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 This work attempts to recover digital signals from a few stochastic samples in time domain. 

The target signal is the linear combination of one-dimensional complex sine components 

with R different but continuous frequencies. These frequencies control the continuous values 

in the domain of normalized frequency [0, 1), contrary to the previous research into 

compressed sensing. To recover the target signal, the problem was transformed into the 

completion of a low-rank structured matrix, drawing on the linear property of the Hankel 

matrix. Based on the completion of the structured matrix, the authors put forward a feasible-

point algorithm, analyzed its convergence, and speeded up the convergence with the fast 

iterative shrinkage-thresholding (FIST) algorithm. The initial algorithm and the speed up 

strategy were proved effective through repeated numerical simulations. The research results 

shed new lights on the signal recovery in various fields. 
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1. INTRODUCTION 

 

Signals contain valuable information on the attributes and 

actions of the emitter, and reflect the unique features of the 

relevant phenomena. In terms of economy, the periodic 

fluctuations of signals, which differ in magnitude, phase, and 

frequency, have attracted much attention from the academia. 

In many cases, however, it is difficult to extract all the 

information from signals, due to the limitations in sampling 

instruments or measuring methods. Take the extraction of 

frequency components for instance. Most scholars could only 

obtain a few discrete components from the target signal. 

Therefore, the signal recovery from multiple measured data is 

of great importance to signal processing in various fields, such 

as GNP cyclical fluctuations in economics [1, 2], in 

acceleration of medical imaging, analog-to-digital conversion, 

inverse scattering and in seismic imaging. 

This work aims to recover a signal that linearly combines 

one-dimensional complex sine components with R different 

but continuous frequencies. To recover the entire signal, it is 

necessary to fully analyze the few samples of the sine 

components in the time domain, and measure their frequencies. 

This recovery task is similar to that in the signal processing of 

the following fields: variations in gross national product [1, 2], 

speeding up the capture of medical images [3], transform from 

analog signals to digital signals [4], and imaging of earthquake 

consequences [5]. The traditional strategies for the task 

include Prony’s approach [6], Estimation of Signal Parameters 

via Rotational Invariance Techniques [7], and matrix pencil 

[8]. In all these strategies, the sampling speed meets the 

Nyquist sampling theorem (NST).  

As a novel technique for signal recovery, compressed 

sensing can recover the signal, which is sparsely or 

approximately sparsely distributed in a finite discrete domain, 

with a sample size smaller than the requirement of the NST [9] 

[10]. In the real-world, the signal values are usually distributed 

in a continuous manner. In our problem, the signal frequencies 

fall within the interval of [0, 1). To make compressed sensing 

feasible, the continuous values of the target signal could be 

divided into a limited number of equidistant points. 

Nevertheless, basis mismatch will occur if the division is not 

sufficiently refined [11]. In this case, the division error will be 

so large as to induce a huge error in signal recovery. To make 

matters worse, the ultrafine division of the continuous signal 

values will incur an unbearably high cost [12]. 

In recent years, more and more scholars have proposed 

strategies to recover continuous values based on a few discrete 

and unbalanced data in the time domain. For example, Candès 

et al. [13] minimized the total variation to pinpoint the 

continuous frequencies from equidistant data. Xu et al. [14] 

recovered the frequencies of the target signal from unbalanced 

data by minimizing the atomic norm. Candès et al. [13], Xu et 

al. [14] transformed the recovery of signal frequencies into the 

completion of low-rank Toeplitz matrix. Tang et al. [15] 

treated the signal frequency recovery of unbalanced data as a 

low-rank Hamiltonian Monte-Carlo problem. The above 

strategies can recover signals with a high robustness. But the 

computing efficiency is rather low in the completion of the 

low-rank matrices: the number of unknown factors in the 

optimization process is the square of the signal dimension. 

Many efforts have been paid to complete the relevant 

matrices in an efficient manner. For instance, Candès and 

Recht [16] adopted interior point strategy to derive a Hessian 

matrix, whose scale is O(N4), in the Newtonian operation. In 

addition, many first-order approaches [17] were developed for 

matrix completion in signal recovery. Nonetheless, these 

approaches require an unstructured dual matrix, whose scale is 

O(N2). Overall, none of these approaches could efficiently 

recover large-dimensional signals. 

To improve the efficiency of large-dimensional signal 
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recovery, this work presents a feasible-point algorithm to 

complete the low-rank Hamiltonian Monte-Carlo matrix. The 

algorithm does not implement convex optimization of the 

matrix, but adopts a memory of the size O(NR), and recovers 

large-dimensional signal efficiently, for the number of sine 

components is way larger than N. Inspired by previous 

research [18, 19], the convergence of the algorithm to global 

optimal solution was analyzed in details. After that, the fast 

iterative shrinkage-thresholding (FIST) algorithm was 

referred to accelerate the convergence of our algorithm [1]. 

Finally, simulations confirm that the initial algorithm and the 

speed up strategy could recover large-dimensional signal, 

which linearly combines one-dimensional complex sine 

components with R different but continuous frequencies. 

The rest of this work is arranged as follows: Chapter 2 

introduces the details on the signal recovery problem; Chapter 

3 presents the initial algorithm, analyzes its convergence 

performance, and speeds up its convergence with a self-

designed algorithm; Chapter 4 verifies the feasibility of our 

algorithm through simulations; Chapter 5 puts forward the 

conclusions. 

 

 

2. PRELIMINARIES 

 

2.1 Target signal 

 

The target signal �̃�(𝑡), 𝑡 ∈ ℝ  linearly combines one-

dimensional complex sine components with R different but 

continuous frequencies [20]: 

 

�̃�(𝑡) = ∑𝑑�̃�𝑒
2𝜋𝑖𝑓�̃�𝑡

𝑅

𝑘=1

, 𝑡 ≥ 0 (1) 

 

where, 𝑓�̃� ∈ [0,1) , 1 ≤ 𝑘 ≤ 𝑅  is the frequencies; 𝑑�̃�  is the 

amplitudes of the complex sine components. 

Traditionally, the target signal is recovered based on the 

data �̃�(𝑡), t=0, 1, …, M-1 at the integer points of the time 

domain. The frequencies of the target signal are obtained by 

linearly solving structured matrices. As mentioned before, the 

fully information of the target signal is not easily obtainable, 

owing to the constraints of instruments and environment. This 

is particularly true, because the target signal has large 

dimensions [5]. To solve the problem, the time-domain data 

were collected in an nonuniform manner [13, 21], which 

speeds up the sample collection. Let N be a sufficiently big 

integer, M (M<2N-1) be the number of observable data, and 

Θ ⊂{0, 1, …, 2N-2} be the index set of the observable data. 

Based on the collected data, the target signal can be expressed 

as: 

 

�̃�(𝑡) = [�̃�(0), �̃�(1), … , �̃�(2𝑁 − 2)]𝑇 ∈ ℂ2𝑁−1 (2) 

 

2.2 Signal recovery methods 

 

Let �̃� be the actual vector of the target signal. The recovery 

of this vector can be described by: 

 

𝑦 = 𝑥�̃�: = {𝑥�̃�|𝑡 ∈ 𝛩} (3) 

 

The vector recovery can be solved by many methods. For 

example, the frequency domain [0, 1) could be meshed 

uniformly into grids of the size 1/(2N-1). Let F* be inverse of 

the 2N-1-order discrete Fourier transform matrix, 𝐹𝛩
∗ be a row 

of this matrix, 𝑐 ∈ ℂ2𝑁−1 be a sparse vector without any zero 

elements, and M be cardinality.  

Assuming that the grid 𝒢 covers every frequency, the target 

signal could be described as �̃� = 𝐹∗𝑐, and the observable data 

meet the condition 𝑦 = 𝐹𝛩
∗𝑐 . Then, the vector recovery 

becomes the recovery of sparse vector c, that is, the actual 

vector of the target signal. Suppose 𝛩  is a random subset 

extracted from {0, 1, …, 2N-2}. As long as 𝑀 ≥ 𝑂(𝐾𝑙𝑜𝑔𝑁), 
the actual vector of the target signal can be recovered 

accurately by: 

 

𝑚𝑖𝑛
𝑐
∥ 𝑐 ∥1 𝑠. 𝑡. 𝐹𝛩

∗𝑐 = 𝑦 (4) 

 

Formula (4) can be solved rapidly through the strategies 

proposed by Beck and Teboulle [3], Yin et al. [6], Cai et al. 

[8], Daubechies et al. [12], and Cai et al. [22]. 

Assuming that the grid 𝒢 does not cover all frequencies, the 

actual vector of the target signal could be approximated well 

by solving formula (4). The deviation of the actual frequencies 

from the said grid could be controlled to O(1/N).  

However, Tang et al. [21] argued that the above strategy 

leads to a large bias, even if the N value is rather big. To solve 

the problem, the meshing of the frequencies was replaced by 

considering them as continuous data in the interval [0, 1). 

Following this train of thoughts, two compressed sensing 

methods [11, 21], namely, ultra-resolution method and off-the-

grid method, were designed to recover the actual vector of the 

target signal by: 

 

𝑚𝑖𝑛
𝑢,𝑥,𝑡

𝑢0
2(2𝑁 − 1)

+
1

2
𝑡, 𝑠. 𝑡. [

𝒯(𝑢) 𝑥
𝑥∗ 𝑡

] ⪰ 0 (5) 

 

where, 𝒯  refers to the linear mapping to Toeplitz matrix. 

Suppose 𝛩 is a random subset extracted from {0, 1, …, 2N-2}. 

Then, the results of formula (5) agree with the actual vector of 

the target signal at a high probability, which is no smaller than 

1-δ. Xu et al. [14] extended the minimization of the atomic 

norm to the two-dimensional space. 

 

2.3 Hankel Matrix Completion 

 

Furthermore, Chen and Chi [17] developed a novel method 

to recover signals with continuous frequencies in the time 

domain: the task of signal recovery is transformed into the 

completion of Hankel matrix. The linear mapping of a vector 

in ℂ2𝑁−1 to an N×N Hankel matrix can be described as: 

 

ℋ: x ∈ ℂ2𝑁−1 ⟶ℋx ∈ ℂ𝑁×𝑁 , 
[ℋx]𝑗𝑘 = 𝑥𝑗+𝑘 , 0 ≤ 𝑗, 𝑘 ≤ 𝑁 − 1. 

 

It is assumed that the R-rank Hankel matrix H̃ = ℋx̃. Then, 

the rank of 𝐻 can be factorized as: 

 

                                      [

1 … 1
𝑒2𝜋𝚤𝑓1 … 𝑒2𝜋𝚤𝑓𝑅

⋮ ⋮ ⋮
𝑒2𝜋𝚤(𝑀−1)𝑓1 … 𝑒2𝜋𝚤(𝑀−1)𝑓𝑅

] [
d1̃

⋱
dR̃

] [
1 𝑒2𝜋𝚤𝑓1 … 𝑒2𝜋𝚤(𝑀−1)𝑓1

⋮ ⋮ ⋮
1 𝑒2𝜋𝚤𝑓𝑅 … 𝑒2𝜋𝚤(𝑀−1)𝑓𝑅

]                         (6) 
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Next, the 𝐻 was recovered by transforming the N×N Hankel 

matrix, which is converted from the vector in ℂ2𝑁−1. Let Ω =
{(𝑗, 𝑘)|𝑗 + 𝑘 ∈ Θ} be the locations of known data in 𝐻. Hence, 

the signal recovery task can be described as searching for a 

matrix whose rank is not greater than R, under the premise of 

Xjk=𝐻jk, (j, k)∈Ω, with X being a Hankel matrix. 

Since ℋ  is mapped from ℂ2𝑁−1  to the set of all Hankel 

matrices, the recovery of the actual vector of the target signal 

equals the recovery of 𝐻. Inspired by Candès and Recht [16], 

the signal recovery task can be converted into minimizing the 

rank of the Hankel matrix: 

 

𝑚𝑖𝑛
𝑋

∥ 𝑋 ∥∗ 𝑠. 𝑡. 𝑋𝑗𝑘 = 𝐻𝑗�̃� , (𝑗, 𝑘) ∈ 𝛺 (7) 

 

The set of every singular data ∥ X ∥∗ is called the nuclear 

norm. Then, formula (7) is the method designed by Chen and 

Chi [17]. Suppose 𝛩 is a random subset extracted from {0, 

1, …, 2N-2}. Then, the results of formula (7) are the fully 

recovered 𝐻 [4]. Formula (7) is a convex optimization method. 

In theory, the optimization effect is very desirable. 

Nevertheless, the computing process of the formula is highly 

inefficient. The number of unknown data is as high as 𝑂(𝑁2). 
To solve the problem, formula (7) could be transformed into a 

semidefinite-quadratic-linear programming problem, and be 

treated with the relevant software [23]. But the relevant 

software needs to iteratively solve a large linear system with 

the order 𝑂(𝑁2) × 𝑂(𝑁2) . Neither could formula (7) be 

solved easily by algorithms that minimize the user-defined 

nuclear norms [24], owing to the constraint on linear equality 

of the Hankel matrix. 

Through the above analysis, this paper directly tackles the 

non-convex optimization problem, which converges fast in the 

recovery of sparse and low-rank matrices [25, 26], and 

develops a feasible point algorithm for signal recovery. 

 

 

3. ALGORITHM DESIGN 

 

3.1 Benchmark 

 

To solve the non-convex optimization problem, the 

collection of smaller-than-R-order matrices with complex 

values and the collection of Hankel matrices with complex 

values that meet the observable data can be respectively 

expressed as: 

 

ℛℂ
𝑅 = {𝐿 ∈ ℂ𝑁×𝑁|𝑟𝑎𝑛𝑘(𝐿) ≤ 𝑅}. (8) 

 

ℋ = {ℋ𝑥|𝑥 ∈ ℂ2𝑁−1, 𝑥𝛩 = 𝑥�̃�}. (9) 

 

Then, the signal recovery task and non-convex optimization 

can be described as: 

 

𝑚𝑖𝑛
𝐿∈ℛℂ

𝑅,𝐻∈ℋ

1

2
∥ 𝐿 − 𝐻 ∥𝐹

2  (10) 

 

where, ℛℂ
𝑅  is a collection and a smooth manifold; ℋ  is an 

affine space. Formula (10) was solved by a feasible point 

algorithm. The objective function with the actual values of 

complex parameters can be expressed as: 𝐹(𝐿, 𝐻): =
1

2
∥ 𝐿 −

𝐻 ∥𝐹
2 . Complex calculus theory shows that the objective 

function cannot be differentiated. But this function can be 

differentiated into a real part ℜ  of parameters, and an 

imaginary part ℑ of parameters. The two parts were subject to 

gradient flow, respectively. It is assumed that: 

 

Z = [
L
H
] = ℜ + 𝑖ℑ (11) 

 

Then, the objective function can be rewritten as 𝐹(ℜ, ℑ). 

Next, the real part was updated by 
𝜕𝐹

𝜕ℜ
, while the imaginary part 

by 
𝜕𝐹

𝜕ℑ
. That is, the initial algorithm updates Z by 

𝜕𝐹

𝜕ℜ
+ 𝑖

𝜕𝐹

𝜕ℑ
. 

Inspired by Fischer [27], there is: 

 
𝜕𝐹

𝜕ℜ
+ 𝑖

𝜕𝐹

𝜕ℑ
= 2

𝜕𝐹

𝜕Z̅
 (12) 

 

Thus: 

 

2
𝜕𝐹

𝜕�̅�
= [

2
𝜕𝐹

𝜕�̅�

2
𝜕𝐹

𝜕𝐻

] = [
𝐿 − 𝐻
𝐻 − 𝐿

] (13) 

 

Let 𝛿1 and 𝛿2 are positive step lengths; 𝒫ℛℂ
𝑅 and 𝒫ℋ  be the 

projections to ℛℂ
𝑅  and ℋ , respectively. Then, the initial 

algorithm can be established as: 

 

{
L𝑡+1 ∈ 𝒫ℛℂ

𝑅(L𝑡 − 𝛿1(L𝑡 − H𝑡)),

H𝑡+1 ∈ 𝒫ℋ(H𝑡 − 𝛿2(H𝑡 − L𝑡+1)).
 (14) 

 

Then, the aim of the initial algorithm is to search for 𝒫ℛℂ
𝑅 

and  𝒫ℋ . Suppose the columns of UR and VR are the first R 

singular vectors of X from the left and the right, respectively; 

Σ𝑅 is the diagonal matrix whose elements correspond to these 

vectors. Drawing on Golub and Van Loan [28], 𝒫ℛℂ
𝑅(X), as the 

optimal rank approximation to X, can be described as 

𝒫ℛℂ
𝑅(X) = U𝑅Σ𝑅V𝑅

∗. Then, the following lemma was proposed 

to describe 𝒫ℋ  in its closed form Lemma 1: 

 

𝒫ℋ(X) = ℋz, 

where 𝑧𝑗 = {
𝑥�̃�, 𝑖𝑓𝑗 ∈ 𝛩,

𝑚𝑒𝑎𝑛{𝑋𝑘𝑙|𝑘 + 𝑙 = 𝑗}, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

(15) 

 

Proof. 𝒫ℋ(X)  is the results of the LS (least squares) 

problem: 

 
𝒫ℋ(𝑍) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑍{∥ 𝑍 − 𝑋 ∥𝐹

2 :𝑊 ∈ ℋ}

= ℋ ⋅ 𝑎𝑟𝑔𝑚𝑖𝑛𝑧{∥ ℋ𝑧 − 𝑋 ∥𝐹
2 : 𝑧𝛩 = 𝑥

~

𝛩}

= ℋ ⋅ 𝑎𝑟𝑔𝑚𝑖𝑛𝑧{ ∑ [

2𝑁−2

𝑗=0

∑ (𝑧𝑗 − 𝑋𝑘𝑙)
2: 𝑧𝛩 = 𝑥

~

𝛩]}

𝑘+𝑙=𝑗

 (16) 

 

The results in the last row are clearly the zj in formula (15). 

Q.E.D. During the iteration of our feasible-point algorithm, Lt 

and Ht separately fall into the sets of feasible values ℛℂ
𝑅 and 

ℋ , which minimizes the computing load and memory 

occupation, provided that R is less than N. Whereas L𝑡 ∈ ℛℂ
𝑅, 

the relevant results only occupy a memory of O(NR). 

Moreover, the parametric representation of Ht only occupies a 

space of O(N). In addition, the initial algorithm only has to 

calculate the first R singular values and the relevant vectors 

during the projection computation. The computation can be 
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completed without calling anything other than the matrix 

vector product (MVP) of 𝐿𝑡 − 𝛿1(𝐿𝑡 − 𝐻𝑡). The MVP of Lt, 

which is an R-rank factorized value, can be computed in only 

O(NR) steps. Through fast Fourier transform [28], the MVP of 

Ht can be computed in only O(NlogN) steps. The second step 

of the initial algorithm only need to average Lt+1 along anti-

diagonals [29-34]. 

 

3.2 Convergence analysis 

 

Based on the data of Attouch et al. [18], the convergence of 

the initial algorithm was analyzed. Let us denote proper and 

lower semi-continuous (PLSC) functions as 𝜃:ℝ𝑛 ↦ ℝ∪
{+∞} and 𝜔:ℝ𝑚 ↦ ℝ∪ {+∞}, and C1 function as 𝜙:ℝ𝑛 ×
ℝ𝑚 ↦ ℝ . In general, the non-convex optimization can be 

described as: 

 

min
x,y
𝜓(x, y): = 𝜙(x, y) + 𝜃(x) + 𝜔(y) (17) 

 

Drawing on Attouch et al. [18], formula (17) was solved 

through proximal alternating minimization: 

 

{
 

 x𝑘+1 ∈ argminx∈ℝ𝑛𝜓(x, y𝑘) +
1

2𝜆𝑘
∥ x − x𝑘 ∥2

2,

y𝑘+1 ∈ argminy∈ℝ𝑚𝜓(x𝑘+1, y) +
1

2𝜇𝑘
∥ y − y𝑘 ∥2

2.

 (18) 

 

Suppose function 𝜓  meets the Kurdyka-Lojasiewicz 

condition, and that ∇𝜙 is Lipschitz on bounded sets. Then, the 

convergence of formula (17) could be proved by the method 

specified by Attouch et al. [18]. Since it is difficult to verify, 

the Kurdyka-Lojasiewicz condition could be guaranteed by the 

semi-algebraic SA property. A PLSC function has SA property, 

as long as its graph forms an SA set. The condition for a subset 

𝑆 ⊂ ℝ𝑑 to be a real SA set was defined as follows: there is a 

limited number of real polynomial functions 𝑔𝑖𝑗 , ℎ𝑖𝑗 : ℝ
𝑑 ↦ ℝ 

so that: 

 

𝑆 = ⋃
𝑗=1

𝑝

⋂
𝑖=1

𝑞

{u ∈ ℝ𝑑|𝑔𝑖𝑗(u) = 0, ℎ𝑖𝑗(u) < 0} (19) 

 

Then, the sets 𝐶 ∈ ℝ𝑛  and 𝐷 ∈ ℝ𝑚  were respectively 

indicated by functions 𝜃 = 𝛿𝐶 and 𝜔 = 𝛿𝐷. Then, set C could 

be indicated by 𝛿𝐶(x) = {
0, ifx ∈ 𝐶,
+∞, ifx ∉ 𝐶.

 Under the condition 

that 𝜙(𝑥, 𝑦) =
1

2
∥ 𝑥 − 𝑦 ∥2

2, the non-convex optimization can 

be converted into an alternating projection: 

 

{
 
 

 
 x𝑘+1 ∈ 𝒫𝐶 (x𝑘 −

1

1 + 𝛿𝑘
(x𝑘 − y𝑘)) ,

y𝑘+1 ∈ 𝒫𝐷 (y𝑘 −
1

1 + 𝜇𝑘
(y𝑘 − x𝑘+1)) .

 (20) 

 

According to Bolte et al. [7] and Attouch et al. [18], the 

convergence of formula (18) can be described by the following 

theorem. 

Theorem 1. It is assumed that 𝐶 ⊂ ℝ𝑛  and 𝐷 ⊂ ℝ𝑚  have 

SA property. Then, the alternating projection can produce (xk, 

yk), where 0<a<δk, and μk<b for all k: 

Case 1: ∥ (x𝑘, y𝑘) ∥2→ ∞ as 𝑘 → ∞, or (xk, yk) converges to 

a critical point of 𝜓; 

Case 2: If (x0, y0) is feasible and sufficiently close to a global 

minimizer of 𝜓, (x0, y0) converges to that minimizer. 

Further, the above theorem was introduced to the initial 

algorithm to test its convergence performance. Although the 

initial algorithm takes the same shape as alternating projection, 

the above theorem targets real numbers, while the initial 

algorithm handles the matrix space with complex values. 

Fortunately, any matrix with complex values could be 

converted into a matrix with real number by merging the real 

part with imaginary part. As stated before, the initial algorithm 

was constructed based on the gradient of the two parts. 

Because the objective function remains the same through the 

identification, it is only necessary to judge if ℛℂ
𝑅 and ℋ have 

SA property, when they are treated as collections of the two 

parts. The judgment was completed by the following lemmas:  

Lemma 2. The following set has SA property: 

 

𝒮𝑅 = {[𝑋, 𝑌]|(𝑋 + 𝚤𝑌) ∈ ℛ𝐶
𝑅} (21) 

 

Proof. Suppose 

 

𝒫𝑟 = {[𝑋, 𝑌]|𝑋, 𝑌 ∈ ℝ
𝑁×𝑁 , 𝑟𝑎𝑛𝑘(𝑋 + 𝚤𝑌) = 𝑟} (22) 

 

and 

 

𝒬𝑟 = {[𝑋, 𝑌]|𝑋, 𝑌 ∈ ℝ
𝑁×𝑁 , 𝑟𝑎𝑛𝑘([

𝑋 −𝑌
𝑌 𝑋

]) = 2𝑟} (23) 

 

The first step is to demonstrate that 𝒫r = 𝒬r  by proving 

𝒫r ⊂ 𝒬rand 𝒬r ⊂ 𝒫ry. Suppose [𝑋, 𝑌] ∈ 𝒫𝑟 , and a singular 

value decomposition (SVD) of X+iY is (𝑋 + 𝑖𝑌) = (𝑈𝑅𝑒 +
𝑖𝑈𝐼𝑚)𝛴(𝑉𝑅𝑒 + 𝑖𝑉𝐼𝑚)

∗ , where URe, UIm, VRe, andVIm ∈ ℝ
N×r 

and Σ ∈ ℝr×r. Then, an SVD of [
𝑋 −𝑌
𝑌 𝑋

] can be expressed as: 

 

[
𝑋 −𝑌
𝑌 𝑋

] = [
𝑈𝑅𝑒 −𝑈𝐼𝑚
𝑈𝐼𝑚 𝑈𝑅𝑒

] [
𝛴 0
0 𝛴

] [
𝑉𝑅𝑒 −𝑉𝐼𝑚
𝑉𝐼𝑚 𝑉𝑅𝑒

]
∗

 (24) 

 

Thus, 𝑟𝑎𝑛𝑘([
𝑋 −𝑌
𝑌 𝑋

]) = 2𝑟  indicates that [𝑋, 𝑌] ∈ 𝒬𝑟 , 

and that 𝒫r ⊂ 𝒬r.  
Next, it is assumed that [𝑋, 𝑌] ∈ 𝒬𝑟 .  Suppose 

(𝜎, [
𝑢1
𝑢2
] , [
𝑣1
𝑣2
])  is a singular triplet of [

𝑋 −𝑌
𝑌 𝑋

] , then it is 

obvious that (𝜎, [
−𝑢2
𝑢1

] , [
−𝑣2
𝑣1
]) . As a result, every singular 

value has an even multiplicity, and the SVD of [
𝑋 −𝑌
𝑌 𝑋

] must 

take the shape of formula (24). Thus, (𝑋 + 𝑖𝑌) = (𝑈𝑅𝑒 +
𝑖𝑈𝐼𝑚)𝛴(𝑉𝑅𝑒 + 𝑖𝑉𝐼𝑚)

∗  is an SVD of X+iY, indicating that 

𝑟𝑎𝑛𝑘(𝑋 + 𝑖𝑌) = 𝑟. Hence, [𝑋, 𝑌] ∈ 𝒫𝑟 , andthus𝒬r ⊂ 𝒫r. 
Because 𝒬r is the overlap between the collection of rank-2r 

matrices with real numbers, and the linear subspace of 

matrices, whose form is [
𝑋 −𝑌
𝑌 𝑋

] , it must have the SA 

property, according to the example in Bolte’s research [7]. 

Whereas 𝒫r = 𝒬r, it can be seen that 𝒫r also has SA property. 

Since 𝒮R = ⋃
r=0

R

𝒫r , 𝒮R  is a collection with SA property. 

Q.E.D. 

Lemma 3. The following set has SA property: 

 

𝒦 = {[𝑋, 𝑌]|(𝑋 + 𝑖𝑌) ∈ ℋ} (25) 

 

Proof. For the linear operator ℋ, we have: 
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ℋ𝑥 = ℋℜ(𝑥) + 𝑖ℋℑ(𝑥) (26) 

 

If x meets 𝑥𝛩 = 𝑥�̃� , then ℜ(𝑥𝛩) = ℜ(𝑥�̃�)  and ℑ(𝑥𝛩) =
ℑ(𝑥�̃�). Thus, we have: 

 

ℋ = ℜ(ℋ) + ıℑ(ℋ) = 𝒦1 + ı𝒦2 (27) 

 

where, 𝒦1 = {ℋr|r ∈ ℝ
2N−2, rΘ = ℜ(xΘ̃)},  𝒦2 = {ℋi|i ∈

ℝ2N−2, iΘ = ℑ(xΘ̃)}. 
The above results indicate that 𝒦 = 𝒦1 ×𝒦2. Whereas 𝒦1 

and 𝒦2 are affine spaces, the product 𝒦 of these spaces must 

be an affine space, which has SA property. Based on the above 

theorem and lemmas, the convergence of the initial algorithm 

can be described as the following theorem. 

Theorem 2. Suppose (Lt, Ht) is produced by the initial 

algorithm under 0<δ1, and δ2<1. 

Case 1: ∥ (L𝑡 , H𝑡) ∥𝐹→ ∞ as 𝑡 → ∞, or (Lt, Ht) converges. 

Case 2: Suppose (L0, H0) is feasible and sufficiently close to 

a global minimizer of {
1

2
∥ L − H ∥𝐹

2 |L ∈ ℛℂ
𝑅 , H ∈ ℋ} , then 

(L0, H0) converges to that minimizer. 

The unboundedness in Case 1 can be solved easily by 

adding a constraint to ℋ. 

 

3.3 Speeding up convergence 

 

The convergence of the initial algorithm was sped up 

referring to the FIST algorithm [1]. The FIST algorithm can 

efficiently minimize the sum of two convex functions, in 

which one of them has a Lipschitz continuous gradient, by 

linearly combine the iterative results of the two functions. This 

linear combination strategy was adopted for the initial 

algorithm, despite that our problem is non-convex 

optimization. The speed-up strategy is described as follows: 

For k0=1, (L𝑡 , H𝑘\𝑡) can be produced by 

 

{
 
 
 

 
 
 L𝑡+1 ∈ 𝒫ℛℂ

𝑅 (L𝑡 − 𝛿1(L𝑡 − Ht̃)) ,

H𝑡+1 ∈ 𝒫ℋ (H𝑡 − 𝛿2(Ht̃ − L𝑡+1)) ,

𝑘𝑡+1 =
√1 + 4𝑘𝑡

2 + 1

2
,

Ht+1̃ = H𝑡+1 +
𝑘𝑡 − 1

𝑘𝑡+1
(H𝑡+1 − H𝑡).

 (28) 

 

where, H is an affine subspace, the linear combination does 

not affect the feasibility of Ht+1̃. Hence, the first and second 

steps of the speed-up strategy have the same computing load 

and memory occupation as those in the proposed algorithm. In 

addition, the computing load of the third and fourth steps are 

so small as to be negligible. Therefore, the speed-up strategy 

is as simple as the initial algorithm in terms of computation.  

 

 

4. SIMULATION 

 

4.1 Parameter optimization 

 

The initial algorithm converges as long as δ1 and δ2 falls in 

(0, 1). The influence of the two parameters on the convergence 

of the initial algorithm was simulated to optimize their values. 

The initial algorithm was applied to recover signals of 

different dimensions, with five different values of the two 

parameters: δ1=δ2∈{0.3.0.5,0.7,0.9,0.9999}.  

Firstly, the target signal was measured for 2N-1=101 times, 

that is, the Hankel matrix is of the dimension N=51; the rank 

R, and the size of location set Ω were set to 3 and 20, 

respectively. Then, the efficiency of signal recovery, i.e., the 

NMSE between initial and final matrices (
∥𝐻(𝑓𝑖𝑛𝑎𝑙)−�̃�∥2

∥�̃�∥2
≤0.0001) 

is reported in Figure 1. 

 

 
(a) N=51, R=1, and M=10 

 
(b) N=51, R=3, and M=20 

 

Figure 1. The influence of δ1and δ2 on the convergence of 

the initial algorithm (simulation 1) 

 

 
(a) N=501, R= 5, and M=100 

 
(b) N=501, R=8, and M=200 

 

Figure 2. The influence of δ1and δ2 on the convergence of 

the initial algorithm (simulation 2) 
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Secondly, the target signal was measured for 2N-1=5,001 

times, that is, the Hankel matrix is of the dimension N=51; the 

rank R, and the size of location set Ω were set to 2,501 and 13, 

respectively. Then, the efficiency of signal recovery, i.e., the 

NMSE between initial and final matrices is reported in Figure 

2. 

After that, the recovery time of the signal with the initial 

algorithm with different parameters is displayed in Table 1. 

Obviously, the greater the parameter values, the smaller the 

NMSE, and the more efficient the signal recovery. Hence, the 

two parameters were set to 0.9999 for the following 

experiments. 

 

Table 1. The recovery time of the signal with the initial algorithm with different parameters 

 
Signal δ1,δ2=0.3 δ1,δ2=0.5 δ1,δ2=0.7 δ1,δ2=0.9 δ1,δ2=0.9999 

N=51, R=1, M=10 0.55s 0.49s 0.43s 0.36s 0.34s 

N=51, R=3, M=20 0.72s 0.64s 0.58s 0.50s 0.46s 

N=501, R=5, M=100 20.17s 17.85s 15.84s 13.89s 12.69s 

N=501, R=8, M=200 10.97s 9.52s 8.29s 7.06s 6.67s 

4.2 Phase transition for precise recovery (PTPR) 

 

To verify its feasibility, our algorithm was subject to 

multiple simulations on PTPR. A total of one hundred 100 

Morte-Carlo simulations were conducted for each pair of R 

and M. Then, R frequencies were selected by random in the 

interval [0, 1), and used to produce a complex signal x with 

sparse spectrum. Then, the initial algorithm was implemented 

under δ1=δ2=0.9999. Each simulation was deemed as a 

success, provided that the NMSE meets ||𝑥(𝑓𝑖𝑛𝑎𝑙) − �̃�||2/
||�̃�||2 ≤ 0.005 , with x̂  being the expected return of our 

algorithm. The final success rate was obtained as the mean of 

the 100 simulations. 

The simulation results on the signals with dimensions 

between 20 and 127 are recorded in Figure 3, where the y-axis 

is the number of samples, and the x-axis is the level of sparsity, 

and the color of each grid is the success rate. It can be seen that 

the initial algorithm and the speed-up strategy outshined the 

other algorithms, especially the speed-up strategy, in the effect 

and feasibility in signal recovery. The two algorithms can 

recover the signals with fewer samples than the other 

algorithms. 

 

 
(a) PTPR of speed-up strategy 

 

(b) PTPR of initial algorithm                          (c) PTPR of ANM with Δ𝑓 >
1.5

∥𝒩∥
 

 

(d) PTPR of ANM without Δ𝑓 >
1.5

∥𝒩∥
                                    (e) PTPR of EMaC 

 

Figure 3. The PTPR of different algorithms 

 
Note: The ANM and EMaC are short for atomic norm minimization [14], and enhanced matrix completion, respectively. 

 

4.3 Speed up effect 

 

The convergence of initial algorithm is compared with the 

speed up strategy in Figures 4 and 5, and Table 2. It is obvious 

that the speed up strategy converged more rapidly than the 

initial algorithm. To reach the solution of comparable 

precision, the speed up strategy only needed two thirds the 

number of iterations of the initial algorithm. 
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(a) N=51, R=1, and M=10 

 
(b) N=51, R=3,and M=20 

 

Figure 4. The convergence curves of the two algorithms 

(simulation 3) 

 

 
(a) N=501, R=8, and M=200 

 
(b) N=5,001, R=20, and M=1,000 

 

Figure 5. The convergence curves of the two algorithms 

(simulation 4) 

 

Table 2. The convergence speeds of the two algorithms 

 
Signal Speed up strategy Initial algorithm 

N=51, R=1, M=10 0.29s 0.34s 

N=51, R=3, M=20 0.38s 0.46s 

N=101, R=5, M=40 0.90s 0.95s 

N=501, R=5, 

M=100 
8.48s 12.69s 

 

4.4 Recovery of large-dimensional 1D signal 

 

Furthermore, the two proposed methods were compared 

with ANM and EMaC, two convex optimization strategy, to 

verify their effect on the recovery of large-dimensional 1D 

signals. Our methods were expected to work effectively on 

large signals with sparse spectrum. Our methods adopt the 

same settings as previously; the contrastive methods were 

solved by CVX software. Table 3 compares the recovery time 

of signals with different sizes. It can be seen that our methods 

recovered medium signals faster than the contrastive methods, 

and performed excellently on the recovery of large signals. 

 

Table 3. The recovery time of signals with different sizes 

 

Signals 
Speed up 

strategy 

Initial 

algorithm 
ANM EMaC 

N=51, R=1, M=10 0.29s 0.34s 5.7s 47.8s 

N=51, R=3, M=20 0.38s 0.46s 6.9s 58.0 

N=101, R=5, 

M=40 
0.90s 0.95s 51.6s 787.6s 

N=501, R=5, 

M=100 
8.48s 12.69s N/A N/A 

N=2501, R=13, 

M=500 
88.95s 133.25s N/A N/A 

N=2501, R=25, 

M=1000 
70.71s 91.46s N/A N/A 

N=5001, R=20, 

M=1000 
473.48s 645.09s N/A N/A 

N=5001, R=31, 

M=2000 
301.03s 402.56s N/A N/A 

 

 

5. CONCLUSIONS 

 

This paper presents a feasible-point algorithm for the 

recovery of signals with sparse spectrum, and continuous 

frequencies in the interval [0, 1], using only a few data in the 

time domain. Unlike the conventional recovery methods, the 

initial algorithm takes root in the non-convex optimization, 

and handles large-dimensional signals effectively. The 

convergence of the algorithm was verified through repeated 

simulations.  

Moreover, the convergence of the initial algorithm was 

accelerated by referring to the FIST algorithm. Simulations 

show that the initial algorithm and the speed up strategy could 

recover signals on medium and large scales successfully from 

a limited amount of data in the time domain, and outperform 

contrastive methods like ANM and EMaC. 

The future research will focus on the following aspects: 

identifying the theoretical limit on the sample size for signal 

recovery by our algorithms; applying our methods to the 

recovery of damped signals, e.g., the fluctuation GNP data; 

solving the problems in the programming of the Hankel matrix. 
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