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The correct classification of images is an important application in the monitoring of Internet 

of things (IoT). In the research of IoT images, a key issue is to recognize multi-class images 

at a high accuracy. As a result, this paper puts forward a classification method for multi-

class images based on multiple linear regression (MLR). Firstly, the convolutional neural 

network (CNN) was improved to automatically generate a network from the IoT terminals, 

and used to classify images into disjoint class sets (clusters), which were processed by the 

subsequently constructed expert network. After that, the MLR was introduced to evaluate 

the accuracy and robustness of the classification of multi-class images. Finally, the proposed 

method has been verified on CIFAR-10, CIfar-100 and MNIST, etc. benchmark data sets. 

Our method was found to outperform other methods in classification, and improve the 

accuracy of the classic AlexNet by 2%. The research results provide theoretical evidence 

and lay practical basis for the classification of multi-class IoT images. 
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1. INTRODUCTION

The rapid development of artificial intelligence (AI) has 

fundamentally changed our life. Image recognition, an 

important AI technology, is the cornerstone of many 

applications, especially in the Internet of things (IoT). Images 

have played an increasingly important role in various field, 

such as face recognition, target detection, and item 

classification, creating a huge demand for image classification. 

A wide array of image retrieval methods has emerged [1]. For 

instance, content-based image retrieval attracts extensive 

attention from researchers, for its ability to automatically 

acquire the color, texture, and shape of mages. 

The best classifiers of largescale benchmark images, e.g., 

the Large Scale Visual Recognition Challenge (ILSVRC) of 

ImageNet, are generally based on convolutional neural 

networks (CNN). Advances in machine learning methods, 

such as DropOut [2] DropConnect [3] max pooling [4], and 

Batch normalization [5] and regularization techniques, in 

addition to the availability of high-performance computing 

system and large datasets, have made CNN implementations 

particularly efficient. However, there is no well-established 

rule for the training of a high-performance deep CNN [6]. The 

training of a deep network usually requires smooth 

experimental procedures and statistical analysis. 

Most of current methods gain insights into the data and 

recognize images, focusing on the classes. But the models or 

plans of these methods perform poorly, if changes take place 

to the distribution of multi-class images, and result in 

statistical heterogeneity. What is worse, many models fail to 

consider whether the images in different classes are correlated, 

and whether different features have linear (nonlinear) 

relationships. The failure undermines the robustness of these 

models. Moreover, data-driven models perform poorly or face 

difficulty in application, as the amount of diverse data 

collected/monitored by terminals outnumber the computing 

power of computers. 

To overcome these limits, more and more solutions to image 

classification were developed recently based on the cloud 

platform. Some of these solutions upload the original images 

with image features, and some only upload the image features 

to the cloud. However, these solutions are not applicable to 

multi-party classification, due to the diverse sources and 

ranges of images.  

Under the premise of open image sharing, it is not an easy 

task for multiple parties to perform multivariate analysis on 

images [7]. 

To solve the above problems, this paper presents a 

classification method for multiple classes based on multiple 

linear regression (MLR). Firstly, an improved CNN was 

constructed automatically from the IoT terminals, and used to 

classify images into disjoint class sets (clusters), which were 

processed by the subsequently constructed expert network. 

Next, the MLR was introduced to analyze the classification 

accuracy and robustness of multi-class images. Then, the 

authors validated the proposed method on publicly available 

benchmark datasets such as CIFAR-10, CIFAR-100, and 

MNIST. It is demonstrated that our method can provide better 

classification performance than the comparative methods, and 

improve the accuracy of the classic AlexNet by 2% [8]. Finally, 

the authors discussed the challenges and opportunities for 

future research. 

2. LITERATURE REVIEW

Deep learning is a proven framework for performance 

improvement in various tasks of computer vision. 

Unsupervised algorithms can classify images without needing 

labeled data. In general, unsupervised algorithms generate the 

initial class graph based on the target decomposition theory [9, 

10], and iteratively update the initial class graph by statistical 
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distribution of polarization ratio [11, 12]. These algorithms are 

simple and fast, but not highly accurate in classification. Semi-

supervised classification algorithms [13] classify images with 

both labeled and unlabeled data, which enhance the 

classification performance and generalization ability. These 

algorithms have developed rapidly in recent years, thanks to 

the ability to achieve high accuracy at a low cost of labeling. 

At present, CNN-based models are the best performing 

models in the tasks related to computer vision. For example, 

recurrent neural networks (RNN) [14], The winners in 

ILSVRC2014, while designing many variants of the decision 

tree, have achieved good results with their coupling to the new 

components and can successfully perform most of the vision 

tasks. Nonetheless, there is little report that combine CNN 

with decision trees. Goodfellow et al. [15]. strived to improve 

the classification performance with a limited training dataset 

through knowledge transfer between similar classes. More 

recently, Che et al. [16] attempted to build a layered CNN, but 

the primary goal is to transfer knowledge from a large network 

to a small network, and thus achieve scalability without 

affecting performance. 

This paper aims to develop a general framework that 

differentiates the data that are easy to separate from those 

difficult to separate, and thereby automatically detects data 

hierarchy and enhances performance. The data that are 

difficult to separate were routed to the depth of the trees, 

waiting to be processed by the nodes in the expert network. 
 
 

3. MODEL DESCRIPTION  
 

Firstly, the computing framework was improved from the 

CNN to deep CNN (DCNN), with the aim to design an 

effective deep network architecture that avoids overfitting in 

training. Unlike existing learning methods, the DCNN was 

established step by step through learning. In each phase, 

confidence image samples are divided into different number 

of classes, and the residual data that are difficult to classify are 

divided into smaller clusters, which will be processed by the 

expert network in the next phase of learning. 

In each phase, it is difficult to distinguish between intra-

cluster samples, but easy to differentiate between inter-cluster 

samples, using the classifier trained in that phase. This is 

realized by finetuning the classifier with the combination of 

maximum and weighted contrast loss (WCL). Despite being 

driven by the principle of divide and conquer, the clustering 

has an additional benefit: the automatic detection of data levels 

based on appearance similarity. Thus, the DCNN implicitly 

acquires the ability to explicitly classify samples. 

 

3.1 Deep decision network 

 

The DCNN is a tree-like deep neural network. In the 

network, each node classifies the data that are easy to separate 

early on, and determine the node of the expert network to 

handle the images with very slight differences (e.g., eagle 

image and dove image). Figure 1 illustrates the architecture of 

the DCNN. The network consists of N levels, each of which 

with K confusion clusters. The convolutional layers on 

different levels perform convolution at different depths. 

Figure 2 describes the structure of level 1 of the DCNN. 

After being imported to the level, the multi-class images will 

go through multiple convolutional layers, multiple max 

pooling layers, a fully-connected layer, and an output layer 

activated by softmax. The maximum number of max pooling 

layers varies from level to level. 

Different from other CNN applications, our DCNN 

encompasses multiple convolutional layers. The learning of 

our network obviously requires largescale or high-level 

features. During image classification, the limited number of 

convolutional layers in the network greatly reduces the 

number of parameters to be learned, which helps avoid 

overfitting. In addition, the network training was improved 

and accelerated by various techniques like DropOut and batch 

normalization. The learning parameters of these techniques 

were selected based on typical values or empirical research. 

 

 
 

Figure 1. The architecture of the DCNN 
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Figure 2. The structure of level 1 

 

Based on the given dataset, level 1 of the DCNN was trained 

by the backpropagation algorithm [16]. The network was thus 

optimized to the reasonable performance. If the pre-trained 

network already reaches the reasonable performance, it could 

be directly used as a node network. Then, the confusion matrix 

calculated on the validation dataset was adopted to identify the 

cluster of each sample, such that the confusion of intra-cluster 

sets is much higher than that of inter-cluster sets. After 

network training, the data of each cluster were captured by the 

expert network, aiming to correct the samples that were 

classified incorrectly or at a low confidence. 

As a result, the classification problem was zoomed in and 

solved as the network level deepened. The network was built 

up continuously until its performance on the validation dataset 

further improved. During the testing, the samples were 

classified on multiple levels of the DCNN until their classes 

were finalize. 

There is some crux discrepancy between the architecture of 

the DCNN and that of traditional deep networks. First, the 

DCNN freezes all levels before the previous level, and trains 

the newly added level; these levels constitute the nodes of the 

next level. Second, each node is built in the feature space of 

the parent node and can be trained from any layer of the parent 

node, and the level can be selected based on the cross-

validation dataset. 

 

3.2 Data classification  

 

The spectrum co-clustering algorithm [17] was employed to 

identify clusters on each node of the DCNN. This algorithm 

can approximate the cut of the bipartite picture (symmetric 

matrix) normalized to find the subgraph (sub-matrix) with 

significant weight, thereby realizing the block diagnosis on the 

matrix. 

To visualize the performance of our model, the authors 

applied the spectral copolymerization algorithm to solve for 

the covariance in the confusion matrix. Thus, the diagonal in 

the confusion matrix is a cluster division, and these clusters 

are not without intersection, i.e., the clusters are not 

overlapping each other. In addition, the samples within the 

clusters can be confused. Note, however, there is an extremely 

low possibility of misclassification for all samples that are not 

on the diagonal in the confusion matrix. 

To minimize the possibility of such misclassification, the 

joint loss, which combines softmax and WCL, was selected to 

finetune network parameters. The finetuning will be detailed 

in Subsection 3.3. To obtain the optimal number of clusters C

∗ , the fitness metric fm(C) was defined for the number of 

clusters C given by the spectrum co-clustering algorithm: 
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i

m C
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where, ε is the non-classification error caused by data splitting; 

Ci is the i-th cluster; |•| is the cluster size. Then the optimal 

number of cluster C* can be obtained as: 

 

( )arg min f
c

C m C =   (2) 

 

3.3 Joint loss 

 

As mentioned before, the error caused by the inability to 

correctly allocate the samples to the corresponding cluster 

cannot be recovered. For example, suppose the level 1 

subnetwork (trained with a loss function) fails to classify some 

images on planes, dogs, and ships. If the classes of planes and 

ships form a cluster, and the plane images incorrectly 

identified as dogs by the subnetwork are all allocated to the 

wrong cluster (expert node), it could not be able to assign the 

correct class (plane) to these graphs. In order to minimize the 

probability of this misclassification, the classification error 

was weighed to drive the contrast loss function to increase the 

maximum soft loss. This facilitates the block diagonalization 

of the confusion matrix (Figures 5 and 6). Naturally, the total 

loss function can be obtained as: 

 

2 1   m softmaxL L L =  +    (3) 

 

where, Lm is the WCL function. Based on the performance of 

the validation dataset, weights λ1 and λ2 were configured 

according to different image classification datasets. For 

example, the two weights were set to 0.8 and 1, respectively, 

for the MNIST experiment. 

The WCL Lm can be understood as a set of soft constraints 

with a higher penalty for misclassification of samples to a class 

in another cluster than that to a class in the same cluster. That 

is, the similarity measure between intra-cluster samples will 

be smaller than that between inter-cluster samples by 

minimizing the WCL. The WCL function can be given by: 
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  (4) 

 

where,  k k0.1      andj C

 ij 1      =
if i C

otherwise    is the weight for the class labels i 

and j; β is the L2 norm between each pair of samples; σ is the 

label indicating the similarity or dissimilarity between samples; 

m is the margin; Ck is the kth cluster. 
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4. MLR 

 

Our network classifies confidence samples with different 

number of classes, and divides the residual data that are 

difficult to classify into smaller clusters. Data clustering [18] 

makes it difficult to distinguish intra-cluster samples, but easy 

to differentiate between inter-cluster samples with the 

classified trained in the current phase [19]. Although the 

DCNN implicitly acquires the ability to explicitly classify 

samples, its robustness needs to be further improved. 

Therefore, the MLR was conducted on images of different 

classes to expand single eigenvariable into multiple 

eigenvariables. Through the complex calculation, the network 

will be more robust and accurate in image classification. 

 

4.1 Mathematical model 

 

Suppose variables y and x obey the following relationship: 

 

0 1 1 2 2 m= + x + x + xmy     + +   (5) 

 

where, y is a random variable; 𝑥1; 𝑥2; … ; 𝑥𝑚 are non-random 

variables; 𝛽1; 𝛽2;⋅⋅⋅; 𝛽𝑚 are regression coefficients; ε is a 

random error induced by various other random factors that 

cannot be explained by 𝑥1; 𝑥2; … ; 𝑥𝑚 in y.  

The y value in the mean E(y) must be estimated with 𝛽0 +
𝛽1𝑥1 + 𝛽2𝑥2 +⋅⋅⋅ +𝛽𝑚𝑥𝑚 . This means 𝐸(𝑦) = 𝛽0 + 𝛽1𝑥1 +
𝛽2𝑥2 +⋅⋅⋅ +𝛽𝑚𝑥𝑚 + 𝜀 . Assuming that 𝜀~𝑁(0, 𝜎2), 𝑦 ∼
𝑁(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋅⋅⋅ +𝛽𝑚𝑥𝑚, 𝜎

2) , 𝛽𝑖(𝑖 = 0,1,2, … ,𝑚) , 

and that the unknown constants, 𝛽1; 𝛽2;⋅⋅⋅; 𝛽𝑚, and σ2 are not 

related to 𝑥1; 𝑥2; … ; 𝑥𝑚 , the n independent observation 

datasets obtain through the independent tests on n pairs of 

variables (𝑥1, 𝑥2, … , 𝑥𝑚 , 𝑦) can be expressed as: 

 

( )1 2, , , , 1,2, ,i i im ix x x y i n=    (6) 

 

Moreover, the relationship between the n independent 

observation datasets (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖𝑚 , 𝑦𝑖), (𝑖 = 1,2, … , 𝑛)  and 

variables (𝑥1, 𝑥2, … , 𝑥𝑚 , 𝑦) must satisfy: 
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where, 𝛽0, 𝛽1, … , 𝛽𝑚  are the parameters to be estimated; 

𝜀1, 𝜀2, … , 𝜀𝑛 are n mutually independent random variables that 

obey normal disruption 𝑁(0, 𝜎2) . Formula (7) is the 

mathematical model of MLR. 

Further, he MLR model (7) was constructed into the 

augmented Lagrangian method in the primitive dual method, 

aiming to speed up the convergence. Since the Lagrangian 

function can solve optimization problems under multiple 

constraints, an optimization problem with n variables and k 

constraints can be converted into a problem whose solution is 

an equation set with n+k variables. The augmented Lagrangian 

method is a Lagrangian method with additional penalty. By 

this method, the simple MLR model above was transformed 

into convex optimization. The Lagrangian function could be 

expressed as: 

 

( ) ( )x, nL y T x b = +  −   (8) 

The original problem is to solve 𝑚𝑖𝑛𝑥𝑓(𝑥) under 

constraints. The new problem is solving dual problem 

𝑚𝑎𝑥𝜆𝑚𝑖𝑛𝑥𝐿(𝑥, 𝜆). The optimal solutions of the two problems 

are equivalent, and the constraints have been removed. By the 

dual ascent method, we have:  
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The dual ascent method splits 𝑚𝑎𝑥𝜆𝑚𝑖𝑛𝑥𝐿(𝑥, 𝜆) into two 

steps: solving 𝑚𝑖𝑛𝑥𝐿(𝑥; 𝜆
𝑘) under a fixed λ; substituting the 

solved x into the Lagrangian function to obtain the update 

formula of λ through gradient descent. 

To speed up the convergence, an additional penalty term 

was added. Then, the augmented Lagrangian function can be 

expressed as: 

 

2( ; ) ( )
2

T

nL x y Ax b Ax b

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The ADMM was adopted to solve the Lagrangian function 

constructed by the MLR model. The corresponding ADMM 

can be defined as: 
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Similar to the augmented Lagrangian method, two variables 

were fixed to update the third variable: 
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Then, the problem becomes how to solve argminxL. Then, 

the gradient descent was adopted to solve the problem. In this 

way, the image features were subject to MLR, and their 

correlations with dimensions were clearly identified. 

 

 

5. EXPERIMENTS  

 

To verify its superiority, our method was compared with 

some of the most advanced algorithms, namely, stochastic 

pooling [20], CNN + Spearmint [21], convolutional MaxOut 

(COMO) + DropOut [22], network in network (NIN) + 

DropOut [23], and AlexNet, through experiments on a server 

with multiple Titan-X GPU. 

 

5.1 Experimental results on DCNN  

 

5.1.1 Experiment on MNIST dataset 

To validate the DCNN [24], a control experiment was 

conducted on a subset of MNIST [25] dataset. The LeNet was 

taken as the starting child node of level 1. For each subsequent 

level (expert node), a convolutional layer and a fully-

connected layer were added to deepen the classification, while 

only processing the subsets that are difficult to separate. From 

the confusion matrix generated in level 1, the numbers 3 and 5 
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formed a cluster (set of confusion classes). Some of the 

confusion samples are displayed in Figure 3. To overcome the 

confusion, an expert network node was established on level 2, 

which falls in the feature space of level 1. As shown in Figure 

3, some confusion samples on level 1 were solved on level 2, 

indicating that the addition of level 2 improves the 

classification accuracy. Note that the network growth was 

terminated when the subsequent network could no longer 

distinguish or improve the validation dataset, because the 

generated network is data-driven. 

 

 
 

Figure 3. The confusion samples in MNIST dataset 

 

5.1.2 Experiment on DCNN classification  

After an image was imported, the feedforward was After 

importing the image data, the model parameters are first 

optimized in DCNN by performing antecedent feedback from 

the root node in layer 1 and obtaining a confidence score from 

the function layer. If the score is higher than the threshold 

(obtained by pre-training), the model training is considered to 

have reached convergence and is used as the final output; 

otherwise, the image data are fed into the network branch 

corresponding to the other prediction labels. The whole 

training process is performed until the prediction score 

exceeds the confidence score or the image data information is 

transferred to the final leaf node. Finally, the response of the 

model can be obtained as: 
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where, I is the input grapic; x is the predicted label; sj is the 

different phases of the network (j∈1, …, n; n is the number of 

phases); f(·) is the embedding function on each level; ^I is the 

output of the previous level; Tsj is the threshold for class label 

i in phase sj. 

Further classification was made based on the confidence 

scores. From Table 1, it can be seen that our method outshined 

all advanced methods on MNIST dataset in terms of the 

classification performance and recognition probability of each 

type of number. These testify the stability of our method in 

image classification. For example, our method classified 

numbers four and nine accurately, thanks to the optimization 

based on confidence scores. By contrast, AlexNet, the most 

advanced method for image recognition and classification, 

failed to recognize some classes at a high accuracy, namely, 

numbers four and nine. The low accuracy stems from the 

similar classification probabilities of the two classes outputted 

by softmax in the network. 

 

Table 1. The classification accuracies on MNIST dataset 

 
Method 0 1 2 3 4 5 6 7 8 9 

Stochastic pooling [25] 0.85 0.82 0.86 0.81 0.79 0.82 0.86 0.84 0.83 0.81 

CNN + Spearmint [26] 0.88 0.86 0.87 0.83 0.80 0.83 0.85 0.86 0.87 0.85 

COMO + DropOut [5] 0.90 0.92 0.88 0.87 0.82 0.88 0.86 0.89 0.93 0.91 

NIN + DropOut [15] 0.92 0.92 0.96 0.91 0.83 0.92 0.91 0.94 0.89 0.86 

AlexNet [1] 0.95 0.93 0.94 0.95 0.93 0.95 0.93 0.91 0.92 0.89 

Our method 0.97 0.96 0.97 0.96 0.98 0.97 0.95 0.96 0.95 0.93 

 

5.2 Experimental results on MLR 

 

Our method was compared with other state of the art 

methods on public benchmark datasets: CIFAR-10 and 

CIFAR-100. The MLR algorithm was realized on Caffe [25]. 

The test set was configured, and the data were preprocessed by 

the procedure proposed by Ioffe, S., Szegedy, C. 

 

5.2.1 Network details 

The network in Figure 2 was chosen as the root node of our 

DCNN. Experiments are performed on the CIFAR-10 and 

CIFAR-100 datasets. The child nodes can be any existing 

network, and all network parameter settings, weight 

initialization and learning strategies strictly follow the settings 

provided by NIN. The only exception is that the learning rate 

and step size were set to 0.01 and 25K, respectively, for the 

additional new level (shallow network).  

For the two datasets, only two levels were designed: level 1 

for the child node CNN, and level 2 for multiple multilayer 

perceptron (MLP) units. Each MLP is a cluster composed of 

the most confusing classes. This network structure has a very 

good feature: there exists a basic unit for the MLP 

convolutional layer, and each additional level (shallow 

network/branch node) is an MLP convolutional layer. The 

additional level was introduced after the second MLP 

convolutional layer to utilize the local feature response, rather 

than after the third node that seems to capture the specific 

features of the global class. 

 

5.2.2 CIFAR-10 

CIFAR-10 dataset [26] consists of 10 classes of natural 

images, with a total of 50K training images and a total of 10K 

test images. The size of each image is 32x32, and the global 

contrast normalization and ZCA whitening were implemented 

to preprocess these images. For the validation dataset, samples 

from the past 10K training were used to determine confidence 

thresholds and data segmentation based on confusion matrices 

[27]. After the data segmentation and confidence levels were 

determined, the training and validation datasets were 

combined to retrain the network before splitting [28]. 

The feature space of network learning on CIFAR-10 was 

visualized in Figure 4, where each point stands for an image in 
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the dataset. The color of the point reflects the image class. It 

can be seen that the samples in some classes were clustered, 

while those in some other classes were separated. e.g., Class-

1 (dark-blue) and Class-9 (yellow) were close to each other, 

yet far away from other classes, because they belong to the 

same cluster. 

 

 
 

Figure 4. The feature space of network learning on CIFAR-

10 

 

Table 2. Classification accuracy of CIFAR-10 dataset 

 
Method Accuracy 

AlexNet 

Stochastic pooling 

CNN+Spearmint 

COMO+DropOut 

NIN+DropOut 

90.23 

84.89 

85.02 

88.34 

89.58 

Our method 92.31 

 

Table 2 compares the performance of our method with that 

of the existing methods on CIFAR dataset. Without any data 

enhancement, our method controlled the test error to an all-

time low of 9.77% on that dataset. The performance of our 

method was nearly 2% better than the strong baseline method 

AlexNet (which has the same complexity). 

 

5.2.3 CIFAR-100 

CIFAR-100 dataset, consisting of 100 classes of natural 

image, is very challenging compared to the CIFAR-10 dataset. 

It encompasses 50K training images and 10K test images. 

Meanwhile, the number of training samples for CIFAR-10 is 

1,000. The dataset is preprocessed using global contrast 

normalization and ZCA whitening, as described in the 

literature. Similar to NIN, the final training set of 10K samples 

was used as the validation dataset. 

As shown in Table 3, our method had a test accuracy of 

69.37%, nearly 4% better than the latest and best level 

achieved by AlexNet. Note that, NIN + DropOut [29] was 

tested after data enhancement. Even without data enhancement, 

our DCNN realized better performance than NIN + DropOut. 

This is attributable to the optimization and scheduling by the 

MLR. 

 

Table 3. Classification accuracy of CIFAR-100 dataset 

 
Method Accuracy 

AlexNet 

Stochastic pooling 

COMO+DropOut 

NIN+DropOut 

Learned pooling 

Tree based priors 

65.42 

57.51 

61.45 

64.34 

56.28 

63.17 

Our method 69.37 

 

5.3 DCNN performance improvement by MLR 

 

Table 4 details the DCNN performance improvement by 

MLR. The DCNN was compared with the baseline method 

NIN. As shown in Table 4, the DCNN provided some insights 

into the data, such as which classes are difficult to separate. 

Taking CIFAR-10 for instance, three clusters of confusion 

classes were produced by the child node. The performance on 

cluster-3 was poorer than that on other clusters, because the 

six animal classes (cats, dogs, deer, dogs, frogs, and horses) 

are harder to distinguish than the classes (cars, and trucks) in 

cluster-2. It was also observed that the DCNN improved the 

performance on each cluster, thereby improving the overall 

performance. 

This testifies that expert network node is more helpful than 

the end-to-end training of a large network. On CIFAR-100, the 

DCNN achieved a much better performance than NIN. The 

advantage is partly the result of the fact that the DCNN benefit 

more from the numerous classes in the dataset. There is still a 

lot of room for improvement on this particular dataset. 

 

Table 4. The details on performance of CIFAR-10 and CIFAR-100 

 
 CIFAR-10 CIFAR-100 

 NIN Our method NIN Our method 
 Accuracy (%) Level-0 Level-1 Accuracy (%) Accuracy (%) Level-0 Level-1 Accuracy (%) 

Cluster-1 

Cluster-2 

Cluster-3 

Cluster-4 

Cluster-5 

Cluster-6 

92.85 

94.5 

77.57 

- 

- 

- 

1,148 

668 

1,704 

- 

- 

- 

767 

1280 

4199 

- 

- 

- 

93.0 

95.2 

81.8 

- 

- 

- 

62.03 

86.0 

76.0 

73.65 

71.38 

76.0 

1,802 

102 

88 

548 

213 

89 

5,093 

0 

0 

983 

483 

0 

65.48 

86.0 

76.0 

76.65 

73.75 

76.0 

Overall 90.1   90.32 65.27   69.45 

 

The introduction of expert network node only aims to solve 

clusters with at least two classes. Thus, the performance on 

clusters with only one class was not improved at all. This 

means the DCNN design will not undermine the performance 

of any network at the root. Instead, the DCNN only tries to 

improve performance by solving the most confusing situations. 

The clusters with at least two classes can benefit from expert 

network node, resulting in better overall performance. 

To prove the stability and robustness of our method, the 

accuracy and loss during training are plotted as shown in 

Figures 5 and 6. It was learned that our model achieved the 

fastest rise of accuracy in any dataset, and stabilized at the 
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peak accuracy, albeit slight oscillations. The advantage of our 

model was particularly obvious on CIFAR=10, where its 

accuracy was 2% higher than that of the state-of-the-art NIN 

model. As mentioned above, our model makes better use of the 

data without using the domain, and the data are processed by 

multiple regression algorithm [30]. 

Similarly, the loss in Figure 6 indicates that our model 

converged quickly and tended to be stable during training. No 

model crash occurred due to the depth of the network, because 

our subsequent expert network and the antecedent network 

complement each other, and the best samples are chosen by 

multiple regression in each domain. These are the reasons for 

the stability and fast convergence of model training. 

 

 
(a) MNIST 

 
(b) CIFAR-10 

 
(c) CIFAR -100 

 

Figure 5. Accuracy of the training process 

 
(a) MNIST 

 
(b) CIFAR-10 

 
(c) CIFAR-100 

 

Figure 6. Losses of the training process 

 

 

6. CONCLUSIONS 

 

This paper proposes a general framework to build an 

efficient deep learning network with good classification 

performance on multi-class image. Our DCNN adopts a tree-

like architecture, and takes CNN of different structures as 

child nodes (expert networks). Besides, the MLR was 

introduced to analyze the accuracy and robustness of the 

DCNN on multi-class images. Compared with the most 

advanced methods, our DCNN achieved excellent results on 

public datasets. The excellence comes from the early decisions 

made in the deep network [31]. Thus, the proposed method can 

solve any classification problem accurately in real time. 
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