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Induction motors are an essential component of many applications in industry due to their 

robust and simple construction. Since bearing faults are the most occurred fault type in the 

induction motors, it is important to implement the fault detection procedure at an early stage 

to prevent a sudden interruption of industrial systems. In recent years, deep learning-based 

techniques have become important tools for converting raw data into images and for 

producing high-quality images. However, deep learning-based techniques are still difficult 

to apply in real-time because the techniques require large training data, which slows down 

the learning process. In the present study, we propose a novel bearing faults diagnosis 

method at different operating speeds and load conditions. We obtain the time-frequency (TF) 

representation by applying continuous wavelet analysis to the raw vibration signals. The 

results of TF representation is recorded as an image. We apply co-occurrence Histograms of 

Oriented Gradients (coHOG) to the image to obtain features and classify the features with 

extreme learning machine with a sparse classifier (ELMSRC) to diagnose faults. We 

obtained better results in terms of time and performance compared with the proposed method 

of other classification and deep learning techniques. 
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1. INTRODUCTION

Induction motors are essential components of 

manufacturing systems and account for 80% of the workforce 

in the industry [1]. However, long-term operation and 

exposure to moisture and dust in the working environment 

may provoke faults [2], which may consequently affect the 

system reliability. Bearing faults are the most common type of 

mechanical faults that occurs in induction motors. Early and 

accurate diagnosis of these faults has been a main requirement 

of many industrial systems [3, 4]. 

Generally, fault diagnosis methods are classified into three 

categories: mathematical model, processing of some signals, 

and intelligent methods [5]. Mathematical model-based 

methods detect faults according to the change of certain 

parameters in the model. Intelligent fault diagnosis methods 

are to collect substantial amounts of data to represent each 

fault condition accurately [6]. This method is useful for 

complex systems, especially where it is difficult to construct a 

precise model. In recent years, big data can be acquired from 

any system faster with the development of intelligent 

manufacturing and industry 4.0 [7]. The performance of 

intelligent diagnostic methods for training depends on the 

amount of data; however, this is unsuitable for the detection of 

the unknown conditions [8]. In complex diagnostics problems, 

signal processing techniques such as fast Fourier transform 

and wavelet analysis are used to extract features from a signal 

[9].  

Although signals such as current and temperature are also 

used to detect bearing faults, these faults give better symptoms 

on vibration signals. The sequential and periodic oscillations 

occurred when the bearing component passes through the 

defective point. These oscillations appear as a pattern in 

vibration signals. Time and frequency analysis of vibration 

signals were performed to determine ball, inner, and outer ring 

faults [10-14]. Multiple domain features were obtained from 

vibration signals and the faults occurred on rotating machinery 

were detected [15]. Fast Fourier Transform is the most 

fundamental frequency-based method to detect bearing faults 

[16, 17]. However, in the spectrum obtained by the Fourier 

transform, the frequencies associated with bearing faults are 

difficult to distinguish because of noise. To overcome the 

problems related to the Fast Fourier transform, short time 

Fourier transform (STFT) [18], wavelet and Gabor analysis 

[19, 20], Hilbert transform [21], park vector transformation 

[22], and phase space reconstruction [23] were proposed to 

detect bearing related faults. In contrast with the Fourier 

transform, wavelet analysis inspects the signal in the TF 

domain, effective in detecting inner and outer race faults using 

non-stationary signals. Envelope analysis-based techniques 

have been proposed to improve the fault diagnosis 

performance of frequency-based methods [24]. The envelope 

spectrum is more distinctive compared to the original signal 

spectrum. Using specific preprocessing methods or statistical 

properties from raw data, time domain-based methods are used 

to detect bearing faults signals. An intelligent filter-based 

method for detecting bearing faults is presented [13]. Their 

method learns healthy condition with the aid of the Adaline 

filtering technique. Although the method offers good results in 

inner and outer race faults, it obtains low performance in ball 

faults. The features obtained in TF domain were given to an 

Adaptive Neuro-fuzzy Inference System (ANFIS) system, and 

bearing faults were diagnosed [12]. In recent years, the 

development of deep learning methods has facilitated the 
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applications of the fault diagnosis. The motor bearing 

condition was detected by feeding raw vibration signals to a 

one-dimensional Convolutional Neural Network (CNN) [25]. 

Vibration signal was converted to a two-dimensional matrix, 

and a gray image was obtained and trained with deep learning 

algorithm in order to classify bearing faults [26]. However, 

this method provides no detailed information about the 

frequency of the fault as the signal changes over time. 

In this study, a new method based on TF representation, 

coHOG and sparse classifier is proposed for the diagnosis of 

bearing faults. The features were obtained by applying coHOG 

transform to TF image obtained by continuous wavelet 

analysis. Since the coHOG method represents an image with 

multiple gradient orientations, it obtains more detailed features 

in the image than HOG method. A sparse classifier based on 

extreme learning machine is proposed and the related features 

are selected to improve the classification performance. This 

study provides the following main contributions: 

- Time-Frequency image-based representation of each fault 

condition improves the diagnosis performance. 

- Providing a significant performance increase compared to 

other machine learning methods with the proposed 

classification approach. 

- Achieving a performance close to a complex deep learning 

method like Alexnet. 

- The obtained features are useful to discriminate against the 

motor fault conditions. 

The rest of the paper is organized as follows: Section 2 

discusses the bearing fault diagnosis problem. Section 3 

presents the proposed fault diagnosis method, preprocessing 

of the raw vibration signal via TF image, and overview of the 

feature extraction and classification. In section 4, the 

efficiency of our method is verified using an experimental data. 

Section 5 presents the conclusions. 

 

 

2. BEARING FAULTS IN INDUCTION MOTORS 
 

Bearing components are the most commonly used elements 

in electrical machinery, and these may provoke a fault that 

may lead to a machine breakdown. Bearing faults generally 

occur in the inner race, the outer race, and the rolling ball [27]. 

The vibration signal is the most commonly used signal for the 

bearing faults detection because of a change in the fault. For 

example, when outer race fault occurs, a peek is formed at 

certain intervals, which disturbs the vibration signal. The 

geometry of a ball bearing is shown in Figure 1. 
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Figure 1. Bearing geometry 

 

In Figure 1, the fault in each component causes changes in 

frequency components and frequency spectrum. To calculate 

the location of the frequency components, parameters such as 

shaft speed, ball diameter, and pitch diameter should be known. 

The spectral frequencies for each fault type are calculated as 

follows: 

• The outer race-related ball-pass frequency (BPFO) is 

calculated using (1). 
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where, fr represents the shaft speed in revolutions per second, 

and n is the number of balls. BD and PD parameters indicate 

the ball diameter pitch diameter, respectively. The angle φ 

represents the contact angle, and this parameter is taken as zero 

for ball bearings. 

• The inner race related to ball-pass frequency (BPFI) 

is calculated using (2). 
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• Ball roller spin frequency (BSF) is obtained using (3). 
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The effects of each fault on the vibration signal are different 

from each other, and the condition of the components in the 

bearing is determined by analyzing different frequency 

components. Figure 2 shows the representation of the vibration 

signals according to the faults. 

 

1/BPFO

Outer race fault

1/BPFI

1/BSF

Inner race fault

Ball fault

Vibration signals for outer race defect

Vibration signals for inner race defect

Vibration signals for ball defect
 

 

Figure 2. Typical vibration signals from each fault of the 

rolling element bearing 
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Figure 2 reveals an oscillation at specific frequencies for 

each fault type, used to obtain frequency information related 

to the fault. The main issue is to find the oscillation peak and 

determine the frequency of the fault. For this purpose, the 

envelope analysis is the most known method. Figure 3 shows 

the frequencies related to the inner race fault in the frequency 

spectrum. 

 

 
(a) Calculation of the BPFI frequency 

 
(b) Frequency spectrum of the signal and BPFI frequencies 

 

Figure 3. Demonstration of BPFI calculation and frequency 

spectrum for inner race fault 

 

When examining the signal in the time domain in Figure 3 

(a), the amplitude of the original signal is modulated at a 

certain frequency. This frequency is set to 118.8 Hz by 

dividing the time between oscillations. In Figure 3 (b), 

frequencies related to inner race fault are shown in the 

frequency spectrum. Although envelope analysis is used to 

obtain the fault-related frequencies, certain parameters must 

be adjusted to determine peaks signal. The equations to 

estimate frequency requires knowledge of the ball and pitch 

diameters, shaft speed, number of balls, and contact angle. 

However, an additional speed sensor is required to measure the 

shaft speed. 

 

 

3. PROPOSED EXTREME LEARNING AND SPARSE 

REPRESENTATION BASED FAULT DIAGNOSIS 

METHOD  
 

A new hybrid method is proposed for the diagnosis of 

bearing faults, which uses TF representation, coHOG, and 

extreme learning-based sparse classifiers. The TF 

representation for the different fault types and the healthy 

condition provides a distinctive representation. Features are 

extracted from the images obtained with the help of coHOG, 

and faults are classified using a sparse classifier. The block 

diagram of the proposed method is given in Figure 4.  

In Figure 4, vibration signals are transformed into a time-

frequency domain using a continuous wavelet transform. 

Afterwards, the obtained time-frequency domain matrix is 

converted to an 8-bit grayscale image. The texture features are 

obtained from this image using coHOG, which extracts the 

shape of the image and the features using gradient orientations 

with different offsets. The features obtained from coHOG 

represent a sparse structure. Therefore, a sparse classifier is 

applied to these features to classify faults. Extreme Learning 

Machine (ELM) based sparse classifier is proposed to separate 

features and classify each condition [28]. The detail of each 

step of the proposed method is discussed in the following 

subsections. 
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Figure 4. The block diagram of the proposed method 

 

3.1 Time-frequency representation 

 

A TF analysis of the signal obtained from the vibration 

sensor was performed to obtain the TF image. Typically, TF 

image analysis is the technique that assists in studying a time 

series in the time-frequency domain. This technique helps a 

signal to display frequency information over time and 

produces different patterns for different operating conditions. 

Techniques such as short-time Fourier transform [29] s-

transform [30, 31], Wigner-Ville distribution [32], and 

continuous-time wavelet [33, 34] are used to obtain TF 

representation. Continuous wavelet analysis is more effective 

as it represents the signal with multiple resolutions compared 

with other methods [35, 36]. Continuous wavelet analysis was 

used to determine the winding faults in the current signals of 

the steady-state and to extract the features to determine bearing 

faults from vibration signals [37]. 

Wavelet analysis uses a signal and a wavelet function, based 

on their inner products and the similarity between them. The 

analysis function is in continuous wavelet analysis used to 

compare the signal with shifted and scaled versions of a 

wavelet function [38]. A 2-dimensional representation is 

obtained by comparing the wavelet of different scales and 

positions. The set of wavelets is obtained by scaling and 

translating the mother wavelet as shown in (4). 
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where, a  is a scaling parameter, inversely proportional to 

frequency. The parameter b represents the translation. 

Continuous wavelet transform of a signal I(t) is given in (5).  
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In (5), * represents the complex conjugate value of   

function. The coefficients of the continuous wavelet analysis 

affect the scaling, position values, and the used wavelets. 

Using scaled and shifted versions of the wavelet function [39], 
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continuous wavelet analysis employs variable-sized windows 

to maintain time dependence. With the signal I(t), the wavelet 

coefficients of any scale a  are obtained using the convolution 

of the transformed and dilated versions of the wavelet. The 

higher coefficients represent the position of a particular event. 

After the convolution operator, the original signal I(t) is 

projected to 2D time and scale dimension, in which the 

scalogram represents the graphical representation of wavelet 

coefficients. For two different conditions, the signals and their 

TF images are given in Figure 5.  

 
Figure 5. Healthy and faulty signals and their time-frequency 

images 

 

In Figure 5, the left signal was acquired from a healthy 

motor; whereas, the right signal was acquired from a motor 

with ball bearing fault. When the TF images of both signals 

are examined, they are quite different. After obtaining time-

frequency images, the features are extracted from the images 

using the coHOG method. 

 

3.2 Feature extraction using coHOG 

 

HOG transform, a popular tool for image classification [40], 

uses the orientation and magnitude values of the pixels in the 

image; which helps an independent descriptor of rotation. 

Moreover, HOG transform offers good results under different 

working conditions. The main goal of HOG is to define the 

image as a group of local histograms that produces the number 

of orientations within the respective region. To obtain HOG 

from an image, the color image is converted to a gray image. 

Afterward, the horizontal fx and vertical fy gradients are 

calculated using the derivative masks of the image. These 

gradients are calculated as follows. 
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In (6), I(x, y) represents the pixel density at the position of 

(x, y). The magnitude (m) and orientation   are calculated as 

follows.  
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In the next step, the image is divided into cells of a certain 

size, and the orientations within each cell are assigned to eight 

bins. Then, the magnitudes of the orientations are voted for 

each bin. Histogram bins are constructed with equal sizes 

between 0-180 degrees.  

After the orientation of each cell is obtained, block 

normalization is applied to the feature vector. For this purpose, 

L2-norm normalization is used, and its calculation is given in 

(9). 
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Figure 6. The steps of coHOG transform 
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In (9), f and v represent the normalized and un-normalized 

histogram vector, respectively. HOG transform is used for 

real-time applications owing to its low-cost implementation. 

However, this method fails to offer the correct results in many 

object recognition problems since it shows the image with a 

single gradient orientation. Therefore, coHOG method, which 

shows the spatial relationship between gradient orientations, 

has been proposed [41]. This is a multi-gradient orientation 

based method represented as gradient pairs. Therefore, 

coHOG feature vector, built from pairs of gradient orientations, 

is better than HOG and the histogram. This vector is called a 

co-occurrence matrix. The coHOG feature is obtained from the 

2D histogram of gradient orientation pairs in a given offset 

neighborhood. coHOG is applied to a gray image. Figure 6 

shows the steps of the coHOG transformation to obtain the co-

occurrence matrices. 

In Figure 6, co-occurrence matrices are calculated for all 

offset values in each tiled region. All components of the 

obtained co-occurrence matrices are concatenated as a vector. 

After the horizontal and vertical gradients of the image are 

obtained with appropriate filters, the gradient orientations of 

the image are calculated. Afterwards, each pixel is labeled 

with one of eight different orientations with 45-degree angles 

in the range of (0,360). Combining the gradient orientations of 

neighbor offsets provides a detailed representation of the 

object. The offset (x, y) of a co-occurrence matrix over an 

N×M image is given in (10). 
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In (10), I represent the gradient orientation image, whereas, 

i and j represent gradient orientations. The offset on horizontal 

and vertical orientations are given by x and y, respectively. For 

each motor condition, a feature vector is obtained by coHOG, 

and the obtained vector is given to the classifier and fault 

conditions. 

 

3.3 Extreme learning machine and sparse representation 

based classifier 

 

ELM is a classification method and its structure is a 

feedforward neural network with a single hidden layer [42]. 

The main difference between ELM and ANN is that ELM 

randomly generates the parameters in the hidden layer and 

learns the weights analytically rather than iterative learning as 

in the backpropagation algorithm. 

The mathematical model of ELM, which has L nodes in the 

hidden layer and an activation function g(x), is as follows. 
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In (11), xj and bi represent jth input and ith randomly chosen 

bias value, respectively. The parameter N represents the 

number of training samples, and L is a number of hidden nodes. 

The vectors wi=[wi1, wi2, …, win]T and βi=[Βi1, βi2, …, βim]T 

represent the weight vectors connecting input neurons to ith 

hidden neuron and ith hidden neuron to output neuron oj, 

respectively. The real output of ELM is ti=[ti1, t2i, …, tim]T. The 

aim of ELM is to minimize the relative error between real 

output ti and model output oj. The minimization equation is 

modeled as follows: 

 

TH =  (12) 

 

In (12), H represents the output of the hidden layer, and the 

output matrix of the classifier is given by T. The two matrices 

are given in (13) and (14), respectively. 
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In (13), each column of H matrix is an output of a hidden 

node with respect to inputs. Each row of the T matrix 

represents the output of ELM with respect to an input. The 

optimal output weight matrix is given in (15). 

 

TH 1−=  (15) 

 

where, H-1 represent inverse of H. The ELM classifier can 

learn huge data and work quickly with parallel computing. The 

most important feature of ELM is that all parameters in the 

hidden layer are randomly generated, and the weights in the 

output layer are analytically solved without tuning, which 

shortens the test time. However, the ELM classifier gives 

incorrect results owing to the image noise. Moreover, high 

performance is not achieved during the training stage and 

testing stage. In the sparse representation classification (SRC), 

training sets are used to classify test data. This method offers 

good results, especially in facial recognition applications. 

Assuming we have a training image set with multiple classes, 

the main aim of the sparse classifier is to obtain a sparse 

representation of a test image in the training set. Suppose, we 

have a set of training data with class labels C = [c1, c2, c3...cm], 

to classify a test data y, the columns of C are normalized using 

l2-norm. The following optimization problem is solved as: 

 


=

=

+−=

D

i

ii

x

Dixx

yAxx

1

2

2

,,2,1,0,

minargˆ


 (16) 

 

In (16), D is the number of training images. Only the non-

zero entries in x are associated with the class i, which is 

represented by the δi(x) vector. The class of the test image y is 

computed according to the minimum distance between y and 

Aδi(x). The related equation is given in (17).  
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The SRC method uses all training images to determine the 

class of any test image, and direct use of SRC causes the 

classifier to run slowly. Therefore, the combination of ELM 
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and SRC can make the SRC operate in case of noisy data that 

cause a false alarm. In other cases, the ELM should operate 

[28]. A combination of ELM and SRC is called ELMSRC, 

used to improve the classification performance. Figure 7 

provides the steps of this method. 

In Figure 7, the features obtained by coHOG are input into 

the ELM classifier and the ELM training parameters. The 

outputs are obtained by giving a test image y to a trained ELM 

classifier. For this test image, the difference between the first 

and second-largest output of the ELM classifier is compared 

with the threshold value to determine whether the image has 

noise or not. Images without any noise are classified according 

to the ELM rule, whereas images, smaller than the threshold 

value are classified with SRC. 

For comparison purposes, the images obtained by TF 

representation were also classified with a deep learning 

algorithm. For this purpose, Alexnet's deep convolutional 

neural network structure, proposed by Krizhevsky et al. [43] 

was used. Alexnet has 5 convolution layers, 11x11 filters and 

3 fully connected layers. Alexnet is an important algorithm for 

image classification with a total of 60 million parameters. Its 

representation capacity offers better performance than 

traditional machine learning methods. During the training, the 

automatic deletion of some neurons in the middle layer 

reduces the dependence on individual elements of network 

performance to avoid overfitting. Since RELU is used for 

activation, the nonlinear property is provided. Figure 8 shows 

the structure of Alexnet. 
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Figure 7. ELMSRC based hybrid classifier 
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Figure 8. Structure of Alexnet 
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Figure 9. Transfer learning pipeline 
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Table 1. Confusion matrix for a multiple classifier 

 

 
Actual Class 

1 2 3 4 Sum 

Predicted class 

1 TP11 FP12 FP13 FP14 NI1 

2 FP21 TP22 FP23 FP24 NI2 

3 FP31 FP32 TP33 FP34 NI3 

4 FP41 FP42 FP43 TP44 NI4 

Sum NT1 NT2 NT3 NT4 total 

 

The Alexnet structure given in Figure 8 is trained on a large 

data set known as ImageNet. This dataset has 1000 classes of 

millions of samples. As noted in many studies, it is difficult to 

obtain such data size. Transfer learning is used to overcome 

this problem, in which the hidden layer that extracts features 

between the lower layers is similar to the Gabor filter, whereas 

the upper layers carry information with specific properties to 

the original classification task. By taking optimized network 

parameters for 1000 classes, transfer learning is applied to 

diagnostics, which is a more specific classification problem. 

Instead of creating a new convolutional neural network with 

random weights, the network can be adapted for specific 

classification problems using an optimized and pre-trained 

convolutional neural network. The structure of transfer 

learning is given in Figure 9. 

As shown in Figure 9, the transfer learning algorithm 

retrieves optimized network parameters in the lower layers of 

the actual network. Although the actual network is bent to 

classify 1000 objects, only the last layers in the transfer 

learning are retrained. 

The performance of the classifier is obtained using some 

measures obtained from the confusion matrix. A confusion 

matrix for a classifier with four classes is given in Table 1. 

In Table 1, TPxx represents the number of correctly 

classified samples for class x, and NIx is the total number of 

samples classified as label x. FPxy represents the number of 

incorrectly classified samples for class label y classified as 

label x. The parameters NIx and NTx represent the total 

number of samples classified as x and test samples with true 

label x, respectively. To accurately evaluate the performance 

of our method, the confusion matrix is given for each classifier. 

Four measures such as precision (P), recall (R), accuracy rate 

(AR), and F1 score (F1) are calculated on each class. These 

measures are calculated as follows: 
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4. EXPERIMENTAL RESULTS 
 

The proposed fault diagnosis approach was confirmed 

based on the dataset obtained from bearing data center at Case 

Western Reserve University (CWRU) [44]. The experimental 

setup consists of a 2-hp motor, a torque transducer, and a 

dynamometer. The test shaft bearings are connected to the 

motor shaft. Common faults in the induction motor such as 

inner race, outer race, and ball bearing are manufactured in 

different severities. The experimental setup of this bearing is 

given in Figure 10. 

 

Dynamometer

Torque transducer 
& encoder

Drive and 
bearing

Induction 
motor

Fan end 
bearing

 
 

Figure 10. Experimental setup [44] 

 

SKF type bearing is used on the fan and drive side of the 

motor, operated at a four different speed and four different 

loads with a dynamometer. The motor speed for each 

operating condition is collected using a torque 

transducer/encoder. The sampling rate of vibration data is 12 

kHz, and the signals are acquired using a 16 channel data 

acquisition card. The vibration sensors are installed 

perpendicular to the top of the housing for both the fan and the 

drive end of the motor. The raw vibration signals are given in 

Figure 11 for healthy state, inner race fault, ball fault, and outer 

race fault cases, which are developed from CWRU bearing 

dataset. 

 

 
 

Figure 11. Raw vibration signals for healthy and three fault 

conditions  

 

As shown in Figure 11, the vibration signals of the health 

condition and the ball fault are in closed proximity to each 

other. One healthy and five fault conditions are considered. 

The healthy condition is labeled as C1. Two inner race faults 

have different fault severities. For the inner race fault, two 

fault severities are generated, one with an inner race of 0.07 

inch (labeled as C2) and the second with a 0.14 inch (labeled 

as C3) wear. Two fault conditions of the same magnitude 

similar to the inner race fault are generated for the outer ring, 

which is labeled C4 and C5, respectively. The last fault 
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condition is related to the ball fault labeled as C6. The 

descriptions of collected bearing data are given in Table 2. 

 

Table 2. The used dataset for bearing faults 

 
Fault 

type 

Fault size 

(inch) 

Rotation Speed (rpm) Fault 

class 1730 1750 1772 1797 

Healthy None     C1 

Inner 

race  

0.007      C2 

0.014      C3 

Outer 

race  

0.007      C4 

0.014      C5 

Ball  0.007      C6 

 

In Table 2, all fault conditions are taken into consideration, 

and fault detection is at four different speeds. The vibration 

signals were converted to the TF domain using continuous 

wavelet analysis. The TF representations of the healthy and 

faulty conditions of bearing signals are given in Figure 12.  

 

   
(a) Healthy 

condition 

(b) Inner race 

(0.007 inch) 

(c) Inner race 

(0.014 inch) 

   
(d) Outer race 

(0.007 inch) 

(e) Outer race 

(0.014 inch) 

(f) Ball fault 

(0.007 inch) 

 

Figure 12. TF representation of vibration signals for different 

working conditions 

 

In Figure 12, the continuous wavelet transform was applied 

to vibration signals. The signal size is selected as 1024 samples 

without overlapping. After TF representations of each 

condition have been obtained, they are converted to grayscale 

images. For texture classification, coHOG descripts the 

occurrence of HOG in a given texture image. The parameters 

of coHOG such as a number of orientation bins and offsets are 

selected as 8 with a 4x4 squared grid and 6, respectively. The 

size of the feature vector is obtained as 128. The dimension of 

the feature vector became 3072 for coHOG method. The 

obtained features for a healthy and fault condition are revealed 

in Figure 13.  

 
 

Figure 13. Feature vector for vibration signal  

As shown in Figure 13, the feature vectors of healthy and 

faulty conditions are quite different from each other. Each 

feature vector was normalized using z-score normalization. 

The performance of the sparse classifier is extensively 

evaluated using CWRU bearing dataset.  

After the feature extraction, the obtained features are given 

to the ELMSRC classifier, and the motor condition is 

classified. The data set consists of a total of 3908 samples, and 

the performance of the classifier depends on the appropriate 

setting of the  parameter. This parameter is set to capture 

incorrectly classified data and to classify the data according to 

the SRC procedure. This parameter may increase the number 

of noisy samples, although it may capture incorrectly 

classified samples when incorrectly selected. The number of 

neurons in the hidden layer of the ELM classifier is selected as 

1000, and the sigmoidal function is used as the activation 

function. The ELM method has misclassified 70 of 1173 test 

samples. Figure 14 shows the number of picked 

misclassification samples and noisy samples of the ELMSRC 

for different  parameters. 
 

 
 

Figure 14. Picked and noisy samples from ELMSRC output 

with different  

 

As shown in Figure 14, the number of picked misclassified 

samples increases, whereas the number of noisy samples 

increases for different  parameters. When the parameter  is 

selected as 0.5, the gap between the number of noisy samples 

and the number of picked misclassified samples is the largest. 

Therefore, the parameter  was chosen as 0.5. In this study, 

each signal consists of 1000 samples. The size of the training 

set obtained was 3908 for six classes. Samples were taken 

under each working speed and load for a healthy condition. 

Ten-fold cross-validation was used to avoid over-learning and 

to improve generalization during training. The overall 

confusion matrix is given in Table 3 for all test run.  

 

Table 3. Confusion matrix of ELMSRC for 10 different test 

subsets 

 
 True classes 

Predicted class  C1 C2 C3 C4 C5 C6 

C1 466  1   6 

C2  476     

C3 5  453   14 

C4    1657   

C5     356  

C6 27  2   445 
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According to the complexity matrix in Table 3, the classifier 

seems to confuse C1 and C6. The performance of the proposed 

method was obtained according to classification accuracy, 

sensitivity, recall, and F1 measurement. Table 4 shows the 

performance of HOG and coHOG when using ELMSRC 

according to both HOG and coHOG methods. 

 

Table 4. Performance evaluation results for two feature 

extraction method 

 

PERFORMANCE 

MEASURES 

FEATURE EXTRACTION 

METHOD 

HOG(%) coHOG(%) 

Precision 92.67 98.20 

Recall 93.20 98.08 

F1 92.93 98.13 

Accuracy 94.67 98.59 

 

As shown in Table 1, when coHOG features were used in 

the classification stage, a better accuracy rate and lower false 

alarms were obtained compared to HOG.  

The results were compared with other well-known machine 

learning techniques to show the effectiveness of the proposed 

ELMSRC classifier. For this purpose, artificial neural 

networks (ANN), support vector machines (SVM), decision 

trees (DT), ELM, and k-nearest neighbor algorithm (KNN) 

were trained with obtained coHOG features. The parameters 

were adjusted to obtain the best performance from each 

method. A three-layer feedforward neural network was 

selected, and the number of neurons in the hidden layer was 

selected as 20. Sigmoid activation function was used in this 

layer. The Gaussian kernel was selected for SVM, and the 

kernel scale was selected as 36. In DT, the Gini index was used 

as a split criterion, and the maximum split number was 

determined as 100. In the ELM, 1000 neurons were used in the 

middle layer. Finally, the KNN parameter is taken as 10, using 

the Euclidean distance metric. The comparison results are 

given in Figure 15.  

 

 
 

Figure 15. The performance evaluation of classifiers 

 

As shown in Figure 15, the proposed classifier yielded the 

best performance on the data set. The performance metrics of 

ELM and SVM are similar. The precision and accuracy of 

ELM were higher than those of SVM. Both KNN accuracy and 

other performance metric are the lowest compared with other 

classifiers. 

TF images representing different motor conditions were 

trained with the Alexnet deep learning model in order to show 

the effectiveness of the proposed feature extraction method. 

For this process, a transfer learning algorithm was utilized on 

a pre-trained Alexnet network. Some parameters of Alexnet 

architecture must be adjusted for transfer learning. The 

parameters of transfer learning are given in Table 5. 

  

Table 5. Parameters of transfer learning 

 
Parameter Value 

Network input size 227x227x3 

Batch size 10 

Max epochs 6 

Iterations per epoch 234 

Initial learning rate 1e-4 

Validation frequency 3 

 

The deep convolutional network was trained on a desktop 

computer with a 6GB GPU Card using the parameters given in 

Table 5. Figure 16 shows graphs of training accuracy and loss. 

 

 
(a) Training accuracy rate 

 
(b) Training loss 

 

Figure 16. The performance of Alexnet on same dataset 

 

 
(a) Activation of Pool5 
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(b) Activation of fc7 

 

Figure 17. t-SNE visualization of feature maps extracted 

from pool5 and fc7 layers 

 

From the training results in Figure 16, after a certain 

iteration, the training and validation performance is close to 

100%, and the loss value is close to zero. The total 

performance of the deep learning algorithm was 99.45%. This 

indicates that the used data preprocessing and TF 

representation are the correct choices. The t-SNE visualization 

of the feature map extracted with Alexnet is given to determine 

how the transfer learning of the same images looks in different 

layers. Figure 17 shows the visualization results for pool5 and 

fc7 layers. 

As shown in Figure 17, healthy and faulty conditions are 

clearly distinguished. On the other hand, the shaft bearing ball 

failure and some parts of Outer_14 and Inner_14 time-

frequency with each other. The results show that the images 

obtained to demonstrate healthy and faulty conditions 

successful express different faulty conditions. The proposed 

method is compared with other deep learning and traditional 

intelligent computing techniques proposed by previous studies 

that use the same benchmark data set. For this purpose, the 

proposed method was compared with well-known traditional 

intelligent computational techniques such as SVM and ANN. 

The performance of the proposed method was also compared 

with two different CNNs. The comparison was made 

according to the accuracy rates, and the results are given in 

Table 6. 

 

Table 6. Comparison of the proposed method to different intelligent and deep learning methods 

 
Reference Classifier Feature extraction Number of classes Accuracy rate 

[11] CNN Convert raw signals to an image 4 96.75% 

[16] SVM Statistical feature extraction from time domain signal 4 96.10% 

[25] 1D CNN Raw signals 6 93.30% 

[45] SVM ensemble Wavelet analysis 4 89.80% 

[46] ANN Discrete wavelet transform with daubechies10 2 93.30% 

[47] ANN Convert raw signals to an image and Local binary pattern 4 95.90% 

Proposed 
ELMSRC 

classifier 

Time frequency image representation and coHOG based 

feature extraction 
6 98.59% 

In conventional artificial intelligence-based diagnostic 

methods, the features are extracted from the raw signal using 

a pre-processing method. Then, classification is performed by 

evaluating the obtained features. Wavelet analysis, Fourier 

transform, and other statistical methods are used for feature 

extraction. The principal component analysis is applied to the 

obtained high dimensional data for reducing dimension. The 

features obtained depend on the load or operating speed, which 

do not provide a generalization for all fault conditions. In 

addition, the obtained features require knowledge of the 

number of balls, the inner, and outer race diameter of the motor 

shaft bearing. Feature selection and size reduction bring an 

extra cost. Although faulty conditions of convolutional neural 

networks are better, its disadvantage is that both computational 

loads are high and require large data. The conversion from the 

raw signal to a two-dimensional matrix, using a convolutional 

neural network and recording the matrix as an image, 

functions normally in all cases. The one-dimensional 

convolutional neural network is used for constant load 

conditions. Time-frequency representation is obtained by 

wavelet analysis and accurately reflected the fault information. 

Distinctive images for different faults and healthy conditions 

are obtained by using this feature extraction technique. The 

obtained images are considered as the basic known texture 

classification problem, and feature extraction is performed by 

coHOG method, combined with the SRC method to increase 

the ELM testing capability. The proposed method provides the 

following contributions. 

• It helps to obtain a time-frequency representation 

for diagnostics. 

• It presents a feature extraction in which different 

situations are distinguished by co-HOG method. 

• Fault modeling is a wider spectrum than traditional 

artificial intelligence-based techniques. 

• It improves test performance with ELMSRC and 

offers higher accuracy diagnostics. 

• The system is simpler than CNN models. 

 

 

5. CONCLUSIONS 

 

In this paper, we propose an extreme learning machine and 

a sparse representation-based method for the diagnosis of 

bearing faults. The proposed method obtains the time-

frequency representation image by applying continuous 

wavelet analysis to the raw vibration signals. The features are 

extracted from the TF image using the coHOG transform. The 

obtained features are classified by extreme learning machine 

and sparse representation-based method. The proposed 

approach is used to determine three different fault types and 

different fault sizes on a benchmark data set. The obtained TF 

images accurately represent different fault conditions. coHOG 

based feature extraction method use gradient orientation pairs. 

These blocks create histograms and represent local and global 

features of an image in detail. The proposed classification 

approach achieved 98.59% accuracy for a data set with 6 

classes. The classification results demonstrate that the 
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proposed coHOG-based feature extraction can extract 

distinctive features from the TF image. In addition, the 

proposed method does not require manual parameter setting, 

calculation of different frequency components, and extra 

sensor information. By testing bearing failures with different 

severity of the failure, the obtained results were close to the 

results of the Alexnet. Our method is also experimentally 

better than other methods in the literature. 
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