
Multiple Linear Regression of Multi-class Images in Devices of Internet of Things

Dan Chen

School of Computer Engineering, Jiangsu University of Technology, Changzhou 213001, China

Corresponding Author Email: 2003500009@jsut.edu.cn

https://doi.org/10.18280/ts.370609 ABSTRACT

Received: 13 June 2020

Accepted: 29 October 2020

The correct classification of images is an important application in the monitoring of Internet

of things (IoT). In the research of IoT images, a key issue is to recognize multi-class images

at a high accuracy. As a result, this paper puts forward a classification method for multi-

class images based on multiple linear regression (MLR). Firstly, the convolutional neural

network (CNN) was improved to automatically generate a network from the IoT terminals,

and used to classify images into disjoint class sets (clusters), which were processed by the

subsequently constructed expert network. After that, the MLR was introduced to evaluate

the accuracy and robustness of the classification of multi-class images. Finally, the proposed

method has been verified on CIFAR-10, CIfar-100 and MNIST, etc. benchmark data sets.

Our method was found to outperform other methods in classification, and improve the

accuracy of the classic AlexNet by 2%. The research results provide theoretical evidence

and lay practical basis for the classification of multi-class IoT images.

Keywords:

internet of things (IoT), multiple classes,

image recognition, multiple linear

regression (MLR), convolutional neural

network (CNN)

1. INTRODUCTION

The rapid development of artificial intelligence (AI) has

fundamentally changed our life. Image recognition, an

important AI technology, is the cornerstone of many

applications, especially in the Internet of things (IoT). Images

have played an increasingly important role in various field,

such as face recognition, target detection, and item

classification, creating a huge demand for image classification.

A wide array of image retrieval methods has emerged [1]. For

instance, content-based image retrieval attracts extensive

attention from researchers, for its ability to automatically

acquire the color, texture, and shape of mages.

The best classifiers of largescale benchmark images, e.g.,

the Large Scale Visual Recognition Challenge (ILSVRC) of

ImageNet, are generally based on convolutional neural

networks (CNN). Advances in machine learning methods,

such as DropOut [2] DropConnect [3] max pooling [4], and

Batch normalization [5] and regularization techniques, in

addition to the availability of high-performance computing

system and large datasets, have made CNN implementations

particularly efficient. However, there is no well-established

rule for the training of a high-performance deep CNN [6]. The

training of a deep network usually requires smooth

experimental procedures and statistical analysis.

Most of current methods gain insights into the data and

recognize images, focusing on the classes. But the models or

plans of these methods perform poorly, if changes take place

to the distribution of multi-class images, and result in

statistical heterogeneity. What is worse, many models fail to

consider whether the images in different classes are correlated,

and whether different features have linear (nonlinear)

relationships. The failure undermines the robustness of these

models. Moreover, data-driven models perform poorly or face

difficulty in application, as the amount of diverse data

collected/monitored by terminals outnumber the computing

power of computers.

To overcome these limits, more and more solutions to image

classification were developed recently based on the cloud

platform. Some of these solutions upload the original images

with image features, and some only upload the image features

to the cloud. However, these solutions are not applicable to

multi-party classification, due to the diverse sources and

ranges of images.

Under the premise of open image sharing, it is not an easy

task for multiple parties to perform multivariate analysis on

images [7].

To solve the above problems, this paper presents a

classification method for multiple classes based on multiple

linear regression (MLR). Firstly, an improved CNN was

constructed automatically from the IoT terminals, and used to

classify images into disjoint class sets (clusters), which were

processed by the subsequently constructed expert network.

Next, the MLR was introduced to analyze the classification

accuracy and robustness of multi-class images. Then, the

authors validated the proposed method on publicly available

benchmark datasets such as CIFAR-10, CIFAR-100, and

MNIST. It is demonstrated that our method can provide better

classification performance than the comparative methods, and

improve the accuracy of the classic AlexNet by 2% [8]. Finally,

the authors discussed the challenges and opportunities for

future research.

2. LITERATURE REVIEW

Deep learning is a proven framework for performance

improvement in various tasks of computer vision.

Unsupervised algorithms can classify images without needing

labeled data. In general, unsupervised algorithms generate the

initial class graph based on the target decomposition theory [9,

10], and iteratively update the initial class graph by statistical

Traitement du Signal
Vol. 37, No. 6, December, 2020, pp. 965-973

Journal homepage: http://iieta.org/journals/ts

965

https://crossmark.crossref.org/dialog/?doi=10.18280/ts.370609&domain=pdf

distribution of polarization ratio [11, 12]. These algorithms are

simple and fast, but not highly accurate in classification. Semi-

supervised classification algorithms [13] classify images with

both labeled and unlabeled data, which enhance the

classification performance and generalization ability. These

algorithms have developed rapidly in recent years, thanks to

the ability to achieve high accuracy at a low cost of labeling.

At present, CNN-based models are the best performing

models in the tasks related to computer vision. For example,

recurrent neural networks (RNN) [14], The winners in

ILSVRC2014, while designing many variants of the decision

tree, have achieved good results with their coupling to the new

components and can successfully perform most of the vision

tasks. Nonetheless, there is little report that combine CNN

with decision trees. Goodfellow et al. [15]. strived to improve

the classification performance with a limited training dataset

through knowledge transfer between similar classes. More

recently, Che et al. [16] attempted to build a layered CNN, but

the primary goal is to transfer knowledge from a large network

to a small network, and thus achieve scalability without

affecting performance.

This paper aims to develop a general framework that

differentiates the data that are easy to separate from those

difficult to separate, and thereby automatically detects data

hierarchy and enhances performance. The data that are

difficult to separate were routed to the depth of the trees,

waiting to be processed by the nodes in the expert network.

3. MODEL DESCRIPTION

Firstly, the computing framework was improved from the

CNN to deep CNN (DCNN), with the aim to design an

effective deep network architecture that avoids overfitting in

training. Unlike existing learning methods, the DCNN was

established step by step through learning. In each phase,

confidence image samples are divided into different number

of classes, and the residual data that are difficult to classify are

divided into smaller clusters, which will be processed by the

expert network in the next phase of learning.

In each phase, it is difficult to distinguish between intra-

cluster samples, but easy to differentiate between inter-cluster

samples, using the classifier trained in that phase. This is

realized by finetuning the classifier with the combination of

maximum and weighted contrast loss (WCL). Despite being

driven by the principle of divide and conquer, the clustering

has an additional benefit: the automatic detection of data levels

based on appearance similarity. Thus, the DCNN implicitly

acquires the ability to explicitly classify samples.

3.1 Deep decision network

The DCNN is a tree-like deep neural network. In the

network, each node classifies the data that are easy to separate

early on, and determine the node of the expert network to

handle the images with very slight differences (e.g., eagle

image and dove image). Figure 1 illustrates the architecture of

the DCNN. The network consists of N levels, each of which

with K confusion clusters. The convolutional layers on

different levels perform convolution at different depths.

Figure 2 describes the structure of level 1 of the DCNN.

After being imported to the level, the multi-class images will

go through multiple convolutional layers, multiple max

pooling layers, a fully-connected layer, and an output layer

activated by softmax. The maximum number of max pooling

layers varies from level to level.

Different from other CNN applications, our DCNN

encompasses multiple convolutional layers. The learning of

our network obviously requires largescale or high-level

features. During image classification, the limited number of

convolutional layers in the network greatly reduces the

number of parameters to be learned, which helps avoid

overfitting. In addition, the network training was improved

and accelerated by various techniques like DropOut and batch

normalization. The learning parameters of these techniques

were selected based on typical values or empirical research.

Figure 1. The architecture of the DCNN

966

Figure 2. The structure of level 1

Based on the given dataset, level 1 of the DCNN was trained

by the backpropagation algorithm [16]. The network was thus

optimized to the reasonable performance. If the pre-trained

network already reaches the reasonable performance, it could

be directly used as a node network. Then, the confusion matrix

calculated on the validation dataset was adopted to identify the

cluster of each sample, such that the confusion of intra-cluster

sets is much higher than that of inter-cluster sets. After

network training, the data of each cluster were captured by the

expert network, aiming to correct the samples that were

classified incorrectly or at a low confidence.

As a result, the classification problem was zoomed in and

solved as the network level deepened. The network was built

up continuously until its performance on the validation dataset

further improved. During the testing, the samples were

classified on multiple levels of the DCNN until their classes

were finalize.

There is some crux discrepancy between the architecture of

the DCNN and that of traditional deep networks. First, the

DCNN freezes all levels before the previous level, and trains

the newly added level; these levels constitute the nodes of the

next level. Second, each node is built in the feature space of

the parent node and can be trained from any layer of the parent

node, and the level can be selected based on the cross-

validation dataset.

3.2 Data classification

The spectrum co-clustering algorithm [17] was employed to

identify clusters on each node of the DCNN. This algorithm

can approximate the cut of the bipartite picture (symmetric

matrix) normalized to find the subgraph (sub-matrix) with

significant weight, thereby realizing the block diagnosis on the

matrix.

To visualize the performance of our model, the authors

applied the spectral copolymerization algorithm to solve for

the covariance in the confusion matrix. Thus, the diagonal in

the confusion matrix is a cluster division, and these clusters

are not without intersection, i.e., the clusters are not

overlapping each other. In addition, the samples within the

clusters can be confused. Note, however, there is an extremely

low possibility of misclassification for all samples that are not

on the diagonal in the confusion matrix.

To minimize the possibility of such misclassification, the

joint loss, which combines softmax and WCL, was selected to

finetune network parameters. The finetuning will be detailed

in Subsection 3.3. To obtain the optimal number of clusters C

∗ , the fitness metric fm(C) was defined for the number of

clusters C given by the spectrum co-clustering algorithm:

()
1

1
f C

k

i

i

m C
k


=

 
= + 
 

 (1)

where, ε is the non-classification error caused by data splitting;

Ci is the i-th cluster; |•| is the cluster size. Then the optimal

number of cluster C* can be obtained as:

()arg min f
c

C m C = (2)

3.3 Joint loss

As mentioned before, the error caused by the inability to

correctly allocate the samples to the corresponding cluster

cannot be recovered. For example, suppose the level 1

subnetwork (trained with a loss function) fails to classify some

images on planes, dogs, and ships. If the classes of planes and

ships form a cluster, and the plane images incorrectly

identified as dogs by the subnetwork are all allocated to the

wrong cluster (expert node), it could not be able to assign the

correct class (plane) to these graphs. In order to minimize the

probability of this misclassification, the classification error

was weighed to drive the contrast loss function to increase the

maximum soft loss. This facilitates the block diagonalization

of the confusion matrix (Figures 5 and 6). Naturally, the total

loss function can be obtained as:

2 1 m softmaxL L L =  +  (3)

where, Lm is the WCL function. Based on the performance of

the validation dataset, weights λ1 and λ2 were configured

according to different image classification datasets. For

example, the two weights were set to 0.8 and 1, respectively,

for the MNIST experiment.

The WCL Lm can be understood as a set of soft constraints

with a higher penalty for misclassification of samples to a class

in another cluster than that to a class in the same cluster. That

is, the similarity measure between intra-cluster samples will

be smaller than that between inter-cluster samples by

minimizing the WCL. The WCL function can be given by:

()
2

2

m ij

1
= max 0,

2 2
L m

 
  

− 
  +  − 
 

 (4)

where,  k k0.1 andj C

 ij 1 =
if i C

otherwise   is the weight for the class labels i

and j; β is the L2 norm between each pair of samples; σ is the

label indicating the similarity or dissimilarity between samples;

m is the margin; Ck is the kth cluster.

967

4. MLR

Our network classifies confidence samples with different

number of classes, and divides the residual data that are

difficult to classify into smaller clusters. Data clustering [18]

makes it difficult to distinguish intra-cluster samples, but easy

to differentiate between inter-cluster samples with the

classified trained in the current phase [19]. Although the

DCNN implicitly acquires the ability to explicitly classify

samples, its robustness needs to be further improved.

Therefore, the MLR was conducted on images of different

classes to expand single eigenvariable into multiple

eigenvariables. Through the complex calculation, the network

will be more robust and accurate in image classification.

4.1 Mathematical model

Suppose variables y and x obey the following relationship:

0 1 1 2 2 m= + x + x + xmy     + + (5)

where, y is a random variable; 𝑥1; 𝑥2; … ; 𝑥𝑚 are non-random

variables; 𝛽1; 𝛽2;⋅⋅⋅; 𝛽𝑚 are regression coefficients; ε is a

random error induced by various other random factors that

cannot be explained by 𝑥1; 𝑥2; … ; 𝑥𝑚 in y.

The y value in the mean E(y) must be estimated with 𝛽0 +
𝛽1𝑥1 + 𝛽2𝑥2 +⋅⋅⋅ +𝛽𝑚𝑥𝑚 . This means 𝐸(𝑦) = 𝛽0 + 𝛽1𝑥1 +
𝛽2𝑥2 +⋅⋅⋅ +𝛽𝑚𝑥𝑚 + 𝜀 . Assuming that 𝜀~𝑁(0, 𝜎2), 𝑦 ∼
𝑁(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋅⋅⋅ +𝛽𝑚𝑥𝑚, 𝜎

2) , 𝛽𝑖(𝑖 = 0,1,2, … ,𝑚) ,

and that the unknown constants, 𝛽1; 𝛽2;⋅⋅⋅; 𝛽𝑚, and σ2 are not

related to 𝑥1; 𝑥2; … ; 𝑥𝑚 , the n independent observation

datasets obtain through the independent tests on n pairs of

variables (𝑥1, 𝑥2, … , 𝑥𝑚 , 𝑦) can be expressed as:

()1 2, , , , 1,2, ,i i im ix x x y i n=  (6)

Moreover, the relationship between the n independent

observation datasets (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖𝑚 , 𝑦𝑖), (𝑖 = 1,2, … , 𝑛) and

variables (𝑥1, 𝑥2, … , 𝑥𝑚 , 𝑦) must satisfy:

1 0 1 11 2 12 1 1

2 0 1 21 2 22 2 2

0 1 1 2 2

m m

m m

n n n mn nm n

y x x x

y x x x

y x x x

    

    

    

= + + + + +


= + + + + +


 = + + + + +

 (7)

where, 𝛽0, 𝛽1, … , 𝛽𝑚 are the parameters to be estimated;

𝜀1, 𝜀2, … , 𝜀𝑛 are n mutually independent random variables that

obey normal disruption 𝑁(0, 𝜎2) . Formula (7) is the

mathematical model of MLR.

Further, he MLR model (7) was constructed into the

augmented Lagrangian method in the primitive dual method,

aiming to speed up the convergence. Since the Lagrangian

function can solve optimization problems under multiple

constraints, an optimization problem with n variables and k

constraints can be converted into a problem whose solution is

an equation set with n+k variables. The augmented Lagrangian

method is a Lagrangian method with additional penalty. By

this method, the simple MLR model above was transformed

into convex optimization. The Lagrangian function could be

expressed as:

() ()x, nL y T x b = +  − (8)

The original problem is to solve 𝑚𝑖𝑛𝑥𝑓(𝑥) under

constraints. The new problem is solving dual problem

𝑚𝑎𝑥𝜆𝑚𝑖𝑛𝑥𝐿(𝑥, 𝜆). The optimal solutions of the two problems

are equivalent, and the constraints have been removed. By the

dual ascent method, we have:

()

()

1

1 1

 step1 : argmin ;

 step2 :

k k

x

k k k

x L x

Ax b



  

+

+ +

=

= + −
 (9)

The dual ascent method splits 𝑚𝑎𝑥𝜆𝑚𝑖𝑛𝑥𝐿(𝑥, 𝜆) into two

steps: solving 𝑚𝑖𝑛𝑥𝐿(𝑥; 𝜆
𝑘) under a fixed λ; substituting the

solved x into the Lagrangian function to obtain the update

formula of λ through gradient descent.

To speed up the convergence, an additional penalty term

was added. Then, the augmented Lagrangian function can be

expressed as:

2(;) ()
2

T

nL x y Ax b Ax b


 = + − + −‖ ‖ (10)

The ADMM was adopted to solve the Lagrangian function

constructed by the MLR model. The corresponding ADMM

can be defined as:

2

(, ;) ()

()
2

n

T

L x z y g z

Ax Bz c Ax Bz c






= +

+ + − + + −‖ ‖
 (11)

Similar to the augmented Lagrangian method, two variables

were fixed to update the third variable:

()

()

1

1 1

1

step1: argmin , ,

 step2 : argmin , ,

step3 : ()

k k k

x

k k k

z

k k

x L x z

z L x z

Ax Bz c





  

+

+ +

+

=

=

= + + −

 (12)

Then, the problem becomes how to solve argminxL. Then,

the gradient descent was adopted to solve the problem. In this

way, the image features were subject to MLR, and their

correlations with dimensions were clearly identified.

5. EXPERIMENTS

To verify its superiority, our method was compared with

some of the most advanced algorithms, namely, stochastic

pooling [20], CNN + Spearmint [21], convolutional MaxOut

(COMO) + DropOut [22], network in network (NIN) +

DropOut [23], and AlexNet, through experiments on a server

with multiple Titan-X GPU.

5.1 Experimental results on DCNN

5.1.1 Experiment on MNIST dataset

To validate the DCNN [24], a control experiment was

conducted on a subset of MNIST [25] dataset. The LeNet was

taken as the starting child node of level 1. For each subsequent

level (expert node), a convolutional layer and a fully-

connected layer were added to deepen the classification, while

only processing the subsets that are difficult to separate. From

the confusion matrix generated in level 1, the numbers 3 and 5

968

formed a cluster (set of confusion classes). Some of the

confusion samples are displayed in Figure 3. To overcome the

confusion, an expert network node was established on level 2,

which falls in the feature space of level 1. As shown in Figure

3, some confusion samples on level 1 were solved on level 2,

indicating that the addition of level 2 improves the

classification accuracy. Note that the network growth was

terminated when the subsequent network could no longer

distinguish or improve the validation dataset, because the

generated network is data-driven.

Figure 3. The confusion samples in MNIST dataset

5.1.2 Experiment on DCNN classification

After an image was imported, the feedforward was After

importing the image data, the model parameters are first

optimized in DCNN by performing antecedent feedback from

the root node in layer 1 and obtaining a confidence score from

the function layer. If the score is higher than the threshold

(obtained by pre-training), the model training is considered to

have reached convergence and is used as the final output;

otherwise, the image data are fed into the network branch

corresponding to the other prediction labels. The whole

training process is performed until the prediction score

exceeds the confidence score or the image data information is

transferred to the final leaf node. Finally, the response of the

model can be obtained as:

()

()()

()()

()()

1 1 1

2 2 2 1 2

1

n 1 1

ˆ

ˆ ˆ

ˆ ˆ

x

x
f

 x

sj s j s j

sj s j sj s j

sj n s j n sj n sj n

if I f I T

if I f I T

if I f I T

I

= = =

= = = =

= = − = − =

= 

= 





= 


 =





 (13)

where, I is the input grapic; x is the predicted label; sj is the

different phases of the network (j∈1, …, n; n is the number of

phases); f(·) is the embedding function on each level; ^I is the

output of the previous level; Tsj is the threshold for class label

i in phase sj.

Further classification was made based on the confidence

scores. From Table 1, it can be seen that our method outshined

all advanced methods on MNIST dataset in terms of the

classification performance and recognition probability of each

type of number. These testify the stability of our method in

image classification. For example, our method classified

numbers four and nine accurately, thanks to the optimization

based on confidence scores. By contrast, AlexNet, the most

advanced method for image recognition and classification,

failed to recognize some classes at a high accuracy, namely,

numbers four and nine. The low accuracy stems from the

similar classification probabilities of the two classes outputted

by softmax in the network.

Table 1. The classification accuracies on MNIST dataset

Method 0 1 2 3 4 5 6 7 8 9

Stochastic pooling [25] 0.85 0.82 0.86 0.81 0.79 0.82 0.86 0.84 0.83 0.81

CNN + Spearmint [26] 0.88 0.86 0.87 0.83 0.80 0.83 0.85 0.86 0.87 0.85

COMO + DropOut [5] 0.90 0.92 0.88 0.87 0.82 0.88 0.86 0.89 0.93 0.91

NIN + DropOut [15] 0.92 0.92 0.96 0.91 0.83 0.92 0.91 0.94 0.89 0.86

AlexNet [1] 0.95 0.93 0.94 0.95 0.93 0.95 0.93 0.91 0.92 0.89

Our method 0.97 0.96 0.97 0.96 0.98 0.97 0.95 0.96 0.95 0.93

5.2 Experimental results on MLR

Our method was compared with other state of the art

methods on public benchmark datasets: CIFAR-10 and

CIFAR-100. The MLR algorithm was realized on Caffe [25].

The test set was configured, and the data were preprocessed by

the procedure proposed by Ioffe, S., Szegedy, C.

5.2.1 Network details

The network in Figure 2 was chosen as the root node of our

DCNN. Experiments are performed on the CIFAR-10 and

CIFAR-100 datasets. The child nodes can be any existing

network, and all network parameter settings, weight

initialization and learning strategies strictly follow the settings

provided by NIN. The only exception is that the learning rate

and step size were set to 0.01 and 25K, respectively, for the

additional new level (shallow network).

For the two datasets, only two levels were designed: level 1

for the child node CNN, and level 2 for multiple multilayer

perceptron (MLP) units. Each MLP is a cluster composed of

the most confusing classes. This network structure has a very

good feature: there exists a basic unit for the MLP

convolutional layer, and each additional level (shallow

network/branch node) is an MLP convolutional layer. The

additional level was introduced after the second MLP

convolutional layer to utilize the local feature response, rather

than after the third node that seems to capture the specific

features of the global class.

5.2.2 CIFAR-10

CIFAR-10 dataset [26] consists of 10 classes of natural

images, with a total of 50K training images and a total of 10K

test images. The size of each image is 32x32, and the global

contrast normalization and ZCA whitening were implemented

to preprocess these images. For the validation dataset, samples

from the past 10K training were used to determine confidence

thresholds and data segmentation based on confusion matrices

[27]. After the data segmentation and confidence levels were

determined, the training and validation datasets were

combined to retrain the network before splitting [28].

The feature space of network learning on CIFAR-10 was

visualized in Figure 4, where each point stands for an image in

969

the dataset. The color of the point reflects the image class. It

can be seen that the samples in some classes were clustered,

while those in some other classes were separated. e.g., Class-

1 (dark-blue) and Class-9 (yellow) were close to each other,

yet far away from other classes, because they belong to the

same cluster.

Figure 4. The feature space of network learning on CIFAR-

10

Table 2. Classification accuracy of CIFAR-10 dataset

Method Accuracy

AlexNet

Stochastic pooling

CNN+Spearmint

COMO+DropOut

NIN+DropOut

90.23

84.89

85.02

88.34

89.58

Our method 92.31

Table 2 compares the performance of our method with that

of the existing methods on CIFAR dataset. Without any data

enhancement, our method controlled the test error to an all-

time low of 9.77% on that dataset. The performance of our

method was nearly 2% better than the strong baseline method

AlexNet (which has the same complexity).

5.2.3 CIFAR-100

CIFAR-100 dataset, consisting of 100 classes of natural

image, is very challenging compared to the CIFAR-10 dataset.

It encompasses 50K training images and 10K test images.

Meanwhile, the number of training samples for CIFAR-10 is

1,000. The dataset is preprocessed using global contrast

normalization and ZCA whitening, as described in the

literature. Similar to NIN, the final training set of 10K samples

was used as the validation dataset.

As shown in Table 3, our method had a test accuracy of

69.37%, nearly 4% better than the latest and best level

achieved by AlexNet. Note that, NIN + DropOut [29] was

tested after data enhancement. Even without data enhancement,

our DCNN realized better performance than NIN + DropOut.

This is attributable to the optimization and scheduling by the

MLR.

Table 3. Classification accuracy of CIFAR-100 dataset

Method Accuracy

AlexNet

Stochastic pooling

COMO+DropOut

NIN+DropOut

Learned pooling

Tree based priors

65.42

57.51

61.45

64.34

56.28

63.17

Our method 69.37

5.3 DCNN performance improvement by MLR

Table 4 details the DCNN performance improvement by

MLR. The DCNN was compared with the baseline method

NIN. As shown in Table 4, the DCNN provided some insights

into the data, such as which classes are difficult to separate.

Taking CIFAR-10 for instance, three clusters of confusion

classes were produced by the child node. The performance on

cluster-3 was poorer than that on other clusters, because the

six animal classes (cats, dogs, deer, dogs, frogs, and horses)

are harder to distinguish than the classes (cars, and trucks) in

cluster-2. It was also observed that the DCNN improved the

performance on each cluster, thereby improving the overall

performance.

This testifies that expert network node is more helpful than

the end-to-end training of a large network. On CIFAR-100, the

DCNN achieved a much better performance than NIN. The

advantage is partly the result of the fact that the DCNN benefit

more from the numerous classes in the dataset. There is still a

lot of room for improvement on this particular dataset.

Table 4. The details on performance of CIFAR-10 and CIFAR-100

 CIFAR-10 CIFAR-100

 NIN Our method NIN Our method
 Accuracy (%) Level-0 Level-1 Accuracy (%) Accuracy (%) Level-0 Level-1 Accuracy (%)

Cluster-1

Cluster-2

Cluster-3

Cluster-4

Cluster-5

Cluster-6

92.85

94.5

77.57

-

-

-

1,148

668

1,704

-

-

-

767

1280

4199

-

-

-

93.0

95.2

81.8

-

-

-

62.03

86.0

76.0

73.65

71.38

76.0

1,802

102

88

548

213

89

5,093

0

0

983

483

0

65.48

86.0

76.0

76.65

73.75

76.0

Overall 90.1 90.32 65.27 69.45

The introduction of expert network node only aims to solve

clusters with at least two classes. Thus, the performance on

clusters with only one class was not improved at all. This

means the DCNN design will not undermine the performance

of any network at the root. Instead, the DCNN only tries to

improve performance by solving the most confusing situations.

The clusters with at least two classes can benefit from expert

network node, resulting in better overall performance.

To prove the stability and robustness of our method, the

accuracy and loss during training are plotted as shown in

Figures 5 and 6. It was learned that our model achieved the

fastest rise of accuracy in any dataset, and stabilized at the

970

peak accuracy, albeit slight oscillations. The advantage of our

model was particularly obvious on CIFAR=10, where its

accuracy was 2% higher than that of the state-of-the-art NIN

model. As mentioned above, our model makes better use of the

data without using the domain, and the data are processed by

multiple regression algorithm [30].

Similarly, the loss in Figure 6 indicates that our model

converged quickly and tended to be stable during training. No

model crash occurred due to the depth of the network, because

our subsequent expert network and the antecedent network

complement each other, and the best samples are chosen by

multiple regression in each domain. These are the reasons for

the stability and fast convergence of model training.

(a) MNIST

(b) CIFAR-10

(c) CIFAR -100

Figure 5. Accuracy of the training process

(a) MNIST

(b) CIFAR-10

(c) CIFAR-100

Figure 6. Losses of the training process

6. CONCLUSIONS

This paper proposes a general framework to build an

efficient deep learning network with good classification

performance on multi-class image. Our DCNN adopts a tree-

like architecture, and takes CNN of different structures as

child nodes (expert networks). Besides, the MLR was

introduced to analyze the accuracy and robustness of the

DCNN on multi-class images. Compared with the most

advanced methods, our DCNN achieved excellent results on

public datasets. The excellence comes from the early decisions

made in the deep network [31]. Thus, the proposed method can

solve any classification problem accurately in real time.

971

ACKNOWLEDGEMENT

This paper was supported by Jiangsu Province Industry-

University-Research Cooperation Project (Grant No.:

BY2018191).

REFERENCES

[1] Wang, Z.M., Zhang, H. (2019). A fast image retrieval

method based on multi-layer CNN features. Journal of

Computer-Aided Design & Computer Graphics, 31(8):

1410-1416.

https://doi.org/10.3724/SP.J.1089.2019.17845

[2] Watt, N., du Plessis, M.C. (2019). Dropout for recurrent

neural networks. INNS Big Data and Deep Learning

Conference, Sestri Levante, Italy, pp. 38-47.

https://doi.org/10.1007/978-3-030-16841-4_5

[3] Zhang, Q., Yang, L. T., Chen, Z., Li, P. (2018). A

dropconnect deep computation model for highly

heterogeneous data feature learning in mobile sensing

networks. IEEE Network, 32(4): 22-27.

https://doi.org/10.1109/MNET.2018.1700365

[4] Hamker, F.H. (2004). Predictions of a model of spatial

attention using sum-and max-pooling functions.

Neurocomputing, 56: 329-343.

https://doi.org/10.1016/j.neucom.2003.09.006

[5] Ioffe, S., Szegedy, C. (2015). Batch normalization:

accelerating deep network training by reducing internal

covariate shift. arXiv preprint arXiv:1502.03167.

[6] Riquelme, C., Tucker, G., Snoek, J. (2018). Deep

Bayesian bandits showdown: An empirical comparison

of Bayesian deep networks for Thompson sampling.

arXiv preprint arXiv:1802.09127.

[7] Feng, Y. (2015). The Analysis and Forensic Research of

Heterogeneous Image. Dalian University of Technology.

[8] Huang, Q., Huang, D.H., Huang, H., Liu, Q., Xie, N.H.

(2020). Recognition of incident power monitoring

pattern by CNN based on AlexNet model. Radio & TV

Journal, 155(3): 44-47.

[9] Zhang, L., Bi, X.J., Wang, Y.J. (2018). The ε constrained

multi-objective decomposition optimization algorithm

based on re-matching strategy. Acta Electronica Sinica,

46(5): 1032-1040. https://doi.org/10.3969/j.issn.0372-

2112.2018.05.002

[10] Shao, B.L., He, J.N., Bian, G.Q. (2020). Research on

replica layout algorithm based on multi- objective

decomposition strategy. Journal of Frontiers of

Computer Science and Technology, (9): 1490-1500.

https://doi.org/10.3778/j.issn.1673-9418.1908062

[11] Zhang, B., Yang, Y., Lu, W.W., Wang, X.S., Xiao, S.P.

(2020). A study on fully polarimetric RCS statistical

characteristics of fixed-wing UAV in Ku band. Modern

Ｒadar, (6): 41-47.

[12] Song, W.Y. (2019). PolSAR Image Classification Based

on Statistical Distribution and Random Field Model.

Xidian University.

[13] Zhao, J.H., Liu, N. (2020). A safe semi-supervised

classification algorithm based on sample selection.

System Simulation Technology, 16(1): 7-11.

[14] Zhang, Y.P., Zhao, Z.J., Zheng, S.L. (2018). Spectrum

handoff method by using joint optimization of

cumulative delay and channel capacity based on multi-

objective PSO. Telecommunications Science, 34(7): 68-

77. https://doi.org/10.11959/j.issn.1000-0801.2018114

[15] Goodfellow, I., Warde-Farley, D., Mirza, M., Courville,

A., Bengio, Y. (2013). Maxout networks. Proceedings of

the 30th International Conference on Machine Learning,

PMLR, 28(3): 1319-1327.

[16] Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.

(2018). Recurrent neural networks for multivariate time

series with missing values. Scientific Reports, 8(1): 1-12.

https://doi.org/10.1038/s41598-018-24271-9

[17] Jeong, Y., Lee, J., Moon, J., Shin, J.H., Lu, W.D. (2018).

K-means data clustering with memristor networks. Nano

Letters, 18(7): 4447-4453.

https://doi.org/10.1021/acs.nanolett.8b01526

[18] Heisig, J.P., Schaeffer, M., Giesecke, J. (2017). The costs

of simplicity: Why multilevel models may benefit from

accounting for cross-cluster differences in the effects of

controls. American Sociological Review, 82(4): 796-827.

https://doi.org/10.1177/0003122417717901

[19] Deng, L. (2012). The mnist database of handwritten digit

images for machine learning research [best of the web].

IEEE Signal Processing Magazine, 29(6): 141-142.

https://doi.org/10.1109/MSP.2012.2211477

[20] Loureiro, G.B., Ferreira, J.C.E., Messerschmidt, P.H.Z.

(2020). Design structure network (DSN): A method to

make explicit the product design specification process

for mass customization. Research in Engineering Design,

31(2): 197-220. https://doi.org/10.1007/s00163-020-

00331-y

[21] Snoek, J., Larochelle, H., Adams, R.P. (2012). Practical

Bayesian optimization of machine learning algorithms.

Advances in Neural Information Processing Systems, 25:

2951-2959.

[22] Huang, Y., Sun, X., Lu, M., Xu, M. (2015). Channel-max,

channel-drop and stochastic max-pooling. 2015 IEEE

Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW), Boston, MA, pp. 9-17.

https://doi.org/10.1109/CVPRW.2015.7301267

[23] Lin, M., Chen, Q., Yan, S. (2013). Network in network.

arXiv preprint arXiv:1312.4400.

[24] Zeiler, M.D., Fergus, R. (2013). Stochastic pooling for

regularization of deep convolutional neural networks.

arXiv preprint arXiv:1301.3557.

[25] Delahunt, C.B., Kutz, J.N. (2019). Putting a bug in ML:

The moth olfactory network learns to read MNIST.

Neural Networks, 118: 54-64.

https://doi.org/10.1016/j.neunet.2019.05.012

[26] Yan, Z., Zhang, H., Piramuthu, R., Jagadeesh, V.,

DeCoste, D., Di, W., Yu, Y. (2015). HD-CNN:

hierarchical deep convolutional neural networks for large

scale visual recognition. 2015 IEEE International

Conference on Computer Vision (ICCV), Santiago, pp.

2740-2748. https://doi.org/10.1109/ICCV.2015.314

[27] Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.

(2018). Spectral normalization for generative adversarial

networks. arXiv preprint arXiv:1802.05957.

[28] Liu, Y., Liu, S., Wang, Y., Lombardi, F., Han, J. (2018).

A stochastic computational multi-layer perceptron with

backward propagation. IEEE Transactions on Computers,

67(9): 1273-1286.

https://doi.org/10.1109/TC.2018.2817237

[29] Kessy, A., Lewin, A., Strimmer, K. (2018). Optimal

whitening and decorrelation. The American Statistician,

72(4): 309-314.

https://doi.org/10.1080/00031305.2016.1277159

972

[30] Malinowski, M., Fritz, M. (2013). Learning smooth

pooling regions for visual recognition. In 24th British

Machine Vision Conference, Bristol, UK, pp. 1-11.

https://doi.org/10.5244/C.27.118

[31] Srivastava, N., Salakhutdinov, R.R. (2013).

Discriminative transfer learning with tree-based priors.

NIPS'13: Proceedings of the 26th International

Conference on Neural Information Processing Systems,

2: 2094-2102.

973

