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By virtue of high-resolution remote sensing satellites, there is a possibility to analyze remote 

sensing images on water bodies through digital image processing (DIP). In many remote 

sensing images, however, the water bodies have similar gray values as other ground objects. 

To effectively distinguish water bodies from other ground objects in these images, this paper 

proposes a logarithmic enhancement method for remote sensing images on water bodies 

based on adaptive morphology. The proposed method can filter the noise of non-target area, 

and enhance the water body in the original image. On this basis, a morphology-based 

segmentation method was designed for remote sensing images on water bodies. 

Experimental results show that our method achieved a high segmentation accuracy, 

controlling the mean segmentation error at below 1.32%. 
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1. INTRODUCTION

Remote sensing is a comprehensive technology that collects 

the electromagnetic waves of ground objects with remote 

sensors, and analyzes the waves to identify, monitor, or 

quantify the regions of interest (ROIs) [1, 2]. Recently, the 

resolution of remote sensing satellites has been improved to 

the sub-meter range, laying technical basis for the 

management of land resources. 

Under the effects of sensor features, weather, and 

illumination, noise and distortion may arise in the transmission, 

formation, and transform of remote sensing images [3], calling 

for effective processing of these images. In essence, the 

processing of remote sensing images is to segment, classify, or 

recognize the objects in the images through digital image 

processing (DIP). The DIP combines computer and 

mathematical methods to process and transform the original 

image to an image with higher utilization value.  

This paper relies on the DIP to segment the remote sensing 

images on water bodies, and counts the area of each water 

body, providing the data for water resource management and 

environmental protection. Specifically, the original image was 

enhanced by a logarithmic method based on adaptive 

morphology, and then processed by a morphology-based 

segmentation method. Experimental results demonstrate the 

real-time performance and efficiency of our method over 

traditional manual measurement. 

2. LITERATURE REVIEW

Surface water, mainly including lakes, rivers, and coastline 

extension areas, is an important part of water resources. The 

accurate segmentation of surface water is of great help to flood 

prevention, water resource assessment, and environmental 

protection. Therefore, various methods have been proposed to 

process and segment remote sensing images on water bodies. 

2.1 Segmentation based on spectral and texture features 

Liu et al. [4] put forward a river target detection algorithm 

based on multi-feature fusion: the original remote sensing 

image was meshed into grids; random forest training and 

classification were implemented based on the local entropy, 

texture features, spectral features, and color features of the 

grids; the detection results of machine learning were optimized 

through morphological operation. 

Yuan and Sarma [5] proposed a river target detection 

method based on multiple features and wavelet support vector 

machine (SVM): the gray features of neighboring pixels were 

measured by mean value ratio with Gabor wavelet; the texture 

features were extracted through wavelet transform, and 

constructed into training samples; the normalized feature 

matrix was trained by wavelet SVM, and used to classify 

image pixels; the background noises like shadows and lakes 

were removed based on regional connectivity and shape 

features of rivers, leaving only the river parts. 

2.2 Object-oriented segmentation 

Wu et al. [6] analyzed the image feature space with various 

maps, e.g., land use map, topographic map, and water system 

map, segmented noises like shadows and vegetation by 

traditional method, and initially extracted the water areas; 

Then, the water areas were optimized through LBV (land, 

water body, vegetation) transform and object-oriented 

segmentation; Finally, the water areas were further refined 

through morphology operation and SVM supervision. 

Wang et al. [7] presented an object-oriented method to 

extract aquaculture water areas: First, a multi-precision image 
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segmentation method was designed to preliminarily segment 

the original image; Then, the spectral, texture, and shape 

features of the image were calculated, as well as the spatial 

relationship; Finally, the aquaculture water areas were 

extracted through multi-feature analysis. 

 

2.3 Segmentation based on Markov and generalized 

Gamma distribution [8] 

 

Biswas et al. [9] modeled the clutter in remote sensing 

images based on generalized Gamma distribution, and 

developed a coastline detection method based on level set 

segmentation, which detects coastlines in an accurate manner. 

Drawing on Markov random field, Baumgartner et al. [10] 

proposed a segmentation method for multi-spectral remote 

sensing images: the eigenvectors of each frequency band were 

calculated, the feature parameters of each upper and lower 

frequency band were estimated, the local smoothing filtering 

was performed, and the eigenvectors were combined into the 

segmentation results. 

Han et al. [11] segmented remote sensing images on rivers 

with the mixed active contour model of regional information 

fusion, and computed the cross entropy and variance of the 

gray values of the outer and inner regions of the contour curve, 

using the cross entropy active contour model, such that the 

curve gradually approached the target edge. This approach 

applies to the segmentation of remote sensing images on rivers 

with certain contrast. 

 

2.4 Adaptive morphology 

 

Morphological operation could easily change the edge and 

other attributes of the original image. Thus, it is important to 

realize adaptive morphological operation by setting up suitable 

structural elements. Many scholars [12-15] have successfully 

constructed morphological adaptive structural elements.  

Teng et al. [16] proposed an HSI (hue-saturation-intensity) 

restoration method based on the structure information of color 

images obtained through adaptive morphological filtering and 

fusion. By this method, the adaptive structural elements of 

each pixel in the original image could be constructed, without 

any mixed noise, resulting in a good spatial structure. 

Legaz-Aparicio [17] proposed an adaptive morphological 

close operation, which uses the inertia tensor to estimate the 

geometric features of the local structure of the image, and then 

constructs the structural elements by these geometric features. 

Sun et al. [18] proposed the concept of similarity weight by 

graph space, defined adaptive structural elements, and created 

an adaptive morphological operator. 

 

 

3. LOGARITHMIC ENHANCEMENT BASED ON 

ADAPTIVE MORPHOLOGY 

 

The enhancement of remote sensing images serves two 

purposes: improving the overall vision of the original image, 

and highlighting the targets in the ROIs. Image enhancement 

is critical to the effective utilization of remote sensing images 

on water bodies. These images often have low contrast, due to 

the presence of many non-water areas with complex shapes. 

The low contrast hinders the subsequent segmentation and 

analysis of water areas. 

For the following reason, this paper constructs adaptive 

elliptical structural elements (ESEs) by linear structure tensor: 

an ESE, shaped between a straight line and a circle, can adapt 

to the target edge as much as possible, and maintain the spatial 

structure of water edge. Since the adaptive morphology can 

effectively filter out the noises outside the target, the authors 

designed a logarithmic enhancement method based on 

adaptive morphology, thereby enhancing the water bodies and 

suppressing the noises. 

 

3.1 Logarithmic enhancement method 

 

The common image enhancement methods are generally 

based on spatial domain or frequency domain. The spatial 

domain-based methods process image pixels directly, 

including histogram equalization, logarithmic transform, and 

spatial filtering. 

Histogram equalization automatically adjusts image 

contrast through gray transform. The gray histogram of the 

original image is stretched nonlinearly to expand the dynamic 

range of gray values of image pixels, making them obey 

uniform distribution. Let ℎ(𝑟) be the gray histogram of the 

original image, and [0, 𝑆 − 1] be the range of gray values. 

Then, the total number of pixels of the original image can be 

expressed as: 

 

𝑃𝑁 = ∫ ℎ(𝑟)𝑑𝑟
𝑆−1

0

 (1) 

 

where, 𝑟 is the gray value of the original image. 

The probability density function 𝑝(𝑟) and the probability 

distribution function 𝑃(𝑟) can be respectively defined as: 

 

𝑝(𝑟) = ℎ(𝑟) 𝑃𝑁⁄  (2) 

 

𝑃(𝑟) = 1 𝑃𝑁⁄ ∫ ℎ(𝑟)𝑑𝑟
𝑆−1

0

 (3) 

 

Since the total number of pixels 𝑃𝑁  of the original image 

equals the number of pixels 𝑃𝑁
′  of the equalized image, we 

have: 

 

ℎ(𝑡)𝑑𝑡 = ℎ(𝑟)𝑑𝑟 (4) 

 

where, 𝑠  is the gray value of the equalized image; ℎ(𝑡)  is 

histogram of the equalized image. 

The derivative of the histogram equalization transform 𝑇(𝑟) 

can be defined as: 

 

𝑇′(𝑟) = 𝑑𝑡 𝑑𝑟⁄ = ℎ(𝑡) ℎ(𝑟)⁄  (5) 

 

If 𝑇′(𝑟) = (𝐶 𝑃𝑁⁄ )ℎ(𝑟) , then 𝐶  is a constant, and ℎ(𝑡) 

must also be a constant. 

Therefore, the histogram equalization transform 𝑇(𝑟) can 

be defined as: 

 

𝑇(𝑟) = 𝐶 𝑃𝑁⁄ ∫ ℎ(𝑟)𝑑𝑟
𝑆−1

0

= 𝐶𝑃(𝑟) (6) 

 

The logarithmic curve is gentler than the straight line in an 

area with small pixel value, and steeper than the latter in an 

area with large pixel value. Thus, the nonlinear transform by 

logarithmic function can increase the gray value of dark areas 

and reduce that of bright areas. The logarithmic transform can 

be defined as: 
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𝑔𝑠 = 𝑐𝑙𝑜𝑔𝑠𝑐+1(1 + 𝑠𝑐 × 𝑟) (7) 

 

where, 𝑐 is a constant; 𝑟 is the gray value of the original image; 

𝑔𝑠 is the gray value after logarithmic transform; 𝑠𝑐 is the scale 

coefficient. 

The above common methods for image enhancement 

feature are fast in calculation, and capable of highlighting 

target edges and suppressing noises. However, there are many 

non-target areas with complex surface features in the remote 

sensing images on water bodies. It is impossible for the 

common methods to filter out the noises and enhance the water 

bodies simultaneously. Thus, this paper proposes a 

logarithmic enhancement method for these images based on 

adaptive ESEs (Figure 1). 

 

 
 

Figure 1. The flow chart of the logarithmic enhancement method based on adaptive ESEs 

 

As shown in Figure 1, A linear structured tensor matrix was 

established for the original image, and used to construct the 

ESEs. Then, adaptive morphological dilation and erosion were 

defined, and adaptive morphological opening and closing 

operations were implemented to calculate the image 

enhancement threshold. Finally, the remote sensing image was 

enhanced through the logarithmic enhancement of dilation and 

erosion structures. 

 

3.2 Morphological operation of adaptive ESEs 

 

The fixed structural element could easily produce new 

artificial target, alter the position of target edges, destroy the 

boundary of the transition zone between the original targets, 

and lose track of small targets in morphological operation. 

Hence, the ESE 𝐸𝑒𝑠(𝑎, 𝑏, 𝜑) was designed based on the linear 

structure tensor (Figure 2). 

 

 
 

Figure 2. The ESE 

 
Note: 𝑎 and 𝑏 are the major axis and minor axis semi-diameters of the ellipse, 

respectively; 𝜑 is the angle between the minor axis semi-diameter and the x-

axis of the ellipse. 

 

The adaptive morphological dilation and erosion follows 

roughly the same principle as classical morphology. The only 

difference is that the structural elements of adaptive 

morphological dilation and erosion can adapt their size and 

shape to the image, while those of classical morphology have 

fixed size and shape. 

During adaptive morphological erosion, the shape and 

direction of the ESEs changed with the image features, and the 

minimum pixel values was taken in the ESEs. Contrary to the 

erosion, adaptive morphological dilation chose the maximum 

pixel values in the ESEs. The ESEs of the adaptive 

morphological erosion 𝐸𝑜 and dilation 𝐷𝑜 can be respectively 

defined as: 

 

𝐸𝑜(𝑔) = ⋀(𝑖,𝑗)∈𝐸  𝑔(𝑖, 𝑗)    ∀𝐸 ∈ 𝑔 (8) 

 

𝐷𝑜(𝑔) = ⋁(𝑖,𝑗)∈𝐸  𝑔(𝑖, 𝑗)    ∀𝐸 ∈ 𝑔 (9) 

 

where, 𝐸 is an ESE; 𝑔 is the pixel value of the original image; 
(𝑖, 𝑗)  is a pixel; ⋀  and ⋁  are the minimization and 

maximization of the pixel value in domain 𝐸, respectively. 

The opening operation 𝜃 and the closing operation 𝜌 are the 

combination of erosion 𝐸𝑜  and dilation 𝐷𝑜 . Morphological 

adaptive opening and closing operations can be respectively 

defined as: 

 

𝜃(𝑔) = (𝑔 ∘ 𝐸) (10) 

 

𝜌(𝑔) = (𝑔 ⊚ 𝐸) (11) 

 

where, ∘ and ⊚ are indicators of morphological opening and 

closing operations, respectively. 

In remote sensing images of water bodies, water, trees and 

building shadows have similar gray values. Under force 

majeure, these images tend to have a low contrast, contain lots 

of noises, and face many adverse factors. These have a major 

impact on the quality of water body segmentation. The noises, 

such as the shadows of trees and buildings, could be eliminated 

through adaptive morphological operation, thereby retaining 

the edges of water bodies. 

The threshold 𝜏 = (𝜃 + 𝜌) 2⁄  of image enhancement was 

calculated by opening and closing operations. Then, the pixel 

value of the original image 𝑔 was compared with the threshold 

𝜏. The original image was enhanced through erosion, if the 

pixel value was smaller than the threshold, and enhanced 

through dilation, if otherwise. Therefore, the logarithmic 

enhancement formula can be defined as: 

 

𝜉(𝑔) = {
𝑘𝑙𝑔(𝑔 + 1) + 𝜃(𝑔)            𝑔 < 𝜏

𝑘𝑙𝑔(𝑔 + 1) + 𝜌(𝑔)   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (12) 

 

where, 𝑘 = (255 − 𝜏) 𝑙𝑔256⁄ . 

Compared with the traditional logarithmic enhancement (7), 

the proposed method introduces the idea of self-adaptation. 
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The constant 𝑐 in formula (7) was replaced by the parameter 

𝑘, which is related to the opening and closing operations of 

adaptive ESEs. Based on the results of adaptive dilation and 

erosion, the water bodies could be enhanced without 

sacrificing the edges of water bodies, while eliminating the 

noises outside the water bodies. 

 

 

4. ESES-BASED IMAGE SEGMENTATION 

 

Image segmentation aims to splits an image into multiple 

regions with certain features, and extract the ROIs from them. 

The popular image segmentation methods are grounded on 

threshold, edge, or region. 

Threshold-based segmentation uses one or several 

thresholds to divide the gray histogram of an image into one 

or several classes. The pixels in the same gray range are treated 

as belonging in the same target region. The threshold 

segmentation can be defined as: 

 

𝑔′(𝑥, 𝑦) = {
1    𝑔(𝑥, 𝑦) ≥ 𝑇
0    𝑔(𝑥, 𝑦) < 𝑇

 (13) 

 

where, 𝑇  is the threshold; 𝑔′(𝑥, 𝑦)  is a segmented image; 

𝑔(𝑥, 𝑦) is the original image. 

The threshold could be selected excellently by maximizing 

interclass variance. Let 𝑠 × 𝑡 be the number of pixels in the 

original image 𝑔(𝑥, 𝑦), 𝑇  be the initial threshold, 𝑛1  be the 

number of original image pixels whose value is smaller than 

the threshold, and 𝑛2 be the number of original image pixels 

whose value is greater than the threshold. Then, the interclass 

variance can be expressed as: 

 

𝑣𝑔 = 𝑤0(𝑢0 − 𝑢)2 + 𝑤1(𝑢1 − 𝑢)2 (14) 

 

where, 𝑢 is the mean gray value of original image; 𝑤0 is the 

proportion of the number of original image pixels whose value 

is smaller than the threshold; 𝑤1  is the proportion of the 

number of original image pixels whose value is greater than 

the threshold; 𝑢1  is the mean gray value of original image 

pixels whose value is greater than the threshold 𝑇: 

 

𝑤0 = 𝑛1 𝑠 × 𝑡⁄  (15) 

 

𝑤1 = 𝑛2 𝑠 × 𝑡⁄  (16) 

 

𝑛1 + 𝑛2 = 𝑠 × 𝑡 (17) 

 

𝑢 = 𝑤0𝑢0 + 𝑤1𝑢1 (18) 

 

The gray value of each pixel in the original image was 

compared with the initial threshold 𝑇. The best threshold was 

determined as the 𝑇  value that maximizes the interclass 

variance, i.e., the difference between foreground and 

background. 

Edge-based segmentation often adopts the Laplacian 

operator. Laplacian operator is a second-order differential 

operator. It is an isotropic operator invariant to rotation and 

sensitive to isolated pixels. As a result, the operator is only 

suitable for image edge detection with no or very few noises. 

The Laplacian operator can be defined as: 

 

∇2𝑔 =
𝜕2𝑦

𝜕𝑥2
+

𝜕2𝑔

𝜕𝑦2
 (19) 

The original image 𝑔(𝑥, 𝑦) can be written in discrete form 

as: 

 

∇2𝑔(𝑥, 𝑦) = 𝑔(𝑥 + 1, 𝑦) + 𝑔(𝑥 − 1, 𝑦) 

+𝑔(𝑥, 𝑦 + 1) + 𝑔(𝑥, 𝑦 − 1) − 4𝑔(𝑥, 𝑦) 
(20) 

 

The Laplacian operator can determine the mutation of pixel 

value, using the zero-crossing point between the positive and 

negative peaks of quadratic differential. This is very suitable 

for detecting the image region of isolated point and line, or the 

combination of point and line. 

In general, Laplacian operator needs to be used with a low-

pass filter. This leads to the Laplacian of Gaussian (LoG) 

operator: the original image is smoothed by Gaussian filter, 

and then processed by the Laplacian operator to detect the 

edges. The LoG operator can be defined as: 

 

∇2𝑔(𝑥, 𝑦) = 1 𝜋𝛿2⁄ (𝑥2 + 𝑦2 2𝛿2⁄

− 1)𝑒−(𝑥2+𝑦2) 2𝛿2⁄  
(21) 

 

where, 𝛿 is the standard deviation. 

Region-based segmentation extracts interested objects by 

segmenting regions with different features from the original 

image. The commonly used approaches include region 

growing, and region splitting and merging.  

Region growing selects a series of seed points with different 

regional features, merges the qualified pixels into the seed 

point neighborhoods, repeats the two steps iteratively until no 

qualified pixels could be found. Region growing can segment 

complex images without prior knowledge. However, the 

iterative algorithm consumes a long time, and fails to eliminate 

the noises, which may cause over-segmentation or leave holes 

in the target region. Thus, it is particularly important to 

determine high-quality seed points and growth criteria. 

Region splitting and merging first splits the original image, 

and then merges the segments to achieve the effect of image 

segmentation. Splitting can be regarded as the inverse process 

of region growing, and merging as the region growing of a 

single pixel. Compared with region growing, region splitting 

and merging involve more splitting steps, and achieve better 

segmentation effect on complex images. Of course, the 

superior performance is realized at the expense of complex 

operations and heavy computing load. Besides, the splitting 

process often destroys the image edges. The key of region 

splitting and merging lies in the design of splitting and 

merging criteria. Proper criteria are the premise of accurate 

target segmentation. 

The above three traditional methods face different problems 

in handling remote sensing images on water bodies, owing to 

the complex and noisy features. Threshold-based 

segmentation requires the selection of the best threshold. 

Despite its simplicity and time efficiency, this approach has a 

poor anti-noise performance and a high false segmentation rate. 

In addition to these problem, edge-based detection might 

overlook edge changes and small targets. Region-based 

segmentation could falsely segment or miss the targets with 

uneven gray distribution. 

This paper adopts the morphological operation of adaptive 

ESEs to eliminate the influence of dark detail noises on water 

bodies, and prevent the overstretching of the water bodies. On 

this basis, the water bodies were segmented by gray slice. The 

workflow of the ESEs-based image segmentation is shown in 

Figure 3. 
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Figure 3. The flow chart of image segmentation based on adaptive ESEs 

 

Gray slice mainly targets binary image and gray image. 

Since binary image has only two gray values, the gray slice of 

binary image directly sets the background to 0 or 1, and the 

foreground to 1 or 0. Because the gray range of gray image is 

0-255, the ROIs usually fall in a small gray range. Taking the 

target area as foreground and non-target area as background, 

the gray slice method was adopted to extract the gray value of 

the foreground. 

Firstly, the gray histogram of the original image was 

calculated. Then, the target gray value area was determined by 

the gray change law of the histogram. Finally, the gray value 

of non-target area was set to 0 or 255, and the gray value of 

the target area was retained or set to 255 or 0 corresponding. 

If the image contains multiple gray target areas, the gray slice 

could use multiple gray parameters to improve the 

segmentation and extraction effect. The grayscale slice can be 

defined as: 

 

ℎ𝑔 = {

255        0 < 𝑔(𝑥, 𝑦) ≤ 𝑎
0             𝑎 < 𝑔(𝑥, 𝑦) ≤ 𝑏

255    𝑏 < 𝑔(𝑥, 𝑦) ≤ 255
 (22) 

 

where, 𝑎  and 𝑏  are the foreground and background gray 

parameters of the original image, respectively; ℎ𝑔 is the image 

histogram after grayscale slice. 

The grayscale slice can be represented by a coordinate graph 

as Figure 4. 

 

 
 

Figure 4. The gray slice function 

 

 

5. EXPERIMENT AND RESULTS ANALYSIS  

 

MATLAB experiments were conducted to verify the effects 

of the proposed logarithmic enhancement method on remote 

sensing images of water bodies in terms of edge preservation, 

denoising, and water body enhancement. The experimental 

results of different image enhancement methods are shown in 

Figure 5. 

 

 
(a) Original image 

 
(b) Image after histogram equalization 

 
(c) Image after logarithmic enhancement based on circular 

structural elements 
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(d) Image after the proposed logarithmic enhancement 

method 
 

Figure 5. The experimental results on different image 

enhancement methods 

 

As shown in Figure 5, the pixels of the water body were not 

smooth enough in the image output by histogram equalization; 

the logarithmic enhancement based on circular structural 

elements amplified the noise area in the water body, due to the 

single shape of these elements; the lack of shape diversity 

changes the edge contour of the small noise in the water body, 

and distorts the edge of the water body. By contrast, our 

method eliminated the external noises, highlighted the water 

body, and preserved the edges of the water body excellently. 

Next, the performance of our method were measured by 

contrast and information entropy [19]. Table 1 compares the 

contrast and information entropy of the image enhanced by 

different methods. It can be seen that our method achieved the 

experimental purpose well. 

Finally, the number of pixels in the image segmented by 

each method was counted to compute the image segmentation 

error 𝐸𝑠: 

 

𝐸𝑠 = |𝑆𝑁 − 𝑆𝑁0| 𝑆𝑁0⁄  (23) 

 

Table 1. The contrast and information entropy of the image 

enhanced by different methods 

 

 
Histogram 

equalization 

Logarithmic 

enhancement based 

on circular 

structural elements 

Our 

method 

Contrast 718.62 618.57 112.68 

Information 

entropy 
5.71 6.65 9.73 

 

Table 2. The image segmentation errors of different methods 

 
Logarithmic 

enhancement 

based on 

circular 

structural 

element 

Logarithmic 

enhancement 

based on angle 

adaptive linear 

structural 

elements 

Multi-point 

region 

growing 

based on 

morphologi

cal filtering 

Our 

method 

5.66 3.46 5.32 1.17 

 

where, 𝑆𝑁 is the number of pixels of the segmented image; 

𝑆𝑁0  is the number of pixels of manually segmented image. 

Then, the image segmentation errors of different methods, 

including but not limited to logarithmic enhancement based on 

circular structural elements, that based on angle adaptive linear 

structural elements, multi-point region growing based on 

morphological filtering, are compared in Table 2. The mean 

segmentation error of our method was less than 1.32%, smaller 

than that of any other method. 

 

 

6. CONCLUSIONS 
 

This paper introduces the morphological operation of 

adaptive ESEs to enhance the remote sensing images on water 

bodies. Experimental results show that, compared with the 

traditional method for adaptive morphological enhancement, 

our method filtered out the noises outside the target, enhanced 

the water body, and preserved the position and shape of the 

target edges. In addition, the authors developed an image 

segmentation algorithm for the said images based on the self-

designed adaptive morphological ESEs, and the adaptive 

morphological closing operation. The proposed method 

eliminates the influence of dark detail noise on the water body, 

and prevents the over-stretching of water body edges, thereby 

accurately maintaining the edges of the water body. 
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