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Epilepsy is a neurological disease affecting almost 1% of world population. Predicting a 

possible seizure will make a significant contribution to improving the quality of life of 

patients suffering from this disease. One of the most important steps in seizure prediction 

studies is the preictal activity recognition stage. In many previous studies, the preictal state 

was determined to end at the onset of the seizure, which makes it difficult for the physician 

to intervene in the patient in a possible seizure. In the proposed method, unlike previous 

studies, the preictal state was determined as the 30-minute interval ending 30 minutes before 

the onset of an epileptic seizure. The method consisted of three stages; (I) preictal and 

interictal activities were divided into five-second segments, (ii) the separated signals were 

converted into spectrograms, and (iii) the spectrogram images were classified using three 

different pre-trained CNN models (VGG19, ResNet, DenseNet) and the results were 

compared among these models. Classification was performed separately using the 

predetermined four EEG channels for 20 cases in the CHB-MIT dataset. The best 

classification accuracy value in preictal/interictal discrimination (91.05%) was obtained on 

channel 8 (P3-O1). An important contribution of this study was that the proposed approach 

provided important information about the preictal and interictal discrimination of the section 

30 minutes before the onset of seizures. In addition, by examining the four channels 

separately, channel-based information on preictal/interictal discrimination was also 

obtained. Based on these results, we consider that the proposed method will bring a different 

perspective to seizure prediction studies. 
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1. INTRODUCTION

Epilepsy is a neurological disease of the central nervous 

system (CNS), affecting approximately 1% of the world 

population [1]. The disease occurs by unpredictable seizures 

due to sudden malfunction during normal activities of neurons 

[1, 2]. An electroencephalogram (EEG) testing is used to 

examine changes in the electrical brain activity causing 

epilepsy and to identify any seizure that may occur. The 

important point in seizure prediction is to determine the 

preictal state in which the changes in brain activity begin to 

occur. With a strong seizure prediction system, the disease can 

be controlled easily [2]. Before the seizure begins, taking the 

necessary precautions can easily predict and even prevent the 

seizure. Therefore, it is highly important to determine the 

preictal state that contains important information for a seizure 

prediction. 

Recently, researchers have used various methods to detect 

changes in brain activity. These methods can be divided into 

two groups: (I) features extracted manually from the EEG 

signals and classified with various classifiers (neural network, 

support vector machines (SVM), multi-layer perceptron, and 

linear discriminant analysis) and (II) automatic feature 

extraction and classification that are carried out with deep 

learning methods. Studies reporting on both methods are 

examined below. 

Zhou et al. performed a seizure detection system using 

Lacunarity and Bayesian linear separation analysis [3]. Rana 

et al. used the phase-slope index (PSI) of EEG signals to 

determine epileptic seizures from the frequency domain [4]. 

Liu et al. divided the multichannel intracranial EEG signals 

into its sub-bands by the wavelet transform and classified them 

by extracting various features [5]. Tafreshi et al. examined the 

performance of the Empirical Mode Decomposition to 

distinguish between normal and epileptic seizure data [6]. 

Zhang et al. used the spectral analysis of scalp EEG signals to 

distinguish between preictal and interictal EEG segments [7]. 

Cho et al. used phase-locking values to classify EEG signals 

as interictal or preictal [8]. Tsiouris et al. classified preictal and 

interictal states using the features obtained by the frequency 

domain, time domain, and graph theory [2]. Subaşı et al. 

divided EEG signals into sub-bands by wavelet transform, 

whereby the features were extracted by PCA, LDA, and IDA 

and were classified accordingly [9]. In all these methods, 

feature extraction was performed using EEG signals by 

various signal processing techniques and these features were 

classified accordingly [10, 11]. 

Additionally, given that seizure characteristics differ among 

patients, distinguishing distinctive features from EEG signals 

is highly important. In recent years, deep learning methods that 

have gained popularity with AlexNet play an important role in 

this issue. Deep learning models allow automatic feature 

identification without requiring hand-crafted feature 

extraction and selection from raw data. Deep learning has 

become a highly preferred method in medical sciences due to 

its successful results in signal/image processing and 
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classification [12, 13]. Automatic feature extraction by deep 

learning provides better outcomes than traditional methods 

such as hand-crafted feature extraction [14]. Recently, 

applications used for examining EEG signals have also 

become popular due to an increasing interest in deep learning 

methods [15, 16]. Among these, there are various applications 

analyzing EEG signals in the form of one-dimensional signals 

or two-dimensional images. Yıldırım et al. classified EEG 

signals as normal and abnormal [17] using a 1D convolutional 

neural network (CNN) model. Toraman et al. converted EEG 

signals to 2-D spectrogram images and classified them after 

the feature extraction to determine the laterality of speech [18]. 

Ullah et al. automatically classified EEG signals as normal, 

ictal, and interictal [19]. Fahimi et al. suggested a CNN-based 

method for the detection of mental state from single-channel 

raw EEG data [20]. Supratak et al. proposed a deep learning 

model called DeepSleepNet for automatic sleep stage scoring 

[21]. Oh et al. proposed a CNN model using EEG signals for 

automatic detection of Parkinson’s disease [22]. 

 

1.1 Motivation and contribution 

 

Epilepsy is a disease negatively affecting patients’ daily life 

and reducing their quality of life. For this reason, various 

machine learning methods have been developed to assist 

physicians in the decision-making processes regarding the 

detection of epilepsy. In this study, a method for determining 

preictal/interictal activities, which are one of the most 

important steps in seizure prediction, is proposed. In the 

proposed method, three pre-trained CNN models (VGG19, 

ResNet, DenseNet) were used to recognize preictal EEG 

signals. The CNN models were trained by converting one-

dimensional EEG signals to 2D spectrogram images and were 

classified. The contributions of this paper could be 

summarized as follows: 

- To the best of our knowledge, this is the first study to 

extract and classify the properties of spectrogram images 

obtained from preictal and interictal signals using the transfer 

learning approach. 

- Data were classified as preictal and interictal without 

requiring any hand-crafted feature extraction technique. 

- One-dimensional scalp EGG signals were transformed to 

2D spectrogram images with an in-depth learning approach 

and were trained by pre-trained CNN models. 

- The transfer learning approach eliminates the challenges 

such as determination of hyperparameters in the training and 

design stage of the model. 

- A channel-based examination was performed to determine 

the preictal time, which is vitally important for seizure 

prediction. 

- In addition, unlike other studies, the preictal period was 

determined as the period that ended 30 minutes before the 

onset of seizures. Moreover, the effectiveness of this stage for 

predicting a seizure was also demonstrated in the study. 

The rest of the study is organized as follows: Chapter 2 

provides fundamental information on the selection of 

preictal/interictal activities, CNN models, performance 

evaluation criteria, and data sets, Chapter 3 contains the 

experimental results, Chapter 4 presents the discussion of 

findings, and Section 5 presents the conclusion of the study. 

 

 

2. MATERIALS AND METHODS 

 

In this study, a deep learning method for preictal/interictal 

recognition, which is an important step in seizure prediction 

applications, is proposed. Feature extraction was employed for 

differentiating the preictal and interictal states from scalp EEG 

signals using trained CNN models with millions of images. 

EEG signals were converted to spectrogram images and were 

used as input data to 2D CNN models. The preictal/interictal 

differentiation was performed using the extracted features. 

The flow diagram of the study is given in Figure 1. 
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Figure 1. Flow diagram of the proposed method 
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Figure 2. 18-channel samples and the electrode positions placed according to the 10-20 system during EEG recordings 

 

2.1 EEG dataset 

 

In this study, the publicly available CHB-MIT scalp EEG 

dataset was used [23]. EEG signals were collected from 

children who were receiving treatment for seizures in Boston 

Children’s Hospital. All EEG signals were obtained from 18 

to 23 channels and were sampled at 256 Hz. Figure 2 shows 

the 10-20 System of EEG Electrode Placement used for 

collecting EEG signals. 

Total duration of the EEG recordings was 983 hours. Most 

EEG recordings consisted of 1-h epochs, while others were 2 

to 4-h epochs. The seizure onset and offset times were marked 

by a clinical expert. In the annotation file of the data set, 

channel changes, seizure start/end information was given. 

Table 1 shows the information for the CHB-MIT EEG data set. 

 

Table 1. CHB-MIT EEG data set description 

 

Case Gender 
Age 

(years) 

# of 

seizure 

Length 

(hh: mm: 

ss) 

number of 

seizures 

used 

chb01 F 11 7 40:33:08 5 

chb02 M 11 3 35:15:59 2 

chb03 F 14 7 38:00:06 2 

chb04 M 22 4 156:03:54 3 

chb05 F 7 5 39:00:10 4 

chb06 F 1,5 10 66:44:06 7 

chb07 F 14,5 3 67:30:08 3 

chb08 M 3,5 5 20:00:23 4 

chb09 F 10 4 67:52:18 3 

chb10 M 3 7 50:01:24 4 

chb11 F 12 3 34:47:37 - 

chb12 F 2 40 20:41:40 - 

chb13 F 3 12 33:00:00 3 

chb14 F 9 8 26:00:00 3 

chb15 M 16 20 40:00:36 9 

chb16 F 7 10 19:00:00 3 

chb17 F 12 3 21:00:24 1 

chb18 F 18 6 35:38:05 2 

chb19 F 19 3 29:55:46 - 

chb20 F 6 8 27:36:06 2 

chb21 F 13 4 32:49:49 2 

chb22 F 9 3 31:00:11 2 

chb23 F 6 7 26:33:30 4 

 

For this study, the preictal interval was determined as the 

30-minute interval ending 30 minutes before the seizure onset. 

This duration was determined since it is highly important to 

give an effective time for the physician to intervene in the 

patient before the seizure onset [16]. Moreover, the preictal 

interval is an arbitrary choice of investigators since there is no 

precise time limit for the preictal state [2]. Therefore, in this 

study, the preictal window of 30 min was chosen. The 10-min 

time period after the seizure was determined as the postictal 

state [24]. There were various seizures that occurred over a 

short interval in the CHB-MIT EEG data set, of which the 

seizure that occurred first was included in the analysis There 

were 20 cases that fulfilled the inclusion criteria (see Table 1). 

The time periods other than the preictal, ictal, and postictal 

periods were accepted as interictal, which occurred at least two 

hours away from the seizure [2]. In addition, segments were 

chosen as non-overlapping 5 sec as in the study [2]. Figure 3 

shows an example of a signal for the identification of preictal 

and interictal periods. 
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Figure 3. Brain activities of epilepsy patients include 

interictal, preictal, ictal, and postictal states. The first 30-min 

period before each seizure was defined as the preictal period 

 

2.2 Preictal state detection  

 

The preictal detection approach consisted of the 

segmentation of EEG signals, conversion of each segment into 

spectrogram, extraction of deep features from spectrogram 

images, and the classification stages (Figure 1). 

 

2.2.1 Segmentation 

For one patient who had a history of five seizures, a 150-

min (5x30) preictal state and a 150-min interictal state were 

randomly selected. The time periods defined as ictal in the 

annotation file were not used. The EEG signals were then 

segmented for each case in the data set. Figure 4 shows some 

examples of preictal and interictal signals that were divided 

into 5-sec segments. The sliding window method was used for 

segmentation, which can be used with or without overlap. The 

overlapping sliding window analysis is highly useful for data 

continuity although it causes redundant information. The 

analysis of 18-channel data of each patient resulted in 
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excessive information density, which can cause serious 

problems both in terms of processing load and timing. 

Accordingly, the EEG signals were divided into non-

overlapping segments. 

 

2.2.2 Spectrogram 

Since a 2D CNN model was used in the study, the 

segmented raw EEG signals were converted to 2D image 

format. Methods such as Short-time Fourier Transform (STFT) 

and Wavelet transform were used effectively in image 

conversion and feature extraction since these methods retain 

the time-frequency information in the analysis of signals [25]. 

All preictal and interictal activities were divided into 5-sec 

segments. While obtaining the spectrogram, the hamming 

window width was selected as 16 ms, overlap 8 ms, and 512-

point Fast Fourier Transform (FFT) was used. The Viridis 

scales were employed to provide a color map. Figure 4 shows 

the spectrograms examples of preictal and interictal segments. 

The obtained spectrogram images were of 875 x 656 pixels. 

The pre-trained VGG19, ResNet and DesNet models have an 

original input size of 224 x 224 pixels. Additionally, using 

large images for input requires more hardware resources and 

increases processing load. Therefore, each spectrogram image 

was resized to 224 x 224 pixels. 
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Figure 4. 5-sec segmented preictal/interictal EEG signals 

 

2.2.3 CNN 

CNN models have been shown to provide successful results 

in classification and detection in medical applications [14, 26]. 

These models became more popular with the success in the 

ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) in 2012 by Krizhevsky et al. [27]. Moreover, the 

advent of VGGNet and ResNet further increased this 

popularity in 2014 and in 2015, respectively. A good training 

process is needed for a CNN model to achieve a good 

classification or recognition. Additionally, a large amount of 

data is required for good training, which mostly cannot be 

obtained. In such cases, using pre-trained models with large 

data sets produces more successful results. Instead of re-

training a CNN model, it is easier to perform a process using 

the weights of pre-trained models. This method is called 

Transfer Learning, which allows a more efficient feature 

extraction from smaller data sets and also allows the training 

of small data sets with low computation costs [28]. In this 

study, VGG19, ResNet, and DenseNet models were used to 

extract deep features. For each spectrogram image, VGG19, 

ResNet, and DenseNet produced feature vectors of length 

4096, 2048, and 1920, respectively. 

VGG19: CNN models, which began with LeNet and then 

become popular with AlexNet, were effectively used by the 

Visual Geometry Group of Oxford University (VGG) in the 

development of VGG16. VGG16 consists of 13 convulsion 

layers and 3 fully connected layers and VGG19 consists of 16 

convulsion layers and 3 fully connected layers. There are also 

5 max-pooling and softmax layers which are the final layers in 

both models. While softmax is used to classify data, ReLu is 

used as the activation function [19, 29, 30]. 

ResNet: The earliest CNN models had a remarkably low 

number of layers. Of note, VGG16 had 8 layers and VGG19 

had 16 layers. However, with the rapid developments in GPU 

technology, the number of layers in CNN models increased. 

One of these models is ResNet architecture, in which different 

architectural structures with 50, 101, and 152 layers have been 

used. In deep CNN architectures, the number of layers was 

increased, which made the training difficult. As a result, the 

input and gradient values started to vanish. In order to solve 

this problem, the skip connection technique was used in 

ResNet, whereby the output of one layer was added to the next 

input by skipping certain layers and thus a more effective 

training model was provided [31, 32]. 

DenseNet: DenseNet has a structure in which the previous 

layer properties are forwarded to all subsequent layers. Unlike 

ResNet, DenseNet transfers the previous layer information to 

all subsequent layers, instead of skipping some layers and 

transferring the previous layer information to the next layers. 

This provides a stronger flow of information between the 

layers. Another advantage of DenseNet is that it creates inputs 

by adding information from the previous layer to the next layer, 

rather than collecting features when creating layer inputs [33]. 

 

2.2.4 Support Vector Machine 

Support Vector Machine (SVM) is a machine learning 

algorithm used for separating data sets with two or more 

classes by finding an optimal hyperplane. SVM reduces 

structural risks and uses support vectors to separate classes. 

After determining support vectors, the most appropriate 

hyperplane to separate the data set is found. In the two-class 

data set {𝑥𝑖 , 𝑦𝑖} 𝑖 = 1,2,3,4, … , 𝑘, 𝑦𝑖 ∈ {−1, +1} are the class 

labels in the dataset [34, 35]. Inequalities that define the most 

appropriate hyperplane to separate classes are described as 

follows: 

 

w.xi+b≤-1,             y=-1 

w.xi+b≥1,             y=1 
(1) 

 

As a result, the obtained separation function for the two-

class data set that can be separated linearly is as follows: 

 

f(x)=sign(∑ αiyiK(x.xi)+b

k

i=1

) (2) 

 

Here, α represents the Lagrange multiplier, b represents bias, 

𝑥𝑖 represents support vectors and K represents kernel functions 

[34, 35]. The Kernel functions used in the study included 

Radial Basis Function (RBF), Polynomial, and Linear. 

 

2.2.5 Performance evaluation 

The k-fold cross-validation method was used to evaluate the 

performance of the proposed method. The k value was 

determined as 5 and thus the data set was divided into 5 parts. 

Four parts were used for training and the remaining part was 
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used for testing. This procedure was applied to all parts. The 

average of five values was calculated for performance 

evaluation. The parameters used for performance comparison 

were defined as True Positive (TP), which represented the 

number of precisely defined preictal segments, as False 

Negative (FN), which represented the number of incorrectly 

defined preictal segments, as True Negative (TN), which 

represented the number of correctly defined interictal 

segments, and as False Positive (FP), which represented the 

number of incorrectly defined interictal segments. 

 

Sensitivity = TP/(TP+FN)×100 (3) 

 

Specificity = TN/(TN+FP)×100 (4) 

 

Accuracy = (TP+TN)/(TP+FP+TN+FN)×100 (5) 

 

In the proposed model, EEG signals were transformed into 

a spectrogram image using MATLAB software. Other 

applications were implemented using the KERAS 2.1.6 library 

in Python 3.5. Training and testing of the model were 

performed on a Linux server with NVIDIA GTX 1080 

graphics card. 

 

 

3. RESULTS 

 

In this study, a two-stage method was used to analyze 

preictal and interictal activities. In the first stage, feature 

extraction was performed with three pre-trained deep learning 

architectures using a random case, and the extracted features 

were classified with SVM. Based on the classification results, 

it was determined as to which CNN architecture was more 

successful in differentiating preictal and interictal activities. 

The case selected for classification was chb01 and there were 

five seizures in the chb01 case that were appropriate for the 

study conditions. Five seizures from chb01 were examined 

with three different CNN models. A 30-min preictal section 

was selected for each seizure. For five seizures, a 150-min (5 

x 30) preictal state and a 150-min interictal state were 

randomly selected. The interictal state was determined as the 

time period at least two hours away from the onset and the end 

of the seizure. The 150-min preictal and interictal activities 

were divided into 1800 segments with a 5-s non-overlapping 

sliding window. A total of 3600 spectrogram images were 

obtained by converting each segment into a spectrogram 

image. Feature vectors were obtained from spectrogram 

images using VGG19, ResNet, and DenseNet. Feature vectors 

were classified as preictal and interictal by SVM using 5-fold 

cross-validation. The classification results for 18 channels of 

the chb01 case are shown in Table 2. 

As shown in Table 2, ResNet achieved the best result in 13 

out of 18 channels, while DenseNet achieved higher values in 

5 channels. The VGG19, however, did not achieve a higher 

success in any channel when compared to the other two CNN 

models, which could be due to the fact that VGG19 has a 

shallower architecture than those of ResNet and DenseNet. 

Based on these results, ResNet was chosen as the CNN model 

to be used in the study. In Figure 5, the accuracy of the three 

CNN models is compared. 

After determining the CNN model to be used in the first 

stage, the channels to be used in the second stage were 

determined. Considering that more hardware resources and 

time were needed to examine all the channels, the number of 

channels to be examined was determined as four. In order to 

decide which four channels out of 18 channels to use, the 

ResNet results of 18 channels were compared for two cases, 

chb01 and chb03, which were randomly selected. Table 3 

presents the ResNet accuracy results for two cases.  

 

Table 2. 18-channel classification accuracy of the chb01 case 

with ResNet, DenseNet, and VGG19 

 
Channels ResNet DenseNet VGG19 

Channel 1 93.83 ± 3.26 93.14 ± 2.95 88.58 ± 3.12 

Channel 2 90.83 ± 1.76 91.03 ± 2.81 84.50 ± 2.27 

Channel 3 90.31 ± 1.59 89.56 ± 1.77 88.14 ± 1.81 

Channel 4 94.69 ± 1.23 94.39 ± 1.95 91.00 ± 1.33 

Channel 5 93.58 ± 1.64 92.92 ± 2.33 90.92 ± 2.60 

Channel 6 96.92 ± 0.97 95.64 ± 0.80 93.44 ± 1.26 

Channel 7 99.64 ± 0.42 99.58 ± 0.46 98.56 ± 1.32 

Channel 8 99.58 ± 0.00 99.61 ± 0.21 98.89 ± 0.70 

Channel 9 95.83 ± 1.47 94.89 ± 1.46 93.42 ± 1.43 

Channel 10 94.69 ± 0.98 93.42 ± 1.91 92.11 ± 1.59 

Channel 11 98.86 ± 0.73 98.92 ± 0.71 97.11 ± 1.44 

Channel 12 98.58 ± 0.92 98.78 ± 0.85 96.25 ± 0.82 

Channel 13 96.78 ± 0.41 97.31 ± 1.27 91.83 ± 2.16 

Channel 14 92.22 ± 1.20 92.08 ± 2.06 84.75 ± 2.04 

Channel 15 92.22 ± 2.20 91.06 ± 2.78 87.31 ± 2.53 

Channel 16 97.14 ± 0.69 96.47 ± 1.42 94.33 ± 1.55 

Channel 17 95.92 ± 1.22 95.14 ± 0.70 92.92 ± 1.83 

Channel 18 96.00 ± 1.44 95.89 ± 1.32 90.14 ± 2.19 

Mean ± SD 95.42 ± 1.22 94.99 ± 1.54 91.90 ± 1.77 

 

Table 3. Classification accuracy of 18 channels with ResNet 

for cases chb01 and chb03 

 
Channels chb01 chb03 

Channel 1 93.83 ± 3.26 87.78 ± 2.89 

Channel 2 90.83 ± 1.76 83.75 ± 3.33 

Channel 3 90.31 ± 1.59 87.92 ± 2.08 

Channel 4 94.69 ± 1.23 92.36 ± 2.11 

Channel 5 93.58 ± 1.64 85.69 ± 2.76 

Channel 6 96.92 ± 0.97 85.00 ± 5.56 

Channel 7 99.64 ± 0.42 97.36 ± 2.62 

Channel 8 99.58 ± 0.00 98.54 ± 0.28 

Channel 9 95.83 ± 1.47 89.24 ± 2.45 

Channel 10 94.69 ± 0.98 89.17 ± 3.96 

Channel 11 98.86 ± 0.73 98.12 ± 1.94 

Channel 12 98.58 ± 0.92 97.78 ± 0.83 

Channel 13 96.78 ± 0.41 85.83 ± 2.96 

Channel 14 92.22 ± 1.20 81.87 ± 5.78 

Channel 15 92.22 ± 2.20 87.15 ± 3.20 

Channel 16 97.14 ± 0.69 93.82 ± 3.44 

Channel 17 95.92 ± 1.22 98.54 ± 1.42 

Channel 18 96.00 ± 1.44 99.24 ± 0.81 

Mean ± SD 95.42 ± 1.22 91.06 ± 2.69 

 

 
 

Figure 5. Boxplot of classification accuracy obtained by 

ResNet, DenseNet, and VGG19 using 18 channels for the 

chb01 case 
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As shown in Table 3, the highest accuracy values for the 

chb01 case were obtained in channel 7, 8, 11, and 12, while 

the highest accuracy values for the chb03 case were obtained 

in channel 8, 11, 12, and 18. Some of the cases were not 

included in the comparison because there was no continuity in 

channel 5, 10, 13, and 18. Therefore, in the chb03 case, the 

best four channels were identified as 8, 11, 12, and 17. In the 

Chb01 and chb03 cases, channel 8, 11, and 12 had the highest 

values. However, whether to use ch7 or ch17 for the chb03 

case was determined based on the average values of ch7 and 

ch17 for chb01 and chb03. The ch7 was chosen as the 4th 

channel since its average value was the highest. Figure 6 

illustrates the comparison of the accuracy values obtained for 

chb01 and chb03. 

After the comparison of channels for chb01 and chb03, the 

classification accuracy of the other cases was calculated for 

the four channels chosen. The classification accuracy of all 

cases is presented in Table 4. The highest mean accuracy value 

was obtained for channel 8 (91.05%), while the lowest 

accuracy was achieved for channel 7 (88.71%). The mean 

classification accuracy value of the four channels for 20 cases 

was found as around 90%. The mean classification 

performance of 10 cases for four channels was above 90%, 

while the average of 3 cases was below 80%. Epilepsy has a 

structure that varies from person to person, from seizure to 

seizure [36]. This notion was confirmed by our findings that 

indicated that the accuracy values of the examined EEG 

channels were high in some patients and were low in the other 

patients. As a matter of fact, this variability makes the 

development of a general seizure prediction system very 

difficult. On the other hand, it was also revealed that the 30-

min interval determined as the preictal period contained 

important information for the preictal and interictal distinction. 

The classification accuracy of 20 cases for four channels is 

comparatively given in Figure 7. Figure 8 illustrates the 

sensitivity and specificity values of 20 cases for four channels. 

 

Table 4. The accuracy values of 20 cases in four channels 

 
Case Channel 7 Channel 8 Channel 11 Channel 12 

chb01 99.64 ± 0.42 99.58 ± 0.00 98.86 ± 0.73 98.58 ± 0.92 

chb02 99.38 ± 1.19 99.51 ± 0.56 99.31 ± 0.76 99.44 ± 1.13 

chb03 97.36 ± 2.62 98.54 ± 0.28 98.12 ± 1.94 97.78 ± 0.83 

chb04 86.90 ± 2.49 92.22 ± 1.42 91.62 ± 3.43 88.89 ± 4.32 

chb05 78.85 ± 2.46 82.19 ± 3.32 82.81 ± 2.61 79.48 ± 1.93 

chb06 74.88 ± 2.19 72.87 ± 1.87 74.66 ± 1.65 74.38 ± 1.56 

chb07 100.00 ±0.00 100.00 ±0.00 99.95 ± 0.19 100.00 ±0.00 

chb08 99.20 ± 0.64 99.17 ± 0.51 99.13 ± 1.18 99.44 ± 0.40 

chb09 86.32 ± 1.57 85.21 ± 1.48 87.85 ± 2.83 85.49 ± 2.61 

chb10 77.33 ± 2.03 85.73 ± 2.28 79.86 ± 3.20 89.31 ± 2.48 

chb13 91.90 ± 1.63 99.12 ± 0.80 98.29 ± 0.37 83.98 ± 2.90 

chb14 75.69 ± 0.29 77.59 ± 4.77 73.52 ± 2.82 85.60 ± 2.96 

chb15 71.96 ± 1.22 74.61 ± 1.55 70.42 ± 2.66 70.05 ± 1.41 

chb16 84.12 ± 3.33 82.18 ± 2.50 84.49 ± 1.94 80.69 ± 3.89 

chb17 99.17 ± 1.04 99.86 ± 0.56 99.72 ± 1.11 100.00 ±0.00 

chb18 93.96 ± 1.62 98.33 ± 1.19 90.14 ± 3.53 94.24 ± 2.35 

chb20 98.54 ± 1.02 98.82 ± 1.13 98.47 ± 0.34 99.17 ± 0.34 

chb21 75.14 ± 3.69 85.14 ± 2.17 99.24 ± 0.52 76.94 ± 3.25 

chb22 95.42 ± 2.21 95.90 ± 1.83 95.28 ± 1.50 91.11 ± 1.99 

chb23 88.51 ± 1.60 94.37 ± 0.97 81.77 ± 2.80 91.32 ± 1.24 

Mean±SD 88.71 ± 1.66 91.05 ± 1.46 90.17 ± 1.80 89.29 ± 1.82 

 

 
 

Figure 6. Classification accuracy of 18 channels for chb01 and chb03 

 

 
 

Figure 7. Graphical comparison of the accuracy values of 20 cases for the selected four channels 
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Figure 8. Sensitivity (top) and specificity (bottom) of 20 cases for four channels 
 

 
 

Figure 9. ROC Curves of the classification accuracy of six cases for Channel 8. a) chb01, b) chb02, c) chb03, d) chb04 

 

Table 5. The accuracy, sensitivity, and specificity values of 

20 cases 
 

Parameter Channel 7 Channel 8 Channel 11 Channel 12 

Acc 88.71 91.05 90.17 89.29 

Sen 88.59 92.31 90.97 88.28 

Spe 87.54 89.76 89.37 90.25 

 

Table 5 shows the average accuracy, sensitivity, and 

specificity values of 20 cases for four channels. The receiver 

operating characteristic (ROC) curve is commonly used in 

machine learning applications for measuring the performance 

of a model. The area under the ROC curve (AUC) is a 

numerical measure of the model’s ability to separate the 

dataset. In the ROC curve analysis, the closer the ROC curve 

is to the upper left corner, the higher the overall accuracy of 

the test in separating data sets. Figure 9 shows the ROC curves 

of the classification accuracy of 20 cases in channel 8. In ROC 

graphs, the thick blue curve represents the average ROC curve 

obtained by 5-fold cross-validation. The ROC curves obtained 

in our study indicated that cases 10, 14, and 15 had an AUC 

value below 90 and all the other cases had an AUC above 90. 
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Figure 10. Confusion matrices of the best classification 

accuracy in channel 8 a) chb07 b) chb17 c) chb01 d) chb02 

(pre: preictal, inter: interictal) 
 

The higher AUC values indicated that the system was 

capable of separating preictal and interictal activities. 

The confusion matrices of the best four classifications 

obtained in channel 8 for segment-based preictal/interictal 
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separation are given in Figure 10. For the classification 

performed for chb07 using the ResNet model, all the 1080 

segments were correctly classified. In the classification 

performed for chb17, only one out of 360 segments were 

misclassified. Segment-based classification results for chb01 

and chb02 are shown in Figure 10. 

 

 

4. DISCUSSION 

 

Ictal segments are taken into consideration in seizure 

detection studies, whereas these segments are ignored and a 

seizure is tried to be determined by comparing preictal and 

interictal segments in seizure prediction studies. There is no 

clear procedure to determine preictal activities [2]. The general 

view is that the preictal interval covers a wide period of time 

which could be as long as two hours before the onset of a 

seizure [2, 24, 37]. Accordingly, in the current study, the 30-

min interval ending before the onset of seizure was selected as 

the preictal period. It is important to predict a seizure early 

enough to allow a clinical intervention [16], which could make 

the disease more controllable [2].  

To date, there have been numerous studies investigating the 

discrimination of preictal and interictal state. Song et al. 

proposed a method using the Freiburg data set extracted from 

6-channel iEEG recordings of 21 patients. The authors divided 

the EEG data into parts using 5-second non-overlapping 

sliding windows from 30-min preictal segments. Using the 

Sample Entropy properties of each segment, the data was 

classified as preictal and interictal with 86.75% sensitivity and 

83.50% specificity [38]. 

Lin et al. presented a global feature extraction method from 

artifact-free EEG segments of 8-channel sEEG data of five 

patients. Preictal state was selected as the 3-minute section 

before a seizure onset and the interictal state was selected as 

the section one hour away from the seizure. The authors used 

20-sec overlapping and 30-sec sliding windows and extracted 

216 features from each segment. Subsequently, five properties 

were selected for each patient and the preictal and interictal 

states were classified with 97.50% accuracy, 96.92% 

sensitivity, and 97.78% specificity [37]. 

Cho et al. applied their method for 5-min sEEG recordings 

of 21 cases in the CHB-MIT dataset. The preictal state was 

determined as the section 5 minutes before the onset of a 

seizure and the interictal state was determined as the section 

30 minutes away from the seizure. Features were extracted 

from EEG signals using one-second sliding windows with a 

band-pass filter, empirical mode decomposition, and filtering 

algorithms, with an average accuracy of 83.17% [8]. 

Zhou et al. obtained the iEEG recordings of 21 cases from 

the Freiburg data set and the sEEG recordings of 23 cases from 

the CHB-MIT dataset. Both data sets were segmented using a 

one-second sliding window and were used as input to the 3-

layer CNN. EEG data were classified into three different types 

as preictal/interictal, interictal/ictal and preictal/interictal/ictal. 

However, the study did not include any information on 

preictal/interictal selection and a mean accuracy of 95.6%, a 

mean sensitivity of 94.2%, and mean specificity of 96.6% 

were achieved in the CHB-MIT dataset [39]. 

In the method proposed by Elie et al., bispectral properties 

obtained from 16 channels using iEEG recordings of 3 dogs 

from the Neurovista data set were used as input to 5-layer 

ANN. The preictal part consisted of a 5-minute section one 

hour before the seizure onset, and the interictal state consisted 

of a 5-minute section four hours away from the seizure. The 

authors used 30-sec non-overlapping segments for feature 

extraction and reported that the best testing accuracy obtained 

for preictal and interictal classification was 78.11% [40]. 

Tsiouris et al. performed the preictal and interictal 

differentiation using local and global characteristics from 

sEEG recording of 24 cases in the CHB-MIT dataset. The 

preictal state was determined as the section two hours before 

the seizure onset and the remaining part were determined as 

the interictal state. The model achieved a sensitivity of 85.75% 

and a specificity of 85.75% in the classification of preictal and 

interictal states [2]. 

Table 6 shows a comparison between the proposed method 

and those proposed in previously published studies. As shown 

in Table 6, previous studies determined the preictal interval as 

the section immediately before the onset of the seizure. In the 

method proposed in the present study, however, the 30-min 

interval ending 30 min before the onset of the seizure was 

selected as the preictal state. Our goal in identifying preictal 

activities was to examine the predictability of a seizure that 

could occur at least 30 minutes before the seizure. Another 

reason was that predicting a seizure 30 minutes earlier is 

highly important for prompt control of the disease. Our results 

showed that the preictal region can extend up to one hour 

before seizure onset. Furthermore, the classification of preictal 

and interictal states with an accuracy of over 90% showed that 

the duration of the preictal period showed a wide variation, as 

reported in previous studies. 

 

Table 6. Comparison between the proposed method and the methods proposed in previous studies 

 
Authors Methods Data Preictal interval Segments Sen Spe Acc 

Song et al. [38] 
Extreme Learning 

Machine 

21 patients, 

(Freiburg) 
30min ** 

5 sec, non-

overlapping 
86.75 83.80 - 

Lin et al. [37] Global features, SVM 
5 patients, (Own 

dataset) 
3min ** 

30 sec, 20 sec 

overlapping 
96.92 97.78 97.50 

Cho et al. [8] BPF, EMD, PLV, SVM 
21 patients, 

(CHB-MIT) 
5min ** 

1 sec, 0.1 sec 

overlapping 
82.44 82.76 83.17 

Zhou et al. [39] CNN 
23 patients, 

(CHB-MIT) 
- 

1 sec, non-

overlapping 
94.2 96.6 95.6 

Bou Assi et al. 

[40] 
Bispectral features, ANN 

3 dogs, 

(Neurovista) 
5min** 

30 sec, non-

overlapping 
- - 78.11 

Tsiouris et al. [2] 
Local & global features, 

SVM 

24 patients, 

(CHB-MIT) 
120min ** 

5 sec, non-

overlapping 
85.75 85.75 - 

The proposed 

method 
CNN+SVM 

20 patients, 

(CHB-MIT) 
30min *** 

5 sec, non-

overlapping 

For Channel 8 

92.32 89.76 91.05 
** Time before a seizure onset 

*** Time set to end 30 minutes before a seizure onset 
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The advantage of using pre-trained CNN models was that it 

produced effective features since they were trained on large 

data set. In this way, more successful classification results can 

be achieved by using a limited number of training and test data. 

In doing so, the difficulties in adjusting the hyperparameters 

in a CNN model design using one-dimensional EEG signals 

were eliminated. In traditional feature extraction approaches, 

the extracted features have a significant effect on the 

classification performance of the system. In these systems, not 

only the feature extraction process but also the experience of 

the operator affects the classification performance. 

Meaningfully, the proposed CNN model was remarkably 

successful since it extracted features from the data set itself. 

The limitation of the study was the prolonged duration of the 

preictal/interictal interval examined. 

 

 

5. CONCLUSIONS 

 

In this study, we proposed a method for preictal/interictal 

recognition, which is an important step for early detection of 

epileptic seizures, by using EEG signals. In the proposed 

method, feature extraction was performed from the 

spectrogram images of EEG signals with pre-trained CNN 

models, and these features were classified with SVM. Unlike 

previous studies, the preictal state were determined as the 30-

minute interval that ended 30 minutes before the onset of an 

epileptic seizure. Previous studies have reported that the 

preictal interval may extend up to two hours before the onset 

of seizures, and this notion was confirmed by our findings. In 

the present study, four EEG channels (7, 8, 11, 12) of 20 cases 

were examined separately. The best classification accuracy for 

all four channels was obtained in channel 8 (91.05% ± 1.46%) 

(P3-O1). The mean accuracy of the other three channels was 

around 90%. These findings suggest that there are significant 

changes in seizure prediction in the first half an hour period 

starting 1-h before a seizure occurs. Further studies are needed 

to contribute to seizure prediction applications and to improve 

the quality of life of epilepsy patients. 
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