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 Based on the residual network and long short-term memory (LSTM) network, this paper 

proposes a human walking gait recognition method, which relies on the vector image of 

human walking features and the dynamic lower limb model with multiple degrees-of-

freedom (DOFs). Firstly, a human pose estimation algorithm was designed based on deep 

convolutional neural network (DCNN), and used to obtain the vector image of human 

walking features. Then, the movements of human lower limbs were described by a 

simplified model, and the dynamic eigenvectors of the simplified model were obtained by 

Lagrange method, revealing the mapping relationship between eigenvectors in gait fitting. 

To analyze the difference of human walking gaits more accurately, a feature learning and 

recognition algorithm was developed based on residual network, and proved accurate and 

robust through experiments on the data collected from a public gait database. 
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1. INTRODUCTION 

 

Walking distinguishes human from many other animals. It 

is a complex process of musculoskeletal movement and neural 

regulation. The research on human walking involves various 

disciplines, including but not limited to mechanics, kinematics, 

anatomy, medicine, and psychology. Over the years, human 

walking analysis has evolved into an important branch of 

biomechanics called gait analysis. Focusing on human 

walking movements, gait analysis could summarize the 

movement law of human body, with the aid of auxiliary 

instruments, and reveal the kinematics and dynamics of human 

limbs and joints in the process of walking. 

Gait refers to the change of human pose in the process of 

walking. As a feature of biological behavior, gait can be 

extracted from a static scene image or a dynamic video 

sequence. Psychological research shows differences between 

people in gait. Solely based on gait, many could recognize 

their friends with an accuracy of 70-80% [1]. Anatomical 

evidences indicate that the uniqueness of gait comes from the 

differences in physiological structure, bone length, muscle 

strength, and walking habits. 

In normal environment, healthy people with normal limb 

functions can walk in a dynamic balance by virtue of their 

neural regulation system and musculoskeletal movement. 

Under the effects of internal or external factors, however, an 

individual might appear unstable in the process of walking. 

Gait instability is common in our daily life. It might arise from 

any disturbance of body or environment. To identify gait 

instability, it is important to identify the biomechanical factors 

of human lower limbs during stable gait through gait analysis. 

This paper mainly recognizes human walking gaits, and 

analyzes the difference between pedestrians in walking gaits, 

through intelligent processing of video images. Cutting-edge 

techniques like residual network, long short-term memory 

(LSTM) network, deep convolutional neural network (DCNN), 

and Adam algorithm were combined to realize the research 

goals. The proposed method was proved valid through 

experiments on actual gait data, shedding light on gait 

identification in video sequence. 

 

 

2. LITERATURE REVIEW 

 

There are many ways to analyze human gaits, including the 

traditional footprint method [2], planar fixed-point camera 

technique [3], and multi-sensor three-dimensional (3D) 

analysis [4]. Larsen et al. [5] tied light spots to some joints of 

volunteers, captured the trajectory of the light spots during 

walking, and recognized the identity and gender of the 

volunteers based on the captured data. Hak et al. [6] analyzed 

the walking poses of males and females, and identified gender 

effectively by the forward swing law of shoulders in the 

process of walking. These experimental results lay theoretical 

basis for gait research. 

The lower limbs of human have a very complex structure. 

In the walking process, it is difficult to directly measure the 

force of each joint and muscle. If these forces could be 

measured, and used to build the mechanical model of lower 

limbs, it would be possible to analyze the mechanism of 

human walking, and develop rehabilitation aids and 

exoskeleton equipment for lower limbs. Therefore, many 

researchers have probed into mechanical modeling of the 

muscles and bones in human lower limbs. For instance, Vairis 

et al. [7] established a finite-element model of the whole 

human body, and calculated the stresses of ankle joint and 

knee joint. With the help of musculoskeletal model, Correa et 

al. [8] analyzed the stress of lower limb joints, especially the 

tibia joint, during the walking with different inclinations. 

Gregg et al. [9] investigated the self-adaptive balancing of 
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human body, which slips in the walking on a straight path, and 

drew an important conclusion: After slipping, the human body 

could lighten heel-ground contact and tighten toe-ground 

contact by reducing the walking speed and step length, and 

restore stable walking by extending the support phase. 

Slaughter et al. [10] constructed a forward biomechanical 

model for the motion system of human lower limbs, which 

derives the joint torque from the inputted surface 

electromyography (sEMG) signal, shedding light on the 

mechanical interaction in human-computer cooperation of 

rehabilitation training robot. 

In gait recognition, image sequence is the basis of most 

research methods [11]. The image sequence-based methods 

generally collect gait information over long distance by 

camera, and identifies the gait through feature extraction and 

classification. For instance, Chandra et al. [12] successfully 

recognized gaits with different angles and pedestrian shapes, 

using the 3D gait data reconstructed by multiple cameras. Kim 

and Paik [13] combined frieze pattern and dynamic time to 

match gait sequences with similar angles of view. Lu and Yan 

[14] classified human contour with hidden Markov model. 

Thanks to the development of deep learning, deep neural 

network (DNN) has been widely applied to gait recognition, 

for its excellence in feature representation, data learning, and 

generalization. Carrara et al. [15] designed a human pose 

estimation model based on convolutional neural network 

(CNN), relied on the model to obtain the heat map of human 

joints, and imported the heat map into LSTM network to 

recognize human poses. Zhu et al. [16] combined three models 

into a gait recognition method, whose input feature is gait 

energy map. Kuen et al. [17] developed a gait recognition 

method coupling multiple progressive stacked auto-encoders: 

the gait energy map is inputted to multi-layer stacked auto-

encoders, and processed progressively to generate gait 

invariant features. 

 

 

3. VECTOR GRAPH OF HUMAN WALKING 

FEATURES 

 

The generation of vector graph for human walking features 

is a prerequisite of gait recognition. First, the part affinity 

fields (PAFs) [18] were extracted by preprocessing gait 

images. Then, the PAFs of successive frames were combined 

into the vector graph, which serves as the input of feature 

extraction and classification network. 

To eliminate the influence of background on gait detection, 

a relatively complete and accurate gait information sequence 

was obtained from the background images in the video stream. 

The sequence of the vector graphs in a gait cycle provides 

sufficient gait information. Hence, this paper proses a gait 

cycle detection method based on periodic change of aspect 

ratio of human contour: the PAFs were extracted through gait 

detection based on pose estimation model, selected for 

normalization, and organized into a vector graph for human 

walking features. 

Relevant studies have shown that human gait is a highly 

cyclic behavior. The gait research must learn the change 

pattern of spatial features. Based on the cyclic information of 

a gait, a time-scale gait model could be established based on 

the abundant gait information, which can be trained accurately 

in a short time. 

A gait cycle is defined as the time interval between two 

consecutive and identical walking poses. In the walking 

process, the shape of pedestrian contour changes with time, 

due to the regular movements of arms and legs. The shape 

changes more sharply in the width direction than in the height 

direction. That is, the contour variation is most prominent from 

the side view. Therefore, gait cycles could be extracted based 

on the aspect ratio, which is maximized when the foot is on the 

line, and maximized when the foot is fully extended.  

In this paper, pedestrian detection is carried out under the 

you only look once (YOLO) v3 framework [19]. The aspect 

ratio was acquired from network output [x0, y0, x1, y1] by: 

 

𝑦_𝑥 = 𝑦 𝑥⁄  (1) 

 

where, x=x1-x0; y=y1-y0. 

Based on convolutional pose machine, the PAF-based pose 

estimation [20] can detect the key points of multiple 

pedestrians in real time. After encoding the global context, the 

pose estimation algorithm greedily parses the steps from 

bottom to top. The pedestrians can be recognized precisely and 

quickly, no matter how many people are in the input image. 

As a bottom-up method, the algorithm firstly detects the key 

points in the image, and then connects them according to the 

position of the human body. In this way, the human pose and 

gait information can be estimated and extracted successfully, 

even if the human body is not segmented clearly. 

The basic flow of PAF-based pose estimation is as follows: 

Taking a two-dimensional (2D) w×h RGB image as the input 

and the positions of key anatomical points for all people in the 

image as the output, the forward neural network 

simultaneously predicts the 2D confidence map C of a group 

of key points, and encodes the 2D vector map V of the 

correlations between these points. Let C=(C1, C2, …, CM) be a 

set of M confidence images, each of which corresponds to a 

key point, with 𝐶𝑖 ∈ ℝ𝑤×ℎ, 𝑖 ∈ {1,2, … ,𝑀}. Let V=(V1, V2, …, 

VN) be a set of N vector fields, each of which corresponds to a 

limb, with 𝑉𝑗 ∈ ℝ𝑤×ℎ×2, 𝑗 ∈ {1,2, … ,𝑁} . Note that each 

image position in Vj is encoded as a 2D vector. Next, C and V 

are analyzed by greedy reasoning, outputting the 2D key 

points of each person in the image. 

 

 
 

Figure 1. The architecture of two-branch DCNN 
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Our method was designed based on DCNN. It is not 

susceptible to background, light, or the number of images. The 

DCNN could be split into two iterative prediction branches. 

The top branch predicts confidence maps, while the bottom 

branch predicts the PAFs of components. As shown in Figure 

1, the two-branch DCNN contains t phases, with intermediate 

supervision between them. 

Through the DCNN, a set of feature maps F could be 

generated from the RGB image, and taken as the input of each 

branch. From the feature maps, a set of confidence maps 

C1=β1(F) and a set of PAFs 𝑉1 = 𝜗1(𝐹) are generated, where 

β1 and 𝜗1  are mapping functions of the DCNN. After each 

phase, the two branches output their predictions. To improve 

the prediction accuracy, the predictions and feature maps F are 

combined as the input of the next phase. This process is 

implemented iteratively by: 

 

𝐶𝑡 = 𝛽𝑡(𝐹, 𝐶𝑡−1, 𝑉𝑡−1), ∀𝑡 ≥ 2 (2) 

 

𝑉𝑡 = 𝜗𝑡(𝐹, 𝐶𝑡−1, 𝑉𝑡−1), ∀𝑡 ≥ 2 (3) 

 

To guide the iteratively prediction of confidence map and 

PAFs of key points, each branch has its own loss function in 

each phase. The loss functions between the true value and the 

predicted value can be defined as: 

 

𝑙𝐶
𝑡 = ∑∑𝑊(𝑞)

𝑞

∙ ‖𝐶𝑖
𝑡(𝑞) − 𝐶𝑖

∗(𝑞)‖2
2

𝑀

𝑖=1

 (4) 

 

𝑙𝑉
𝑡 = ∑ ∑𝑊(𝑞)

𝑞

∙ ‖𝑉𝑗
𝑡(𝑞) − 𝑉𝑗

∗(𝑞)‖
2

2
𝑁

𝑗=1

 (5) 

 

where, 𝐶𝑖
∗(𝑞) is the real confidence map of key points of all 

pedestrians in the image; W(q)=0 is a binary bit, in which q 

is not on the joint image; 𝑉𝑗
∗ is the real PAFs of all human 

bodies in the image. The total objective function can be 

expressed as: 

 

𝑙 = ∑(𝑙𝐶
𝑡 + 𝑙𝑉

𝑡 )

𝑇

𝑡=1

 (6) 

 

As a 2D matrix, the PAF is a strategy to connect the 

relevant key points correctly, while retaining the position 

and orientation of limbs. Each pixel in a specific limb could be 

encoded as a 2D vector from the limb to another limb. The 

affinity of each limb depends on two key points. Let xi,k and 

xj,k be the two real body parts i and j of the c-th limb of the k-

th person. Then, the affinity vector 𝐿𝑐,𝑘
∗  can be defined as: 

 

𝐿𝑐,𝑘
∗ = {

𝑢   𝑖𝑓 𝑞 𝑖𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑙𝑖𝑚𝑏
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7) 

 

The unit vector in limb direction can be expressed as: 

 

𝑢 = (𝑥𝑗,𝑘 − 𝑥𝑖,𝑘) ‖𝑥𝑗,𝑘 − 𝑥𝑖,𝑘‖2
⁄  (8) 

 

 

4. DYNAMIC MODEL OF HUMAN LOWER LIMBS 

 

According to the correlation analysis of human anatomical 

structure, there are 7 degrees-of-freedom (DOFs) in the lower 

limb on one side of the human body. Hence, the lower limb 

was simplified as a rigid body model with seven links and 

seven DOFs. The parameters of this model are shown in Table 

1. 

 

Table 1. Parameters of the rigid body model 

 
Parameter Meaning 

θ1, θ2, θ3, θ4, 

θ5, θ6, θ7 

Trunk angle, left hip angle, right hip angle, left 

knee angle, right knee angle, left ankle angle, 

right ankle angle 

mi Mass of each link 

Ii Moment of inertia of each link 

li Length of each link 

di Centroid position of each link 

kij Rigidity of joint muscle 

cij Rotational damping between adjacent links 

 

The dynamics of the lower limb system can be generalized 

as: 

 

[𝑀]{�̈�} + [𝐶]{�̇�} + [𝐾]{𝜃} = [𝑇] (9) 

 

This paper aims to model the dynamics of the system. Thus, 

the damping matrix and external load matrix were set up as 

[C]=0 and [T]=0, respectively. Then, the dynamic system can 

be simplified as: 

 

[𝑀]{�̈�} + [𝐶]{�̇�} = 0 (10) 

 

The Lagrange equation of the conservative system can be 

defined as: 

 

𝐿 = 𝑇 − 𝑉 (11) 

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞�̇�

) −
𝜕𝐿

𝜕𝑞𝑖

= 0 (12) 

 

where, T and V are the total kinetic energy and total potential 

energy of the system, respectively; L is Lagrange function 

about the difference between T and V; qi is the generalized 

coordinates. 

Taking the hip joint as the origin of Cartesian coordinate 

system, the kinetic energy and potential energy of each limb 

were expressed in generalized coordinates, and the Lagrange 

function of the system was established. The Lagrange 

calculation was performed on the seven generalized 

coordinates to obtained seven equations. 

In the rectangular coordinate system, the coordinates of 

each node in the simplified model can be expressed as: 

 

𝑥13 = 𝑙1 𝑠𝑖𝑛(𝜃1(𝑡)), 

𝑦13 = −𝑙1 𝑐𝑜𝑠(𝜃1(𝑡)) 
(13) 

 

𝑥35 = 𝑥13 − 𝑙3 𝑠𝑖𝑛(𝜃3(𝑡) − 𝜃1(𝑡)), 

𝑦35 = 𝑦13 − 𝑙3 𝑐𝑜𝑠(𝜃3(𝑡) − 𝜃1(𝑡)) 
(14) 

 

𝑥24 = 𝑙2 𝑠𝑖𝑛(𝜃2(𝑡)), 

𝑦24 = −𝑙2 𝑐𝑜𝑠(𝜃2(𝑡)) 
(15) 

 

𝑥46 = 𝑥24 − 𝑙4 𝑠𝑖𝑛(𝜃4(𝑡) − 𝜃2(𝑡)), 

𝑦46 = 𝑦24 − 𝑙4 𝑐𝑜𝑠(𝜃4(𝑡) − 𝜃2(𝑡)) 
(16) 
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The kinetic energy of the left and right lower limbs can be 

respectively defined as: 

 

𝑇𝐿 =
1

2
𝐼1�̇�1

2
+

1

2
𝑚3(�̇�13

2 + �̇�13
2) +

1

2
𝐼3�̇�3

2

+
1

2
𝑚5(�̇�35

2 + �̇�35
2) +

1

2
𝐼5�̇�5

2
 

(17) 

 

𝑇𝑅 =
1

2
𝐼2�̇�2

2
+

1

2
𝑚2(�̇�24

2 + �̇�24
2) +

1

2
𝐼4�̇�4

2

+
1

2
𝑚4(�̇�46

2 + �̇�46
2) +

1

2
𝐼6�̇�6

2
 

(18) 

 

The total kinetic energy of the 7-link simplified lower limbs 

can be expressed as: 

 

𝑇 =
1

2
𝐼0�̇�0

2
+ 𝑇𝐿 + 𝑇𝑟 (19) 

 

The potential energy of the system can be computed by: 

 

𝑉 =
1

2
𝑘𝜃2 +

1

2
𝑘1𝜃1

2 +
1

2
𝑘2𝜃2

2 +
1

2
𝑘13𝜃3

2

+
1

2
𝑘24𝜃4

2 +
1

2
𝑘35𝜃5

2 +
1

2
𝑘46𝜃6

2
 

(20) 

 

From the above equations of system dynamics, the system 

dynamics model could be established after computing the 

equivalent length, equivalent moment of inertia, equivalent 

limb mass, and rotational rigidity of the simplified 7-link 

model. 

The simplified system (10) can be characterized by the 

following constitutive equations: 

 

[
𝑀11 ⋯ 𝑀17

⋮ ⋱ ⋮
𝑀71 ⋯ 𝑀77

]

[
 
 
 
 
 
 
 
�̈�
�̈�1

�̈�3

�̈�5

�̈�2

�̈�4

�̈�6]
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 

𝑘0                           
  𝑘1                   

          𝑘13                        

     𝑘35  
              𝑘2  

                     𝑘24

                             𝑘46]
 
 
 
 
 
 

[
 
 
 
 
 
 
𝜃0

𝜃1

𝜃3

𝜃5

𝜃2

𝜃4

𝜃6]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
0
0
0
0
0
0
0]
 
 
 
 
 
 

 (21) 

 

where, 𝑀11 = 𝐼0 ; 𝑀22 = 𝐼1 + 𝑚5(𝑙1 + 𝑙3)
2 + 𝑚3𝑙1

2 ; 𝑀32 =
𝑀23 = −𝑚5𝑙3(𝑙1 + 𝑙3); 𝑀33 = 𝐼3 + 𝑚5𝑙3

2 ; 𝑀44 = 𝐼5 ; 𝑀55 =
𝐼1 + 𝑚5(𝑙1 + 𝑙3)

2 + 𝑚3𝑙1
2 ; 𝑀65 = 𝑀56 = −𝑚5𝑙3(𝑙1 + 𝑙3) ; 

𝑀66 = 𝐼3 + 𝑚5𝑙3
2; 𝑀77 = 𝐼5. 

 

 

5. GAIT FEATURE LEARNING AND RECOGNITION 

ALGORITHM BASED ON RESIDUAL NETWORK 

 

Considering its ultrahigh dimension, the vector image on 

human walking features must go through dimensionality 

reduction. Since the PAF image extracted by human pose 

estimation contain noises, it is necessary to learn the features 

of the extracted vector image on the spatial scale, so as to 

facilitate the subsequent feature learning on the time scale. For 

these purposes, this section proposes a gait feature learning 

and recognition algorithm based on residual network (Figure 

2). 

As shown in Figure 2, the vector image on human walking 

features and the label of the image are adopted as the input of 

the neural network. In the training process, the residual 

learning module is adopted to extract spatial features and 

reduce dimensions. Then, the LSTM network with a special 

loop is introduced to learn the time scale features. The gait 

feature representation thus obtained is mapped to the sample 

label space by the fully connected network, and the features 

are classified by the softmax layer at the end of the network to 

obtain the predicted value. Finally, the predicted value is 

compared with the actual value to derive the cross-entropy loss, 

and the parameters are optimized by the Adam algorithm with 

adaptive learning rate. Based on the loss, the backpropagation 

algorithm is employed to adjust the weight and bias, making 

the mapping relationship more accurate for feature learning 

and recognition. During the test, a sequence of vector images 

on human walking features with the length of a gait cycle is 

imported to the model for gait identification. 

During network training and optimization, the value of each 

parameter is generally optimized by gradient descent (GD). 

The backpropagation algorithm makes it efficient to 

implement GD on every parameter, and minimize the loss 

function.  

 
 

Figure 2. Flow chart of feature learning and recognition algorithm based on residual network 
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Adam algorithm [21] could dynamically adjust the learning 

rate of each parameter according to the gradient, through first- 

and second-order moment estimations. Compared with other 

optimization methods, this algorithm gains high popularity 

and achieves good performance. In Adam algorithm, the mean 

sum of squares for gradient exponents st and mean sum of 

gradient exponents et can be respectively defined as: 

 

𝑠𝑡 = 𝜀 ∙ 𝑠𝑡−1 + (1 − 𝜀) ∙ 𝑔𝑡 (22) 

 

𝑒𝑡 = 𝜎 ∙ 𝑒𝑡−1 + (1 − 𝜎) ∙ 𝑔𝑡
2 (23) 

 

In this paper, a spatiotemporal feature classification model 

is developed based on network learning and LSTM. The 

pedestrians are identified through feature learning and 

prediction of network functions. In the proposed model 

(Figure 3), the vector image containing spatiotemporal 

features of human walking is taken as input; the input is 

processed by a convolution layer with 256 1×1 convolutional 

kernels; after that, the linear combination of information 

between channels is changed by Bayesian network (BN) and 

rectified linear unit (ReLU) nonlinear activation functions [22], 

which enhances the nonlinear features without loss of 

resolution, and widens the network channels with the fewest 

parameters. 

In the residual learning module, the number of convolutions 

is modified, and the position of BN and ReLU is adjusted. 

Then, dimension reduction is performed through a fully-

connected layer. The output of this layer is converted into the 

input of LSTM network, and the learned feature representation 

is mapped to the label space of the sample. Finally, the cross-

entropy loss is calculated by softmax layer for network 

training. Through network training and optimization, Adam 

algorithm is implemented to regularize the loss function to 

prevent overfitting. 

 

 
 

Figure 3. Structure of spatiotemporal gait feature learning and classification network  

 

To sum up, the proposed method first calculates the gait 

cycle, obtains the PAFs, and performs data selection and 

standardization. Then, the vector image of human walking 

features is generated. After that, the vector image is adopted 

as the input in feature learning and recognition based on 

residual learning module and LSTM network. Through the 

training, the network capable of extracting spatiotemporal 

gait features could be obtained. As shown in Figure 4, the 

specific steps are as follows: 

Step 1. From the video sequence of each pedestrian in the 

dataset, the gait cycle is detected by aspect ratio, and the mean 

cycle T is obtained. The moving objects are detected and gait 

information is extracted from the RGB video sequence 

through human posture estimation, and the PAFs are obtained 

and standardized. Then, the PAFs in a cycle are superimposed 

in time sequence, forming a vector of human walking features. 

Step 2. The vector image of human walking features is 

imported to the convolution layer for the exchange of cross-

channel information. The feature map is used to extract the 

spatial features of gait through residual learning module. Then, 

the outputs of convolution layer and fully-connected layer are 

sent to the LSTM network to extract the temporal features of 

gait. 

Step 3. Based on the extracted features, the softmax layer at 

the end of the network is used to classify the features. 

Step 4. The cross-entropy loss between the predicted value 

and the actual value of the softmax layer output is calculated. 

Step 5. The network parameters are optimized by 

backpropagation algorithm according to the cross-entropy loss. 

Step 6. Repeat Step 2-5 until the loss error converges.  

 
 

Figure 4. Workflow of our method 

 

 

6. EXPERIMENTS AND RESULTS ANALYSIS 

 

The experimental data were collected from a public gait 

database. The mean length of gait cycle sequence was taken 

as the number vector image sequences. Since human pose 
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estimation works poorly on human pose images with large 

occlusions, the gait sequence from the 50th frame to 50 + 

Tth frame was taken as the training set from the angle of 0°. 

Figure 5 presents the recognition effect of our method. 

 

 
 

Figure 5. Recognition effect of our method 

 

The recognition effect was measured by the correct 

recognition rate. The performance of our method was 

compared with that of two classical recognition algorithms. 

The comparison in Table 2 shows that our method achieved a 

mean recognition rate of 96.4%, much higher than the other 

two algorithms. Hence, our method enjoys strong 

generalization ability, and surpasses the other methods in 

eliminating the impact of environmental noise on gait 

recognition. 

 

Table 2. Correct recognition rates of different algorithms 

 
Gait state State 1 State 2 State 3 Mean 

VGG16 100% 94.6% 89.2% 94.6% 

Poisson equation 

+ Gabor wavelet 
92.7% 93.8% 88.5% 91.7% 

Our method 100% 94.5% 94.7% 96.4% 

 

 

7. CONCLUSIONS 

 

This paper proposes a DCNN-based method for human pose 

estimation to obtain the vector image on human walking 

features. Unlike the gait template, the vector image was taken 

as the gait descriptor that retains all the spatiotemporal features 

of pedestrians. The abundant gait information in the vector 

image facilitates the feature extraction and learning, and 

improves the performance of gait recognition. On this basis, 

residual learning and LSTM network were combined into a 

feature learning and recognition network, which has an 

advantage over traditional machine learning methods in 

recognition accuracy. 
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