseudo inverse of H. The regularized ELM 

(RELM) could reduce the training error as much as possible, 

as well as the export weight norm. Thus, we have: 

 

min
β

1

2
𝐶‖Hβ − T‖F

2 +
1

2
‖β‖F

2 (7) 

 

where, the second objective function is designed to avoid 

overfitting; C is the trade-off coefficient. The solution of 

formula (7) could be expressed as: 

 

β∗ = HT (
I

𝐶
+ HHT)

−1

T (8) 

 

If the training data far outnumber implicit level neurons, i.e., 

N≫L, the solution of formula (7) could be expressed as: 

 

β∗ = (
I

𝐶
+ HTH)

−1

HTT (9) 

 

where, I is a unit array with appropriate dimension. 

 

2.2 OC-ELM 

 

In OC classification, the model can only be trained with the 

data of the target class. Therefore, the solution of OC-ELM 

becomes: 

 

min
β

𝐶

2
‖Hβ − t‖F

2 +
1

2
‖β‖2

2 (10) 

 

where, ‖⋅‖2  is the 2-norm. The training dataset could be 

described as {(x𝑖 , t)|x𝑖 ∈ ℝ𝑑 , 𝑖 = 1,2, … , 𝑁} , with t =
[𝑡, … , 𝑡]T ∈ ℝ𝑁  being the desired vector. Without loss of 

generality, 𝑡 could take any value. The array of export weights 

could be obtained by substituting array T with t and then 

solving formula (8) or (9). For the robustness of performance, 

the OC-ELM could remove a few samples based on the 

deviation ε(x) of the network from the target: 

 

𝜀(x) ≜ |ℎ(x) − 𝑡| (11) 

 

In the ideal scenario, the lower the ε(x), the better the result. 

If the test sample x has a large error ε(x), then it could be 

regarded as an anomaly or outlier that deviates from the target 

class. In other words, if ε(x)≤θ, then x is the target; otherwise, 

it is an outlier. The threshold θ could be determined in two 

steps: First, ε(x1),…,ε(xN) are arranged in descending order as 

ε1≥ε2≥…≥εN; then, 𝜃 = 𝜀⌊𝑁𝜙⌋is set to get the threshold, where 

ϕ∈(0,1) is a manually-set value. 

 

2.3 ML- S2OCELM 

 

There are three core parts of the ML-S2OCELM: 

hypergraph Laplacian array, multi-level feature extraction, 

and S2OCELM. 

 

2.3.1 Hypergraph Laplacian array 

In semi-supervised learning, it is necessary to introduce a 

graph Laplacian array to describe the smoothness of the data. 

Here, a more general form than the graph Laplacian array is 

introduced, namely, the hypergraph Laplacian array. 

In machine learning problems, the data are usually assumed 

to have a pairwise relationship. A dataset given by a pairwise 

relationship could be considered a graph, which could be 

undirected or directional. In some problems, however, it is 

incomplete to represent the relationship between the samples 

with simple graphs. This problem could be solved through 

hypergraph learning. Compared with traditional graphs, the 

hypergraph uses hyperedges that connect three or more points 

to represent the complex relationships in the data. 

Figure 2 provides an example of hypergraph G(V, E), where 

V is a set of points (samples), and E is a collection of V subsets 

satisfying ⋃ 𝑒𝑒∈𝐸 = 𝑉 . The weight of edge e could be 

expressed as w(e), the degree of each point v as 𝑑(𝑣) =
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∑ 𝑤(𝑒)𝑒∈𝐸|𝑣∈𝐸 , and the degree of hyperedge 𝑒 as δ(e)=|e|. In 

addition, the event array 𝕀 corresponding to the hypergraph 

could be described as |V|×|E| array. If v∈e, then 𝕀(𝑣, 𝑒) = 1; 

otherwise 𝕀(𝑣, 𝑒) = 0. Furthermore, it could be obtained that 

𝑑(𝑣) = ∑ 𝑤(𝑒)𝕀(𝑣, 𝑒)𝑒∈𝐸 , and 𝛿(𝑒) = ∑ 𝕀(𝑣, 𝑒)𝑣∈𝑉 . 

 

 
 

Figure 2. An example hypergraph (left), and the 

corresponding event array (right) 

 

Let Dv be a diagonal array containing point degrees, De be a 

diagonal array of hyperedge degrees, and W be a diagonal 

array of hyperedge weights. Then, the hypergraph Laplacian 

array could be defined based on these variables. 

Currently, the Laplacian array of hypergraphs is mainly 

established in two types of methods. The first type of methods 

is to build a simple graph from the original hypergraph, and 

then divide the points through spectral clustering; the second 

type is to define the hypergraph Laplacian array by analogy to 

the Laplacian array of a simple graph: 

 

L = I − D𝑣
−1/2

HWD𝑒
−1H𝑇D𝑣

−1/2
 (12) 

 

Suppose the adjacency array of the hypergraph is expressed 

as: 

 

W = HWHT − D𝑣 (13) 

 

Then, the Laplacian array of a simple graph could be 

obtained by representing De as 2I: 

 

L = I −
1

2
D𝑣

−
1
2HWH𝑇D𝑣

−
1
2 =

1

2
(I − D𝑣

−
1
2WD𝑣

−
1
2) (14) 

 

2.3.2 Multi-level feature extraction 

In general, the existing NNs for OC classification are built 

on only one implicit level for data learning. This structure is 

inefficient in feature extraction. To make up for the deficiency 

of traditional OC-ELM in processing image data, this paper 

extends the OC-ELM to multi-level network. Here, the ELM-

based AE (ELM-AE) is adopted for feature learning. 

After setting the export of the training set of ELM-AE to 

X=[x1;…; xN], the export weight array of the AE could be 

obtained to realize feature extraction. Similar to ELM, the 

import weight array W𝑎 = [w1
𝑎; … ; w𝐿𝑎

𝑎 ]  and the deviation 

vector b𝑎 = [𝑏1
𝑎; … ; 𝑏𝐿𝑎

𝑎 ] were first generated; then, the export 

weight array α was obtained by: 

 

min
β

1

2
𝐶𝑎‖H𝑎α − XT‖F

2 +
1

2
‖α‖F

2

s.t.       W𝑎W𝑎
T = I, b𝑎

Tb𝑎 = I

 (15) 

 

where, Ha is the implicit level export array of AE; X is the 

import data serving as the export of feature learning in AE; Ca 

is the trade-off coefficient between training error and model 

complexity. Similarly, the export weight array α∗ of AE could 

be optimized as: 

 

α∗ = H𝑎
T (

I

𝐶𝑎

+ H𝑎H𝑎
T)

−1

XT (16) 

 

If the training data far outnumber implicit level neurons, i.e., 

N≫L, the solution of formula (13) could be expressed as: 

 

α∗ = (
1

𝐶𝑎

+ H𝑎
TH𝑎)

−1

H𝑎
TXT (17) 

 

Finally, the export of ELM-AE could be obtained as 

Y=g(α*X). In the ML-S2OCELM algorithm, AEs were stacked 

to conduct feature learning. On this basis, the encoded feature 

Y was imported to following AEs for feature learning. After 

that, the S2OCELM algorithm was called to implement 

classification. It was assumed that 𝐾 ELM-AEs are for feature 

extraction, and Xk-1 is the coding feature of the k-1-th AE. Then, 

the encoded feature of the k-th level could be expressed as: 

 

X𝑘 = 𝑔(α𝑘−1
∗ X𝑘−1) (18) 

 

where, α𝑘−1
∗  is the export weight array of the k-1-th AE 

(k=1,…, K). 

 

2.3.3 S2OCELM 

Using the encoded features, S2OCELM was used for 

classification in the final phase. In the case of semi-supervised 

learning, there are fewer labeled data {X𝑙 , Y𝑙} = {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑙  

than unlabeled data X𝑢 = {𝑥𝑗}
𝑖=1

𝑢
, where l and u are the 

number of labeled data and that of unlabeled data, respectively. 

For the lack of labeled data, the manifold regularization was 

introduced to improve the classification accuracy with 

unlabeled data: 

 

min
β

𝐶

2
‖JH𝐾β − t̂‖F

2 +
𝜆

2
f TLf +

1

2
‖β‖2

2 (19) 

 

where, HK is an implicit export array generated from XK; L ∈

ℝ(𝑙+𝑢)×(𝑙+𝑢)  is a hypergraph Laplacian array; f ∈ ℝ𝑁  is the 

export array of the network, whose row vector is f(xi); λ is the 

trade-off coefficient; J is the diagonal array where the first l 

elements are 1, and the rest are 0; t̂ ∈ ℝ𝑁 where the first l rows 

are equal to t and the next u rows are equal to 0. Furthermore, 

formula (19) could be rewritten as: 

 

min
β

𝒪 ≜
𝐶

2
‖JH𝐾β − t̂‖F

2 +
𝜆

2
βTH𝐾

TLH𝐾β +
1

2
‖β‖2

2 (20) 

 

Let the gradient of 𝒪 with respect to β be 0: 

 

∇𝒪 = β + CH𝐾
TJ(H𝐾β − t̂) + 𝜆H𝐾

TLH𝐾β = 0 (21) 

 

Furthermore, the closed-loop solution of the optimal β* 

could be obtained. If the training samples have too many the 

implicit neurons, the above equation is an overdetermined 

equation. Then, 

 

β∗ = (
I

𝐶
+ H𝐾

TJH𝐾 +
𝜆

𝐶
H𝐾

TLH𝐾)
−1

H𝐾
T t̂ (22) 
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where, I is a unit array with appropriate dimension; otherwise, 

 

β∗ = H𝐾
T (

I

𝐶
+ JHHT + λLHHT)

−1

t̂ (23) 

 

 

3. EXPERIMENTS AND RESULTS ANALYSIS 

 

A total of 50,000 images were extracted from street 

surveillance videos, in which the unusual targets (running dogs) 

appeared in 2,436 images. Then, 40% of the target images 

were organized into the test set, and the other 60% into the 

training set. The test set was established by random selection 

for 10 times. After the two sets were fixed, a certain percentage 

of data was selected as labeled data for 10 times in each semi-

supervised experiment. Thus, under the same labeling ratio, 

the same algorithm was tested 100 times. As a result, all the 

following metrics were calculated as the mean of 100 results. 

The performance of each algorithm was measured by 

missing detection ratio (MDR) and false alarm ratio (FAR): 

 

MDR =
The number of unrecognized target images

The number of target images
 

 

FAR =

The number of images incorrectly 
recognized as target images

The number of images 
recognized as target images

 

 

The experiments were conducted on a desktop computer 

operating on an Intel Core 7 processor (3.4GHz, 8GB RAM), 

using Python as the programming language, and Spyder as the 

integrated compilation environment. The variables were 

configured as: Ca=10-3, C=10-2, λ=10-4, K=5, La=400, and 

L=500.  

 

Table 1. The MDR and FAR (%) 

 
       Method 

Labels 

ML-ELM ML-S2ELM ML-OCELM ML-S2OCELM 

MDR FAR MDR FAR MDR FAR MDR FAR 

5% 31.3 29.6 21.1 33.9 49.3 12.5 22.5 34.4 

10% 28.2 25.6 18.7 28.0 41.1 10.8 18.5 30.3 

15% 24.9 24.1 12.3 23.3 38.2 10.3 14.6 25.1 

20% 21.7 21.7 10.5 20.4 35.8 8.9 12.8 22.9 

30% 18.6 19.5 7.8 18.2 31.7 7.8 8.1 19.4 

To reflect the superiority of the proposed algorithm, two 

supervised learning algorithms (ML-ELM and ML-OCELM) 

and two semi-supervised learning algorithms (ML-S2ELM 

and ML-S2OCELM) were chosen as contrastive algorithms. 

All algorithms used the same feature extraction level. The 

target detection results of the algorithms are compared in 

Table 1, where the percentage of labels indicates the 

proportion of images taken from the target class for labeling. 

The recognition results of our algorithm are also displayed in 

Figure 3. 

As shown in Table 1, the comparison between ML-ELM 

and ML-OCELM indicates that describing the detection of 

unusual targets in traffic images as an OC classification 

problem could greatly reduce the MAR, but significantly 

increase the MDR. 

Comparing ML-S2ELM and ML-S2OCELM, it is easy to 

find that the distribution information of unlabeled samples 

could be fully utilized under the semi-supervised mechanism. 

The OC classification had slightly lower MDR and FAR than 

the multi-class classification, but the difference is so small as 

to be negligible. More importantly, ML-S2OCELM does not 

need to mark most non-target images in the sample, which 

greatly reducing the labeling work. 

Comparing ML-ELM and ML-S2ELM, it is obvious that, 

when the labeling ratio is low, the semi-supervised mechanism 

increased the FAR to a certain extent; however, as the labeling 

ratio increased, the two methods almost had the same FAR.  

In addition, judging by the relationship between the 

MDR/FAR and the labeling ratio, with the growth in the 

labeled ratio, the MDR/FAR decreased to a certain extent, and 

the performance difference between supervised and semi-

supervised learnings continued to narrow. 

 
 

Figure 3. The recognition effect of the proposed algorithm 

 

 
 

Figure 4. The runtimes of different algorithms 

 

In addition, the runtimes of these algorithms in unusual 

target detection were compared on 200 images. As shown in 

Figure 4, the proposed algorithm achieved a high recognition 

accuracy with the shortest runtime. 
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4. CONCLUSIONS 

 

This paper proposes a method called ML-S2OCELM for 

detecting unusual targets in traffic images. Specifically, an 

ELM was taken as a prototype classifier for secondary 

development.  Due to the closed solution of ELM variables, 

our classifier does not require too many computing resources, 

which improves the training speed. Moreover, a stacked AE 

was introduced to implement a multi-level NN, which can 

extract distinctive dimensional eigenvectors. In addition, the 

hypergraph Laplacian array was called to describe the 

smoothness of the data more clearly, and improve the accuracy 

of semi-supervised classification. Finally, the detection of 

unusual targets in traffic images was treated as an OC 

classification problem, which greatly reduces the labeling 

work without loss of accuracy, thereby saving a lot of labors 

and material resources. 
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