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In recent decades, automatic diagnosis using machine-learning techniques have been the 

focus of research. Mycobacterium Tuberculosis (TB) is a deadly disease that has plagued 

most developing countries presents a problem that can be tackled by automatic diagnosis. 

The World Health Organization (WHO) set years 2030 and 2035 as milestones for a 

significant reduction in new infections and deaths although lack of well-trained 

professionals and insufficient or fragile public health systems (in developing countries) are 

just some of the major factors that have slowed the eradication of the TB endemic. Deep 

convolutional neural networks (DCNNs) have demonstrated remarkable results across 

problem domains dealing with grid-like data (i.e., images and videos). Traditionally, a 

methodology for detecting TB is through radiology combined with previous success DCNN 

have achieved in image classification makes them the perfect candidate to classify Chest X-

Ray (CXR) images. In this study, we propose three types of DCNN trained using two public 

datasets and another new set which we collected from Konya Education and Research 

Hospital, Konya, Turkey. Also, the DCNN architectures were integrated with an extra layer 

called Spatial Pyramid Pooling (SPP) a methodology that equips convolutional neural 

networks with the ability for robust feature pooling by using spatial bins. The result indicates 

the potential for an automated system to diagnose tuberculosis with accuracies above a 

radiologist professional. 

Keywords: 

automated diagnosis, deep convolutional 

neural networks, image classification, 

spatial pyramid pooling, tuberculosis 

1. INTRODUCTION

Tuberculosis (TB) is a deadly endemic that ranks as one of 

the deadliest diseases in the world. TB caused by a pathogen 

called Mycobacterium tuberculosis commonly victimizes 

people in developing countries [1]. The deadliness of TB is 

reflected in the estimate provided by the World Health 

Organization (WHO) that found 1.3 million Human 

Immunodeficiency Virus (HIV)-negative people fell victim 

together with an additional 300 thousand HIV-positive people 

in just the year 2017 alone [1]. Efforts to reduce the number of 

people infected by TB are increasing, however, the lack of 

expert clinical care in developing countries reduces the 

effectiveness of these attempts. The existence of various types 

of TB medically requires different strategies in diagnosis and 

treatment. Pulmonary Tuberculosis, given an International 

Classification of Disease (ICD) of A15.0 is the most common 

type and the primary concern of this paper. This type mostly 

affects the chest cavity more especially the lungs, which in 

most cases results in prolonged coughing, chest pains, fatigue, 

and fever among the many symptoms associated with this type 

of TB. As stipulated by the WHO, people living with HIV are 

more likely to contract TB due to negative effects HIV has on 

the body’s immune system [1]. The rise of deep learning 

technologies has increased relative to the advancement of 

computer hardware and software. In recent decades, the 

increase in computational power of Graphical Processing 

Units (GPU), as well as Computer Processing Units (CPU), 

has massively propelled research in computer vision, natural 

language processing and voice recognition [2, 3]. The 

influence of deep learning has led into creating innovative 

solutions that perform tasks at the same competence as a 

human being. Deep learning methodologies go a step further 

than conventional machine learning algorithms, usually by 

adding more layers as well as a combination of different 

methods. However, convolutional neural networks (CNNs) are 

the most suited for problems that involve images and videos 

[2, 4]. In line with the attempts by the WHO to completely 

eradicate TB by the year 2030, computer aided diagnosis is 

one of the methods that is helping achieve this goal.  

In this study, we present a methodology that utilizes the 

DCNN in classifying TB affected patients using Chest X-Rays 

(CXR) one of the most common methods employed in 

radiology. This study aims to produce results with higher 

accuracy than other CNN models and traditional machine 

learning methods by using DCNN models with SPP technique. 

CXRs are a result of a controlled dose of ionization that assists 

in creating snapshots of internal body organs in the chest i.e., 

the lungs and heart. 

2. RELATED WORK

CXRs provide one of the most common ways to diagnose 
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TB however; this usually requires a trained expert to be able 

read correctly. It is worth noting that in this paper an accuracy 

of 84% was obtained from a trained expert on a portion of the 

data used. Attempts by machine learning algorithms to classify 

CXR have produced promising results with algorithms like 

Support Vector Machines (SVM) performing considerably 

well. In this particular instance, data was segmented using 

graph cut algorithm before finally feeding the features into 

SVM [5]. A combination of clinical data together with X-ray 

based computer-aided detection attempt produced remarkable 

results given in terms of operating characteristic curve of (0.84, 

0.74, 0.72) [6]. By experimenting on a patient database 

containing about 392 patients, the researchers first extracted 

clinical information related to every patient and their 

associated CXR. The CXRs features using CAD, the best 

features are ranked and subsequently given to a multiple 

learner fusion reads the CXRs that performs classification [6]. 

Similarly, a comparison study between CAD4TB (computer-

aided diagnosis for TB) against clinical officers is done in 

Lusaka, Zambia one of the countries that have a large number 

of TB victims [7]. The study is drawing its results from 161 

subjects where CAD4TB computes an abnormality score 

between 0 and 100. Four clinical officers also scored the 161 

subjects [7]. Among the available 161 patients, 97 were 

positive for bacterial TB as well 120 patients had abnormal 

CXR. This study points out that CAD4TB system obtained 

compared results to a trained clinical officer by scoring an 

AUC of 0.73 which is in the range of 0.65-0.75 as scored by 

the clinical officers [7]. Further in the realm of machine 

learning, automatic TB screening achieved by using a Support 

Vector Machine (SVM) as a classifier on a public dataset from 

Shenzhen Hospital, China [8] and Montgomery County (MC), 

USA [8, 9]. Firstly, the lungs segmented by a common method 

called Graph Cut Based where the results of the segmentation 

go through feature computation and finally classification by 

SVM [6]. Similar to the goal of automatic TB diagnosis, CNN 

is in detecting TB bacilli from microscopic sputum smear 

images. This approach achieves 86.76% F-Score [10]. 

Used CNNs in several researches have shown remarkable 

performance on grid-like data including images and videos. 

An advantage of using CNNs is that they require no feature 

extraction as well as the ability to be transferrable through 

weights makes CNN the perfect algorithm to approach the 

problem of automatic tuberculosis from CXRs [4]. A recently 

published report by Lakhani and Sundaram [11] Radiological 

Society of North America (RSNA) confirms the potential of 

DCNN in the classifying CXRs. They present two DCNN 

architectures; AlexNet, GoogLeNet, both pre-trained on 

ImageNet and trained models on a public TB dataset. They 

also selected the best performing models were used to create 

ensembles [11]. Their results are remarkable achieving 99% 

accuracy with an expert radiologist augmentation [11]. 

Increased computation capacity both mobile and remotely 

provide the best opportunity to speed up TB diagnosis in areas 

where medical health resources are scant [12]. With mobile 

computing in Healthcare (m-Health) as the core motivation, a 

DCNN is deployed at an endpoint where TB diagnosis 

requests are processed [12]. This approach has the capacity 

that can greatly assist the effort in poor resource areas in 

speeding the chest radiography more especially about TB. It is 

worth mentioning that contrary to our approach, other methods 

exist that can be used to automatically diagnose TB. One such 

method uses CNN to detect tuberculosis bacilli from 22 

microscopic sputum smear images. By using a CNN 

architecture comprised of 2 convolutional layers with filters of 

32 (3 x 3), 3 convolutional layers with 128 (3 x 3) and 1 

convolutional layer with 128 filters, they were able to achieve 

0.9713, 0.784, 0.8676 recall, precision and F-score 

respectively [10]. Another more recently research approaches 

this problem by utilizing a pre-trained AlexNet architecture on 

a total 10,848 CXR obtained from the Korean Institute of 

Tuberculosis (KIT), 138 National Institutes of Health (NIH), 

USA and 662 images from Shenzhen No 3 People's Hospital, 

China. AlexNet is a famous DCNN architecture that achieved 

great renown in the 2012 ImageNet Large Scale Visual 

Recognition Competition (ILSVR). Using this architecture, 

the research presents an AUC of 0.964, 0.88, and 0.93 on KIT, 

NIH and Shenzhen datasets respectively [13]. 

Spatial Pyramid Pooling (SPP) was developed to offset the 

requirement of feeding fixed length data into CNN, enforced 

by the fully connected layer to perform classification. SPP sit 

before the convolutional layers and fully connected layer 

where they compute aggregations of data and pool features 

into a singular size consequently relegating the need to 

transform into a fixed size. This equips CNNs with the ability 

to take input of variable sizes. Beyond this ability, SPP equips 

CNN architectures with the ability to access convolved 

features of different scales that in turn help in image 

classification [14]. Substantial experiments with SPP were 

done by Zhu et al. [15], in their research they propose a text 

descriptor for scene text detection CNN model which is 

equipped with SPP. Their experiments were conducted on 

ICDAR 2011 and 2013 datasets without any cropping and 

warping to allow training of the model using different image 

scales. Their proposed descriptor model saw about 2% 

increase in F-Measure than other relevant studies [15]. Multi-

scale SPP with DCNN has also been used in vehicle detection 

from high-resolution images. The dataset that has been trained 

is neither cropped nor warped nor stretched but rather features 

from images of varying scales are extracted adding to the 

robustness of the DCNN model [16]. DCNN with SPP 

achieved better than a normal DCNN as well as other 

conventional algorithms. When RR is given as 95%, the 

detection accuracy was 92.9% compared to a general DCNN 

which only achieves 80.5% and the FAR is at 19.8% [16]. Han 

et al. [17] use SPP with a pre-trained AlexNet on high spatial 

resolution (HSR) remote sensing image dataset. Regardless of 

SPP’s ability to train on variable image scales, all the images 

from USGS National Map Urban Area Imagery collection, 

Google image dataset of SIRI-WHU, WHU-RS dataset, were 

resized to 227x227. The results show that pre-trained AlexNet 

with SPP achieved 95.95 ± 1.01% accuracy higher than a 

general pre-trained AlexNet [17]. 

In this paper, we equip three DCNN architectures namely: 

AlexNet, GoogLeNet and ResNet50 with SPP. For simplicity, 

the suffix ‘SPP’ will serve as an identifier for architectures 

using SPP. 

 

 

3. PROPOSED METHOD 

 

In this paper, we propose using Spatial Pyramid Pooling 

(SPP) to increase the performance of CNN in accurately 

classifying Tuberculosis CXR. Spatial Pyramid Pooling (SPP) 

is a methodology proposed by He et al. [14] in 2015 to 

eliminate the requirement of a fixed input image size [14]. 

Commonly, CNN architecture input layers are designed to 

allow a fixed input image size mainly because of the fully 
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connected layers. The convolutional layers in CNNs have the 

ability to generate feature maps of any image of any size. Fully 

connected layers require finite definition of the resulting 

feature sizes. It is with this in mind that CNN architectures are 

set with an input size constraint to allow correct calculation of 

features for classification. Currently, this approach has 

produced remarkable results all the same on different data sets 

like ImageNet, COCO dataset, CIFAR and many more. The 

limitation of this approach is that, when dealing with datasets 

that have varying sizes may result in loss of key features for 

classification. Ideally, when using SPP, the convolutional 

layers are not changed, they still retain their configure kernel 

sizes but they setup to accept input of different sizes. Since 

convolutional layers will still extract features regardless of the 

size, the features will be extracted from the images.  

To satisfy the need of definite features size in fully 

connected layers, the last pooling layer or convolutional layer 

before fully connected layer is replaced with spatial pyramid 

pooling layer. Figure 1, shows an example implementation of 

AlexNet with SPP. Similarly, other models we have are 

designed as such. This layer, pools all extracted features of 

each filter in spatial bins of different sizes proportional to the 

input image size [18]. This process is synonymous with bag of 

words model, where features are grouped based on their filters 

from finer to coarser levels of the image. The ability to train 

models without pre-setting a fixed length, multi-level pooling 

windows allow for more robust features of the image to be 

pooled for object perception and finally, the ability to pool 

features at different scales are some of the advantages of 

equipping CNN with an SPP layer. For instance, the final layer 

of a CNN has 256 feature maps, the subsequent SPP layer of 

(1 x 2 x 4) spatial bins will pool each feature map based on the 

different bins. All models that have an implementation of SPP 

are suffixed with SPP, i.e., AlexNet-SPP. By leveraging on 

existing models that have been successful on different 

classification problems we used three main CNN architectures. 

AlexNet, GoogLeNet and ResNet50.  

As previously, discussed SPP is applied between the final 

layer of the CNN architecture and the beginning of the fully 

connected layer. Figure 2 below is a representation of how SPP 

was applied in this paper. 

 

 
 

Figure 1. Implementation of SPP on CNN architecture (AlexNet) 
 

 
 

Figure 2. General overview of the methodology used 

3.1 Image pre-processing 

 

The same pre-processing pipeline was used on each separate 

dataset. For effective training, image pre-processing 

encompasses the methodology that involves shaping and 

transforming data into manageable patches for training. Our 

datasets comprise of medical volume data. All the datasets 

except KERH dataset were obtained in PNG format. For 

KERH dataset conversion from DICOM to PNG was required. 

All the images go through several pre-processing 

techniques. The first is resizing to 256 x 256 dimensions. We 

randomly crop each of the 256 x 256 patches to 227 x 227 and 

224 x 224. 227 x 227 patches were used on the AlexNet model 

and the other on the other models. The final step of the pre-

processing step involves converting each of the 224 x 224 and 

227 x 227 patches into greyscale. This is done deliberately to 

allow image enhancement.  

 

3.2 Image enhancement 

 

After pre-processing, all the images are enhanced using 

Contrast Limited Adaptive Histogram Equalisation Eq. (1). 

Contrast limited adaptive equalization is a modified part of 

adaptive histogram equalization. In this method enhancement 

function is applied over all neighbouring pixels and 

transformation function is derived. In this paper, the algorithm 

is applied on the foreground and limit the noise, enhance the 

contrast of the CXR images [19]. This process is the 

adjustment of intensity which is globally distributed across the 
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image. If we consider any greyscale image (𝑥) , 𝑛𝑖  be the 

number of occurrences of grey level 𝑖  and a probability 

function of occurrence of a pixel of level 𝑖 in image (𝑥) is: 

 

𝑝𝑥(𝑖) = 𝑝 (𝑥 = 𝑖) =  
𝑛𝑖

𝑛
, 0 ≤ 𝑖 < 𝐿 (1) 

 

After enhancement of all the images, we finally convert 

each of the images back to RGB colour.  

 

3.3 Data augmentation 

 

Deep learning algorithms try to solve the problem of 

generalization given data. To be able to effectively generalize, 

they require a plethora of data presenting features related to 

different classes adequately [20]. Even if enough data is 

present, a model can easily overfit if it is given too many easy 

examples. In most case augmentation is performed for two 

reasons. The first being to compliment the model so it does not 

overfit. The second to multiply the dataset in cases where the 

data is not enough this is the result of the idea that adding more 

variant data to a deep learning model will improve the 

performance. Data augmentation involves going through 

geometric transformations like rotations, random cropping, 

random resizing, mirroring, changing colour, contrast, and 

sometimes even adding noise. 

Data augmentation can be categorised into three main 

techniques; traditional image transformations (basic image 

manipulations), generative adversarial networks (GAN) and 

learning augmentations. Image manipulation augmentation, is 

the most basic type of augmentation that primarily involves 

changing the size, orientation or shape of the image. Flipping 

(horizontal or vertical), changing the colour channel, cropping 

which involves selecting a patch of a specific dimension from 

an image, rotations, translations are just some of the 

techniques under this augmentation techniques [21, 22]. GAN 

based augmentation, involve a model creating an artificial 

instance from the data whilst retain key characteristics 

(features). Implementation of GAN models have resulted in 

great success in classification models because of adversarial 

training that assist in accurately getting important features 

from the dataset. Finally, learning techniques for data 

augmentation involve feeding a network with two images from 

the same where a layer is returned with same size as a single 

image. The resulting layer is considered as separate image. 

Together with the original image are then used in another 

network for classification. In this study we only apply image 

manipulation augmentation techniques. 

 

3.4 Feature extraction 

 

Features are extracted automatically by leveraging popular 

architectures like AlexNet architecture that won the 2012 

ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC-2012), proposed by Krizhevsky et al. [23]. It 

consists of 5 convolutional layers that connect to the pooling 

layers before finally joining to 2 fully connected layers both 

have 4096 neurons and an output layer with Softmax 

activation. Local response normalization (LRN) is used to 

assist in model generalization and reduce the top-1 and top-5 

error rate. AlexNet uses rectified linear unit (ReLU) in its 

convolutional layers this alone increases the speed of training 

compared to other activations functions like tanh [24]. 

Similarly, we use GoogLeNet and ResNet50 in the same way. 

GoogLeNet’s architecture consists of 22 layers which are way 

higher than AlexNet, making it a very deep architecture. The 

fix input size of this architecture is 224 x 224 and uses ReLU 

activation to create non-linearity similar to AlexNet [25]. The 

architecture design aims to replicate how a human 

neurological system functions by finding the optimal local 

sparse structure of convolutional networks. Because of this, 

this architecture does not follow standard CNN design where 

convolutional layers followed by normalization and max-

pooling rather a string of inception modules contribute to filter 

learning and dimensionality reduction. One of the key features 

of GoogLeNet is the introduction of Inception Layers, which 

reinforces the concept of sparsely connected architecture. An 

Inception layer is an amalgamation of several convolutional 

layers with different kernel sizes. 

Residual Network architecture, aptly acronymized as 

ResNet, won the ILSVRC 2015. It is an ultra-deep neural 

network designed by He et al. [14] which aims to solve the 

vanishing gradient problem [26]. With 152 layers, this 

architecture was able to achieve 3.57% error on ImageNet test 

set and subsequently achieved a 28% improvement on COCO 

object detection dataset. When training deep networks, the 

accuracy of the model saturates and is then followed by a quick 

degradation. Thus, adding mode layers to network 

consequently results in higher training layer. He et al. [14] 

propose a method for training an ultra-deep neural network by 

introducing residual learning. 
 

3.5 Network architectures 
 

Famous architectures like AlexNet, GoogLeNet and 

ResNet50 have demonstrated remarkable results hence we use 

them together with SPP in this paper. The following are the 

modifications we have performed on each of the networks. 

Figure 1 shows how we implemented SPP on AlexNet as such 

it will not be discussed in this section of the paper. In the case 

of GoogLeNet, it uses Inception modules that reduce 

dimensionality by efficiently computing convolutions in deep 

networks. As such we anchor to this ability provided by 

GoogLeNet and apply SPP layer before classification. The 

same layer was implemented on ResNet50 which consists of 

residual identity blocks as shown in Figure 4. Figure 1, Table 

1 and Table 2 show the resulting feature map after apply SPP 

layer on AlexNet and GoogLeNet respectively. Details of 

Inception block are given in Figure 3. 
 

Table 1. GoogleNet (InceptionV1) architecture 
 

Layer / Stride Repeat Output Size 

Input   224 x 224 x 3 

Conv(7x7)/2 1 112 x 112 x 64 

MaxPool(3x3)/2 1 56 x 56 x 64 

Conv(3x3)/1 1 28 x 28 x 192 

MaxPool(3x3)/2 1 28 x 28 x 192 

Inception1 1 28 x 28 x 256 

Inception2 1 28 x 28 x 480 

MaxPool (3x3)/2 1 14 x 14 x 480 

Inception3  3 14 x 14 x 512 

Inception4 1 14 x 14 x 528 

Inception5 1 14 x 14 x 832 

MaxPool(3x3)/2 1 7 x 7 x 832 

Inception6 1 7 x 7 x 832 

Inception7 1 7 x 7 x 1024 

AveragePool(7x7)/1 1 1 x 1 x 1024 

Dropout (40%) 1 1 x 1 x 1024 

Spatial Pyramid Pool(1x2x3x6) 1 1 x 51200 

Softmax 1 2 
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Figure 3. GoogLeNet’s inception block representation 

 

 
 

Figure 4. Residual identity block 

 

Table 2. ResNet 50 architecture 

 
Layer/Stride Repeat Output size 

Input  224 x 224 x 3 

Conv1(7x7)/2 1 112 x 112 x 64 

IndentityBlock1 3 56 x 56 x 256 

IndentityBlock2 4 28 x 28 x 512 

IndentityBlock3 6 14 x 14 x 1024 

IndentityBlock4 3  7 x 7 x 2048 

Spatial Pyramid Pool(1x2x3x6) 1 1 x 102400 

Softmax 1 2 

 

 

4. EXPERIMENTATION 

 

4.1 Datasets 

 

Our experiments were done on three datasets one of which 

we collected ourselves from Konya Education and Research 

Hospital.  

 

4.1.1 Public datasets 

We evaluate the performance of using SPP on DCNN using 

three datasets. It is important to mention that the lack of large 

public datasets is a reason for stagnation on research of this 

kind. Two datasets can be accessed publicly; one being created 

by the National Library of Medicine, Maryland, USA. This 

dataset is a result of collaboration by the Department of Health 

and Human Services, Montgomery, County, Maryland, USA. 

It consists of a total of 138 images depicting the front chest 

area. 80 of the images are classified as normal cases and the 

remaining 58 cases are abnormal (in this case, CXRs with TB). 

Each CXR is exported into the PNG (Portable Network 

Graphics) as 12-bit grayscale images. The resolution of each 

image borders between 4,020×4,892 or 4,892×4,020 pixels [8, 

9]. 

The second dataset is from People’s Hospital, Guangdong 

Medical College, Shenzhen, China. The data from Shenzhen, 

China consists of 336 abnormal (with tuberculosis) and 326 

normal CXRs. A Phillips DR Digital Diagnost system was the 

primary tool used to collect all the images over period of a 

month. This dataset also in the same PNG format, 12-bit 

grayscale as well as having a 3000 X 3000 pixels [8]. 

 

4.1.2 Konya Education Research Hospital (KERH) dataset 

In additional to these two-public datasets, we use a dataset 

obtained from Konya Education Research Hospital, Konya, 

Turkey in collaboration with The Radiography Department. A 

Samsung DR Digital Diagnost system was used to collect all 

the images, each with a 4000X4000 pixels resolution. Samples 

were collected using an Image Archiving and Communication 

System called PACS (Picture Archiving Communication 

System) that enabled us to collect data in different formats 

including DICOM, JPG, BITMAP and PNG, we extracted all 

images in PNG format as well. Chest radiographs of new 

diagnosed ARB (Acid- Resistant Bacilli) positive (detected in 

sputum sample) tuberculosis patients who have not received 

any treatment before were retrospectively scanned. Collection 

of data was under the supervision of a trained Radiologist 

professional. This set has 206 normal and 159 abnormal CXRs. 

Samples of CXRs from all the datasets can be seen in Table 3. 

All procedures performed in studies involving human 

participants were in accordance with the ethical standards of 

the institutional and/or national research committee and with 

the 1964 Helsinki Declaration and its later amendments or 

comparable ethical standards. The study was approved by the 

Clinical Research Ethics Committee of the Faculty of 

Medicine, Selcuk University, Konya, Turkey (No: 2019/240). 

 

Table 3. Samples of CXR images from each dataset 

 
Montgomery County, 

USA 

Shenzhen, 

China 

Konya, Turkey 

   

 

4.2 Experiment 

 

Three DCNN models were trained using three datasets 

described separately. Each architecture was fitted with a SPP 

layer between the final layer and fully connected layer. Thus, 

models trained using SPP will be annotated with a ‘SPP’ for 

easy identification in the results section. Naturally, given such 

lean datasets, data augmentation techniques can be used to 

reduce overfitting and make the model more robust against 

subtle changes in real world data. Consequently, automatic 

feature extraction of DCNN leaves very little data pre-

processing to be done. For all the datasets, we first resized 

them to 256 x 256 then randomly cropped them to 227 x 227 

and 224 x 224 dimensions for AlexNet, AlexNet-SPP and 
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GoogLeNet, GoogLeNet-SPP, ResNet50, ResNet50-SPP 

respectively. We also horizontally flip and randomly rotate 

image by 90, 180 270 degree angles. This is all done in-

training to converse memory. Contrast Limited Adaptative 

Histogram Equalization (CLAHE) was used to amplify 

contrast of the CXRs. 

The models were trained on an NVdia GeForce RTX 2070 

with a dedicated memory of 8GB. Validation accuracy was 

used as an evaluation metric. All samples were split as 75%-

25% for training and testing. The largest fraction goes to 

training, amounting to 103, 496, 274, and the remaining 35, 

166, 91 were used for validation of the model for dataset 1, 

dataset 2 and dataset 3, respectively. We execute all models 

for 120 epochs with varying learning rate from 0.001 to 

0.00001. We use a batch size of 8, with an SGD for global 

optimisation during networks back-propagation process. 

Multi-level pooling windows were used in all of our models, 

we use about 50 bins which can be denoted as (1 x 1, 2 x 2, 3 

x 3, 6 x 6) [14]. As observed by He et al. [14] multi-level 

enables robust pooling of different features from input images 

[14]. 
 

 

5. RESULTS 
 

In this study, the primary focus is on the classification of 

Tuberculosis from CXRs using Spatial Pyramid Pooling (SPP). 

To achieve this, we fit three DCCN with an SPP layer instead 

of the commonly used Pooling layer in between the last 

convolutional layer and the start of the fully connected layer. 

In presenting our results we also explore and compare results 

from other methodologies that have contributed to similar 

research. Table 4 presents a concise summary of authors, year 

and accuracy achieved of relevant researches.  

One of the earliest researches on CADx was in 2014 by 

Jaeger et al. [5] where a Graph-cut image segmentation 

method was first applied on the CXR. The resulting image was 

classified by Support Vector Machine (SVM) classifier. 0.74, 

0.84 accuracy was achieved on Montgomery and Shenzhen [5]. 

Training Peruvian partners at “Socios en Salud”, Partners in 

Health in Lima, Peru, a largely unbalanced dataset, with 453 

normal CXR from 4701. Liu et al. [27] use fine-tune AlexNet 

and GoogLeNet (using ImageNet weights). AlexNet 

performed better than GoogLeNet with an accuracy of 0.85 

[27]. To overcome, an unbalanced data problem, they perform 

shuffle sampling which significantly increased results on both 

models. Whilst on the same dataset, Cao et al. [28] present 

results with the aim of building a TB diagnostic for m-Heath 

(mobile health, with embodies solutions to assist health 

workers). They use a pre-trained GoogLeNet model, in their 

results the post accuracy of 0.89 after 100,000 iterations [12, 

28]. Becker et al. [29] whilst utilising a commercially available 

deep learning software performed classification on 138 patient 

CXR. Cavity, consolidation, effusion, interstitial changes and 

normal examination are the classes in which the CXRs were 

grouped [29]. They achieved an accuracy of 0.82 on a lean 

dataset. 

Further, a novel stacked generalisation CNN model is used 

by Rajaraman et al. [30] on the National Library of Medicine 

(NLM), National Institutes of Health (NIH) Dataset 1 and 

Dataset 2. The third data set was a private collection of CXRs, 

obtained with the assistance of Indiana University School of 

Medicine and Academic Model Providing Access to 

Healthcare (AMPATH) and a Kenyan NGO, and made 

available CXRs from rural western Kenya as a part of the 

mobile truck-based screening. They used segmentation to 

extract the Region of Interest (ROI). Their methodology 

yielded an accuracy of 0.875, 0.934, 0.733, 0.960 on 

Montgomery, Shenzhen, Kenyan, and Indian dataset 

respectively [30]. In Table 5, we explore the AUC results 

obtained from our experimentations. We perform comparisons 

between architectures with SPP and those not fitted with SPP. 

We also present results obtained from KERH. 

 

Table 4. A summary of the different results from different research papers 
 

Author Method Year Dataset Accuracy 

Jaeger et al. [5] SVM Classifier 2014 Montgomery 0.84 

Lui et al. [27] Pre-trained GoogLeNet 2017 Patners In Health Lima, Peru 0.85 

Cao et al. [28] Pre-trained GoogLeNet 2016 Patners In Health Lima, Peru 0.89 

Hwang et al. [31] Pre-trained AlexNet 2016 Montgomery, Shenzhen 0.88 

Lopes et al. [32] Pre-trained ResNet 2017 Montgomery, Shenzhen 0.83 

Hooda et al. [33] Custom 7-layer CNN 2017 Montgomery, Shenzhen 0.82 

Table 5. Experimental results of models with SPP and 

without SPP on public datasets 

 
Model Dataset Without SPP With SPP 

AlexNet 

Montgomery  

0.94 0.97 

GoogLeNet 0.97 0.97 

ResNet50 0.99 0.97 

AlexNet 

Shenzhen 

0.95 0.95 

GoogLeNet 0.97 0.98 

ResNet50 0.95 0.96 

 

Table 6. Results with SPP and without SPP on KERH 

dataset 

 
Model Dataset Without SPP With SPP 

AlexNet 

KERH 

0.99 0.99 

GoogLeNet 1.0 1.0 

ResNet50 0.98 0.99 

Table 7. Confusion matrix for three models with SPP and 

without SPP on Montgomery dataset 
 

 
Montgomery 

Predicated 

Negative Positive 

A
ct

u
a

l 

AlexNet 
Negative 57 3 

Positive 3 41 
  

AlexNet-SPP 
Negative 58 2 

Positive 1 43 
  

GoogleNet 
Negative 58 2 

Positive 3 43 
  

GoogleNet-SPP 
Negative 57 3 

Positive 0 44 
  

ResNet50 
Negative 60 0 

Positive 1 43 
   

ResNet50-SPP 
Negative 59 1 

Positive 2 42 
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Table 8. Confusion matrix for three models with SPP and 

without SPP on Shenzhen dataset 

 

 Shenzhen 
Predicated 

Negative Positive 

A
ct

u
a

l 

AlexNet 
Negative 234 8 

Positive 15 240 

  

AlexNet-

SPP 

Negative 226 16 

Positive 8 247 

  

GoogleNet 
Negative 228 14 

Positive 2 253 

  

GoogleNet-

SPP 

Negative 238 4 

Positive 7 248 

  

ResNet50 
Negative 229 13 

Positive 10 245 

  

ResNet50-

SPP 

Negative 232 10 

Positive 10 245 

 

Table 9. Confusion Matrix for three models with SPP and 

without SPP on Shenzhen dataset 

 
 

Shenzhen 
Predicated 

Negative Positive 

A
ct

u
a

l 

AlexNet 
Negative 234 8 

Positive 15 240 

  

AlexNet-SPP 
Negative 226 16 

Positive 8 247 

  

GoogleNet 
Negative 228 14 

Positive 2 253 

  

GoogleNet-SPP 
Negative 238 4 

Positive 7 248 

  

ResNet50 
Negative 229 13 

Positive 10 245 

  

ResNet50-SPP 
Negative 232 10 

Positive 10 245 

 

The validation accuracy results in Table 5 shows the 

performance of the models on publicly available datasets. 

Whilst Table 6. Shows validation accuracy results obtained 

from the KERH dataset. Further, Tables 7-10 are confusion 

matrices for untrained AlexNet, AlexNet-SPP GoogLeNet, 

GoogLeNet-SPP, ResNet50, and ResNet50-SPP on all of the 

datasets. 

Further, Table 11-12, present the performance of models 

without SPP and those with SPP on the KERH dataset in terms 

of recall, precision, specificity and F measure. Given the 

following classification results in form of a confusion matrix, 

the recall, precision specificity and F score can be calculated 

using the Eq. (2) through Eq. (5) respectively. 

 

Table 10. Confusion Matrix for three models with SPP and 

without SPP on KERH dataset 

 
 

KERH 
Predicated 

Negative Positive 

A
ct

u
a

l 

AlexNet 
Negative 163 1 

Positive 3 106 

  

AlexNet-SPP 
Negative 163 1 

Positive 3 106 

  

GoogleNet 
Negative 164 0 

Positive 0 109 

  

GoogleNet-SPP 
Negative 164 0 

Positive 0 109 

  

ResNet50 
Negative 164 0 

Positive 6 103 

  

ResNet50-SPP 
Negative 163 1 

Positive 3 106 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (4) 

 

𝐹 𝑆𝑐𝑜𝑟𝑒 =  
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (5) 

 

where, TP, FP, TN, FN represent the true positive, false 

positive, true negative and false negative of a model’s 

prediction respectively. 

Receiver operating characteristic (ROC) curves are used to 

qualify the predictive ability of a binary classifier. Figure 5 

illustrates the roc curves for all the models on all the given 

datasets. The table also displays area under the roc curve score. 

For further insight, the area under the curve of each model on 

each dataset was calculated presented in Figure 5. The 

performance in terms of AUC varies across the datasets, 

however, untrained GoogLeNet and GoogLeNet-SPP on 

average performs very well on all the datasets, GoogLeNet 

achieving 0.98, 0.93, 1.0 on Montgomery, Shenzhen and 

KERH respectively. The SPP version scores and AUC of 0.93, 

0.98 and 1.0 almost similarly save for the Montgomery dataset. 

 

Table 11. Recall, precision, specificity and F measure score of without SPP models on all datasets 
 

Model Dataset Recall Precision Specificity F-Score 

AlexNet  

Montgomery 

0.93 0.93 0.95 0.93 

GoogLeNet 0.97 0.95 0.96 0.96 

ResNet50 0.97 1.0 1.0 0.98 

AlexNet  

Shenzhen 

0.94 0.96 0.96 0.95 

GoogLeNet 0.99 0.94 0.94 0.96 

ResNet50 0.96 0.94 0.94 0.95 

AlexNet  

KERH 

0.97 0.99 0.99 0.98 

GoogLeNet 1.0 1.0 1.0 1.0 

ResNet50 0.94 1.0 1.0 0.97 
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Table 12. Recall, precision, specificity and F measure score of SPP models on all datasets 

 
Model Dataset Recall Precision Specificity F-Score 

AlexNet-SPP  

Montgomery 

0.97 0.95 0.96 0.96 

GoogLeNet-SPP 1.0 0.93 0.95 0.96 

ResNet50-SPP 0.95 0.97 0.98 0.96 

AlexNet-SPP  

Shenzhen 

0.96 0.93 0.93 0.95 

GoogLeNet-SPP 0.97 0.98 0.98 0.97 

ResNet50-SPP 0.96 0.96 0.95 0.96 

AlexNet-SPP KERH 0.97 0.99 0.99 0.98 

GoogLeNet-SPP 1.0 1.0 1.0 1.0 

ResNet50-SPP 0.97 0.99 0.99 0.98 

 

 

 

 

 

 
 

Figure 5. ROC curves for all models 

 

 

6. DISCUSSION AND CONCLUSIONS 

 

This paper introduced how Spatial Pyramid Pooling effects 

on automatic diagnosis on tuberculosis using CXR. Three 

different CNN models (AlexNet, ResNet50 and GoogLeNet) 

were trained from scratch with and without SPP. Spatial 

Pyramid Pooling is a fairly newly introduced methodology and 

has shown remarkable results in detection and classification of 

images. SPP through multi-level pooling facilitates the ability 

to get a more robust combination of features that in turn 

increase accuracy. 

To perform these CNN models, 3 different datasets were 

used in this study. Two of them (Montgomery and Shenzhen) 

are public datasets and they were used to compare the success 

of the proposed models with SSP with other methods in the 

literature. Third dataset (KERH) was obtained from Konya 

Education Research Hospital (Turkey) and presented for the 

first time in this study. 

CNN possess the ability to extract features automatically 

from images with little data preprocessing. The results of our 

models showed a slight increase in the accuracy across all 

models when implemented with SPP. Validation accuracy was 
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used as a metric to determine this improvement. Both the 

validation and training images set artificially increased the 

data by randomly cropping the all-original images 3 times. 

Untrained AlexNet-SPP achieved a significant increase or 

achieved the same validation accuracy on Montgomery, 

Shenzhen, and KERH dataset. Compared to other 

methodologies we have examined in this paper, AlexNet-SPP 

has either matched or slightly outperformed the other models. 

Untrained GoogLeNet and ResNet50 trained on Montgomery 

confirming the hypothesis that even on a dataset trained with 

same size SPP increases the accuracy. Due to a small dataset, 

we can also note the model significantly overfit. To reduce this, 

we performed several augmentation methods as regularisation 

as well dropout except on ResNet50 was used. Training results 

of all the models on KERH’s dataset performed better in 

contrast to the results of models on our two other public 

datasets. AlexNet achieves a remarkable 0.94 without SPP and 

0.95 with SPP. ResNet50 performs similarly to AlexNet with 

0.93 without SPP and 0.94 with SPP. The most outstanding 

result is achieved on untrained GoogLeNet and GoogLeNet-

SPP with 0.97 and 0.98 validation accuracy respectively. 

As observed in this paper, all the models have seen an 

accuracy improvement from the base untrained models. As a 

result, we conclude that CNNs can be equipped with SPP to 

train better thus creating robust models to assist in the 

diagnosis of tuberculosis. For future improvements, we plan 

on using fine-tuning with SPP on a bigger dataset as it has been 

observed that DCNN train better on large datasets. We aim to 

also incorporate different activation methods i.e., using Mish 

and perform comparisons with ReLU. 
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