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ABSTRACT
Mobilisation of heavy freight vehicles in a sustainable manner requires providing accessibility and a well-
defined, safe and smooth road network that allows short travel times to minimise the carbon foot print of heavy 
transport system. Road surface roughness affects the comfort of the driver and increases user costs in terms of 
vehicle operating costs and travel time. Achieving a smooth road network requires adopting appropriate main-
tenance and rehabilitation strategies. The latter requires the use of appropriate intervention criteria in terms of 
intervention measures and treatments. This paper describes the development and validation of a profile-based 
roughness measure referred to as the Heavy Articulated Truck Index (HATI). HATI can be used to identify road 
sections providing poor ride quality for heavy transport operators. The effectiveness of HATI as a measure of 
pavement damage due to dynamic wheel loads is also investigated. Adopting HATI and the other diagnostic 
measures proposed herein help road authorities implement appropriate maintenance strategies to ensure the 
sustainability of their pavement assets and reduce emissions generated by heavy and light vehicles, in addition 
to providing acceptable level of service to all road users.
Keywords: dynamic wheel loading, expansive soils, heavy vehicles, road roughness, vibration.

INTRODUCTION1 
Freight movement in Victoria and Australia is largely done by road travel, so providing a network 
with good ride quality for heavy freight vehicles is crucial to the economic development of the state 
and the country. The state road authority of Victoria, Vicroads, normally uses the International 
Roughness Index (IRI) to identify sections in their road network with poor ride quality. They use the 
IRI as the measure to trigger maintenance intervention in their pavement management system (PMS) 
to improve rideability and reduce user costs. However, a number of studies [1–4] have indicated that 
the IRI is not suitable for characterising pavement rideability for heavy vehicle occupants. This was 
confirmed through anecdotal instances reported by heavy transport operators, where they com-
plained about the rideability of road sections with IRI values much lower than the intervention level 
(> 4 m/km for major freight routes). 

This paper describes the outcomes of a research project sponsored by Vicroads to address the problem 
of pavement rideability as perceived by heavy freight transport operators. The aims of the project are:

to identify road surface characteristics that affect driver comfort and perception of pavement ride • 
quality on Victoria’s rural arterial network; and 
to develop a profile-based roughness measure that can be used in their PMS to highlight sections • 
with poor ride for heavy vehicle drivers at network level. 

The aim of this paper is to report on the development and validation of a new roughness index 
called the Heavy Articulated Truck Index (HATI) and its effectiveness in identifying sections provid-
ing poor ride quality to heavy vehicle occupants and as a predictor of pavement damage due to 
dynamic wheel loads. 

IRI as a measure of truck ride1.1 

The reason that the IRI is not suitable as a measure of truck ride is that it represents the vertical 
response of a passenger car to road input, which is different to truck response.  Fig. 1, Cebon [5] shows 
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a comparison between the vertical responses to road input of a quarter truck model (QTM) and the 
quarter car model (QCM) used in calculating the IRI. It can be clearly noticed that both response 
functions have two peaks at the same excitation frequencies but with different amplifications i.e. 
gains. The QTM is much more responsive (high gain) at the low frequency peak, which corresponds 
to excitation of the body bounce vibration mode, and less responsive at the high excitation frequency 
of axle hop. The opposite is true for the QCM. Low frequency vibration modes of the truck body are 
excited by the longer wavelengths of the roughness spectrum (> 3 m) and the high frequency ones 
are excited by the medium and short ones (< 3 m). The latter is the result of deterioration in the upper 
layers of the pavement and the first develops as a result of heave and subsidence of expansive soil 
subgrade due to seasonal moisture variation, or settlement of soft soils.

Road characteristics and truck ride1.2 

Road surface irregularities with different lengths and amplitudes excite several vibration modes of 
the truck body at different frequencies and magnitudes. The resulting motions detract from driver 
comfort and perception of pavement ride quality. Road characteristics that may affect truck ride 
include the following:

Elevation variation within the wheel paths, which induces vertical motions due to excitation of the • 
truck body bounce, body pitch and axle hop vibration modes. They may also result in longitudinal 
(fore/aft) motion due to excitation of body pitch and frame bending modes. These modes occur at 
frequencies between 1.5 and 10 Hz.
Roughness variation between the wheel paths, which induces sideway and longitudinal motions • 
due to excitation of the truck body roll and pitch vibration modes, respectively. 
Variation in road crossfall, which excites truck body roll vibration mode and results in sideways • 
and rotational motions. Body roll occurs at frequencies below 1 Hz. 

This implies that an optimum truck ride measure should be capable of capturing all these 
motions. However, the findings of surveys of whole body vibration (WBV) exposure levels expe-
rienced by Australian heavy vehicle drivers indicated that the weighted vertical vibrations are the 

Figure 1: Frequency response functions of quarter truck and car models to road input [5].
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dominant ones [1, 6]. The highest measured vertical accelerations on rural arterials in Victoria 
occurred in the range of 1–4 Hz as can be observed in Fig. 2 [1]. The magnitudes of these accel-
erations are so high that they affect driver comfort and perception of ride, although the human 
body is most sensitive to vertical vibration in the frequency range of 4–10 Hz [7]. These results 
indicate that road input in the high frequency range is being successfully attenuated by vehicle and 
suspension design. Accordingly, it is reasonable to assume that a measure that characterises vertical 
vibrations of a truck in the frequency range of 1–4 Hz could be a good indicator. At normal highway 
speeds (60–100 km/h), these low frequency modes are excited by long roughness wavelengths in the 
range of 4–27 m. The wavelength (m) equals the speed (length per second) divided by the frequency 
(cycles per second).

DEVELOPMENT OF HATI2 
This section provides a brief description of the subjective assessment survey conducted to identify 
road surface characteristics that affect the comfort and perception of heavy vehicle drivers on rural 
arterials in Victoria. Also provided are the analysis method, results and details of the HATI model 
and scale.

Subjective rating survey2.1 

HATI was developed using a subjective rating survey of the ride quality of 27 sections from two 
major freight routes in rural Victoria/Australia. The test sections ranged in length between 200 and 
1000 m and covered different levels of roughness ranging between 1.11 and 4.24 m/km IRI. Most of 
Victoria’s rural highway network comprises spray-sealed thin granular flexible pavements founded 
on expansive subgrade soils with different reactivity levels and lie in different climatic regions. 
Hence the test sections were selected to cover a wide range of soil reactivity/climate combinations. 
They have straight and flat alignments and are situated in 100 km/h speed zones. The test vehicles 
consisted of prime-mover semi-trailer combination units with different properties such as suspen-
sion system, cabin configuration and age. 

The ride quality of each section was rated by a panel of 10–15 heavy vehicle drivers. The drivers 
performed the rating exercise during their normal transport operations. The rating scale used in the 
subjective assessment survey ranged between zero (0) for extremely poor to 5 for perfect as shown 
in Fig. 3. 
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Figure 2: Acceleration spectra in the vertical direction measured on the driver seat.
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Reliability of ratings2.1.1 
The reliability of drivers’ ratings was tested for the whole data set. The measure of reliability and 
agreement between the raters used is Ebel’s intraclass correlation coefficient (ICC) [8]. The ICC 
gives the reliability of the average rating for all the judges and is used as the appropriate measure of 
reliability when the ratings of the judges were averaged to form a score for each section as the case 
herein. The ICC was calculated using the results from one-way analysis of variance (ANOVA), 
which included the between subjects variance (between groups) and the error variance (within 
groups) [8]. One-way ANOVA was performed on the whole data set using the ratings as the depend-
ent variable and roughness (IRI) of the test sections as the independent variable. The value of ICC 
calculated from ANOVA output is 0.89, which indicates that there is very good agreement between 
the different drivers. 

Data analysis2.2 

Data analysis involved applying power spectral density (PSD) function to the longitudinal surface 
profile data of the test sections and calculating roughness contents in different wavebands of the 
roughness spectrum, represented by the root mean square (RMS) index. The latter represents the 
area under the PSD curve within the roughness waveband of interest. This index is computed by 
integrating the PSD function and applying a weighting function. A weighting of one was assigned to 
the band of interest and a weighting of zero to the remainder of the spectrum. 

RMS values of the different sections were then correlated to the corresponding subjective data to 
identify the roughness waveband that highly influences drivers’ perceptions of pavement ride quality 
i.e. the waveband with the highest correlation coefficient. The subjective measure that was used is 
the mean panel rating (MPR), i.e. the sum of individual ratings for each test section divided by the 
number of raters for that section. 

The analysis results showed that truck drivers mainly object to sections with high contents of long 
roughness wavelengths in the range of 5–20m. Calculating the profile-based roughness index in this 
waveband for a section requires performing PSD analysis, which involves performing Fast Fourier 
Transform Function (FFT) on the profile data of that section. The number of sampled points that can 
be used by the FFT must be N = 2 raised to the power of I, where I is an integer from 1 to 12 i.e. a 
maximum total of 4100 sample points. This limitation makes the calculation of a profile-based index 
using PSD analysis not feasible for managing pavements at network level. The reason is that the 

Figure 3: Rating scale used in the subjective rating survey.
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profile data is stored in an average length of 15 km, equivalent to approximately 400,000 sample 
points at 0.0401 m sample interval. 

Accordingly, attempts were made to develop another index using an analysis method other than 
PSD. The latter involved applying different types of filters covering the roughness waveband of 
interest and weighting functions to road surface profile data of the test sections. MPR values were 
then correlated with the different profile-based roughness measures. HATI filter proved to be the best 
measure with a correlation coefficient of –0.91, compared with –0.82 for IRI. 

HATI model and response function2.3 

HATI is a profile-based index for identifying pavement sections providing poor ride quality for heavy 
transport operators. It is a distance-domain index which makes it suitable for use in pavement man-
agement at network level. HATI of a road section is determined by processing the longitudinal surface 
profile data of the section through a quarter truck filter (QTF) with the following properties: 

Travel speed =100 km/h = 27.7777 m/s• 
Ms = Sprung mass = 1• 
Ks/Ms = suspension stiffness = 250 s•  –2

C•  s/Ms = suspension damping = 30 s–1

µ/Ms = unsprung mass = 0.150• 
Kt/Ms = tyre stiffness = 400 s•  –2

B = tyre enveloping (base length) = 250 mm• 
Initialisation distance = 19 m• 

The vertical response for HATI QTF to road input is shown in Fig. 4. The properties and frequency 
response of HATI QTF are based on those of a QTM described in Austroads [2] for a driver/seat/truck 
model. HATI QTF frequency response was determined by excluding the effect of the driver/seat filter. 
HATI captures the effects of vertical and longitudinal excitations of the low frequency body bounce 
and pitch vibration modes due to its sensitivity to long wavelength roughness (LWR).

HATI is easy to calculate using the same software for calculating the IRI but replacing the para-
meters of the QCM by those of HATI QTF. Similar to the IRI [9], HATI is calculated by converting 
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Figure 4: Frequency response function of HATI quarter truck model to road input.
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the profile data to slope and then filtering it through the QTF. The simulated vertical response of 
vehicle body (represented by the QTF) to road input, called the Profile Index (PI), is accumulated 
using an exponent of 2 for root mean square (RMS) slope. HATI is then determined as the average 
of PI values of the outer (OT) and inner (IN) wheel paths and calculated using eqn (1). HATI has 
units of slope, mm/m or m/km. HATI QTF is only sensitive to excitations by LWR > 3 m. The highest 
gain (> 0.9) occurs in the frequency range 2–3.5 Hz, which can be excited by roughness wavelengths 
8–14 m when travelling at 100 km/hr.
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HATI scale2.4 

To give the users an indication of what HATI values mean, MPR and the corresponding HATI values 
were used to develop a statistical transform. This transform, called Truck Ride Number (TRNHATI), 
predicts MPR from the profile index, HATI (in mm/m), has the form shown in eqn (2) and a coeffi-
cient of determination (r2) of 0.90. This transform can predict drivers’ perceptions of pavement ride 
quality with an accuracy of +0.3 of a scale point at 95% confidence level. HATI is a better predictor 
of MPR than IRI. IRI explains 76% (r2 = 0.76) of the variation in MPR.

 
0.92255HATI

HATITRN 5e−=  (2)

A scale, Table 1, for HATI values and corresponding perceptions was also developed using this 
transform and validated using actual drivers’ ratings. The threshold value between acceptable and 
unacceptable ride is 1.7 m/km, which results in a TRNHATI < 2.5. These values apply to heavy 
articulated vehicles travelling on state highways at 100 km/hr. HATI values at other speeds are  
different and, similar to the IRI, scales for the different speeds need to be developed. 

Effects of vehicle and driver factors2.5 

The effects of factors related to the drivers and vehicle properties on drivers’ ratings were tested 
using factorial analysis of variance (ANOVA). Factors related to drivers included age, weight and 
years of driving experience and vehicle factors included size, age, cabin location, drive axle suspen-
sion type and loading condition. The details of the analyses can be found in [1].

The effects of these factors were found to be not significant except for cabin configuration. Cabin 
above engine configuration was found to provide a poorer ride than the cabin behind engine  
configuration [1]. However, considering that the drivers who travelled in trucks with cabins above 

Table 1: HATI and TRNHATI scale.

HATI (m/km) Perception TRNHATI scale

< 0.5 Very good 4–5
0.5–1.20 Good 3–4
1.20–2.20 Fair 2–3
2.20–4.0 Poor 1–2
> 4.0 Very poor 0–1
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engines comprise the majority of the sample, this makes HATI valid for the worst cases of vehicles 
considered in the study. This implies that HATI is applicable for these conditions but needs to be 
validated for other soil/climatic conditions and truck configurations.

Effect of subgrade soil reactivity and climate2.6 

As mentioned earlier, the rating sections are located in expansive soil areas but with different  
reactivity levels and lie within different climatic conditions. Expansive soils have the potential for 
shrinking or swelling under changing moisture conditions. Movement in expansive soils usually 
occurs in an uneven pattern resulting in distortion of the longitudinal profile of the pavement surface 
and the development of LWR. Climate (extent of seasonal moisture variation) and soil reactivity 
(composition/mineralogy) influence the extent of LWR development and ultimately HATI values. 
The extent of soil movement is also influenced by a number of factors including permeability of 
pavement material, shoulder condition (sealed or unsealed), extent of gilgai formation and availability 
and condition of available surface and subsurface drainage. 

Examination of the data showed that road sections founded on highly reactive subsoils and located 
in problematic climate zones are associated with high HATI values. Fig. 5 shows that HATI values 
for such sections (High) are higher than those of sections with similar IRI values, but overlay low 
reactivity subsoils and lie within climate zones that are less prone to having problems (Low). 

VALIDATION OF HATI3 
The effectiveness of HATI in highlighting sections with poor ride quality for heavy transport  
operators and its applicability to other regions was validated using two data sets. The study objective 
and the approach adopted in addressing them are highlighted here:

Validating HATI and assessing its applicability to other regions by establishing whether the can-• 
didate sections from the two data sets are associated with HATI values greater than the threshold 
(1.7 m/km) or not.
Identifying the characteristics of sections associated with HATI values more than threshold that • 
may contribute to the deteriorated ride. 
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Figure 5: Effect of subgrade soil reactivity and climate on HATI values.
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The following sections provide descriptions of the two data sets, the analysis of the data and a  
summary of the findings.

Description of the data sets3.1 

The data sets included long sections from rural arterials in Victoria/Australia and from New Zealand, 
which included subsections that were identified by truck drivers to provide poor ride quality. 

Vicroads (VR) data3.1.1 
Nine sections were considered in this study ranging in length between 1 and 5 km (a total of 209 100 m 
segments). All these sections were located in expansive soil areas but with different reactivity levels 
and lay within a climatic region prone to having soil movement problems. The data set included  
raw Multi-Laser Profiler (MLP) data for these sections. Geometry data for these sections were not 
available. 

New Zealand (NZ) data3.1.2 
The data included geometric and longitudinal profile data for a section of a state highway along the east 
coast of the South island (Canterbury and Marlborough regions) where mainly sediments (non- 
expansive) make up the subgrade soil. The data also included the locations of the subsections that were 
identified by the drivers to provide unpleasant ride, which included seven long sections ranging in 
length between 1 and 12 km (a total of 282 100 m segments). Geometry data included longitudinal 
grade and curvature for 100m segments and crossfall data were reported at 10 m intervals.

Validation analysis and findings3.2 

For each data set, HATI and IRI values were calculated for every 100 m segment. The IRI values 
were also calculated for every 10 m sections in the outer and inner wheel paths and were then used 
to calculate the standard deviation of their averages (STDave) and differences (STDdiff) over 100 m 
segments. Considering wheelbase dimensions of prime mover semi-trailer combination units, 4 m 
(6.2 m max) for the prime mover to about 10 m for trailer (12.5 m max), variations over 10 m  
segments were considered to be suitable. The crossfall data for NZ sections were used to calculate 
the standard deviation of crossfall (STDCF) for 100m segments in the same manner. Careful 
examination of the two data sets indicated the following:

Of Vicroads’ 100 m sections, 62 have HATI values > 1.7 m/km. • 
These sections were found to be at the same locations identified by the drivers.  ˚ 50% of them are associated with high STDdiff values.  O̊f NZ’s 100 m sections, 73 have HATI values > 1.7 m/km.• 
These sections closely matched the locations identified by the driver. ˚ 70% of these sections have high STDdiff values. ˚ Assessment of their geometric characteristics showed that 60% of them are located in areas  ˚ with high variation in crossfall and curvature and high gradients. The remaining 40% of these 
sections have no geometric problems. The poor rideability of the latter sections is believed to 
be caused by the vertical vibrations excited by long and medium wavelength roughness, which 
are developed as a result of subgrade soil settlement or poor longitudinal alignment.

For both data sets the majority of sections with HATI values > 1.7 m/km have IRI values > 3 m/km • 
and a great proportion of them have IRI values > 3.5 m/km as shown in Fig. 6.
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Assessing the contributions of geometric characteristics and roughness variation3.3 

Road surface roughness and geometric characteristics that may contribute to the deteriorated ride 
include roughness variation within and between the two wheel paths, curvature, superelevation, 
crossfall and gradient. Roughness variation within and between the two wheel paths of a section and 
crossfall variation have the following effects: 

Longitudinal elevation variations along the wheel paths of a section present vertical excitation • 
(body bounce and pitch) input to the vehicle body and can be represented by the standard devia-
tion of average roughness (STDave) of the two wheel paths. 
The rotational roll and pitch input to the vehicle body could be represented by the standard devia-• 
tion of crossfall (STDCF) and the standard deviation of the difference in roughness between the 
two wheel paths (STDdiff).

The STDave, STDdiff and STDCF for each 100 m segment of the NZ data set were used with 
other variables including crossfall (CF %), curvature (inverse of horizontal curve radius, m–1) and 
longitudinal gradient (Grade %) to develop a regression model. Multiple regression analysis was 
used to evaluate how these variables relate to drivers’ perceptions represented by TRNHATI and to 
assess their contributions. The values of TRNHATI were calculated using HATI values of the sections 
and applying the model shown in eqn (2). 

Table 2 presents the parameters of the best model for this data set. The results indicate that the 
contributions of curvature, absolute values of crossfall and longitudinal gradient are not significant 
(at 95% confidence level) and were excluded from the model. The variable STDave is the most  
significant contributor (high partial r) followed by STDdiff then STDCF. This model explains about 
69% of the variation in TRNHATI (r

2 = 0.69). The contributions of the different variables can be 
assessed by squaring the relevant (partial r) value. They are: STDave = 42%, STDdiff = 15% and 
STDCF = 4%. The remainder of the variation in TRNHATI is explained by their joint contribution. 
This model indicates that driver rating of pavement rideability increases (better ride) with decreased 
roughness variation and STDCF.
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These results indicate that in addition to elevation variation along and between the wheel paths, 
crossfall variation is an important parameter in assessing pavement rideability as perceived by truck 
drivers. The variables STDave, STDdiff and STDCF were plotted against the predicted TRNHATI 
values to identify the threshold values for these parameters that result in TRNHATI values < 2.5. It 
was found that for STDave and STDdiff (see Fig. 7), the threshold value is 1.5. For STDCF values, 
the results showed that 60% of the sections with TRNHATI < 2.5 have STDCF > 1.5 and 50% of them 
have STDCF > 2, hence the threshold value was set to 1.5. 

Assessing suitability of IRI3.4 

Results from a study in Sweden relating whole WBV to surface roughness indicated that a roughness 
level of IRI > 3 m/km results in ‘uncomfortable’ ride in trucks (new and old) at 75 km/h and in a high-
speed ambulance [10]. The Swedish study also showed that the excitation of WBV in road vehicles 
riding rough roads is largely caused by crossfall variation and LWR. PSD plots of the vibration series 
showed that high levels of vibration energy occur at low frequencies, excited by LWR [10]. 

An IRI value > 3 m/km was found to have a 65% success rate in highlighting sections, of the 
validation set, with HATI > 1.7 m/km. However, no specific criterion was established or observed to 
signify these sections, which makes further investigations essential to establish the cause of ride 
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Table 2: Best multiple regression model for NZ data set.

Variables

Unstandarised  
coefficients Standarised 

coefficients  
Beta Sig.

Correlations

B Std. Error Zero-order Partial Part

Constant 3.986 0.050 0.000
STDave –0.667 0.048 –0.587 0.000 –0.785 –0.664 –0.470
STDdiff –0.286 0.040 –0.295 0.000 –0.660 –0.392 –0.238
STDCF –0.47 0.014 –0.116 0.001 –0.286 –0.199 –0.113
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deterioration i.e. whether it is short or long wavelength roughness. The latter is hard to determine 
without conducting waveband analysis since IRI is responsive at high and low frequencies with 
higher responsiveness to the first (Fig. 1). 

High contents of short wavelength roughness (< 2 m long) such as corrugations, potholes and 
localised depressions result in vertical motion due to excitation of the axle hop vibration mode. IRI 
would accurately indicate these sections. However, studies have shown that new vehicle design  
(suspension systems including seat and cabin suspensions) alleviates the vertical vibrations resulting 
from excitations by these deformations. This indicates that sections with high IRI and low HATI 
would provide poor ride to vehicles with poor suspension system design. However, the effects of 
LWR on ride cannot be eliminated by vehicle design but by road works, which would involve special 
treatments to control moisture migration and soil movement.

Summary of analysis results3.5 

The findings of validation analyses are summarised here:

HATI proved effective in highlighting most of the sections identified by heavy articulated vehicle • 
drivers as providing poor ride quality in expansive soil areas of Victoria.
HATI is applicable to other regions, soils and climatic conditions. It proved to be effective in • 
highlighting sections that appear rough to heavy vehicle drivers along the coast of the Canterbury 
region in NZ where mainly non-expansive sediments make up the subgrade soil.
HATI is more effective than IRI in highlighting candidate sections in Victoria. This is mainly due • 
to its sensitivity to long wavelength roughness, which is a characteristic of pavements built on 
expansive soils. Long roughness wavelengths are usually associated with high variations in eleva-
tion, hence result in high vertical accelerations. WBVs measured on most sections with HATI  
values more than threshold were greater than 0.7 m/s2, which corresponds to a fairly uncom-
fortable ride [1]. Further, the results of multiple regression analysis for NZ data confirmed that 
the vertical excitation input, attributed to the variation in roughness within the two wheel paths 
(STDave), has the highest contribution to the deteriorated perceived ride.
Most sections with HATI > 1.7 m/km are associated with high roughness variation (STDdiff >  • 
1.5) between the two wheel paths (both data sets) combined with high crossfall variation  
(STDCF > 1.5) for some sections (NZ data). These characteristics are responsible for inducing 
rotational motions due to excitation of body roll and pitch vibration modes.
Road geometry and roughness variations within and between the two wheel paths have serious • 
implications on how truck drivers perceive pavement rideability. Roughness variation variables 
were found to have the highest contributions and there is some contribution from crossfall varia-
tion. The same variables were identified in a NZ study [3] as the main parameters for highlighting 
rough sections with almost the same order of significance. 

Implementation3.6 

Vicroads and other Australian State Road Authorities (ASAR) have adopted HATI in their pavement 
management systems to identify sections providing poor rideability to heavy transport operators.  
By adopting HATI and the other diagnostic measures proposed herein, ASRA can:

provide better level of service to all road users including heavy vehicle drivers, • 
ensure asset sustainability by selecting appropriate rehabilitation treatments, and• 
reduce emissions and user costs as a result of improved road smoothness.• 
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HATI AND DYNAMIC WHEEL LOADS4 
The interaction between road surface roughness and heavy vehicle body results in dynamic wheel 
loading (DWL), which increases pavement damage. The magnitude of these loads is dependent on 
surface roughness level and characteristics in addition to other factors such as speed and heavy vehi-
cle properties. When travelling at normal highway speeds roughness wavelengths, within the 
frequency band to which HATI QTF is sensitive, excite the low frequency vibration modes of heavy 
vehicle body such as body bounce and pitch modes. As these modes are considered to be the major 
contributors to DWL [4, 11, 12], it was hypothesised that HATI could be a good predictor of the 
magnitude of DWL and associated pavement damage. 

To investigate the effectiveness of HATI in highlighting sections subject to high DWL, simulation 
of dynamic wheel forces was performed on a subset of the test sections used for developing HATI. 
The sections were selected to cover a wide range of HATI values that can be found in the original 
data set. Four pairs of the sections were chosen to have similar IRI values in order to investigate the 
differences in vehicle dynamic response on such sections. As mentioned before, they are located in 
expansive soil areas but with different reactivity levels and lie within different climatic zones. They 
are combined here in two groups and referred to as low and high reactivity regions. Low reactivity 
region includes sections located in low reactivity soils and within climatic zones that are not prone 
to having problems. High reactivity region refers to sections built on highly reactive soils and located 
in problematic climatic conditions i.e. high seasonal moisture variations.

Simulation and correlation analysis4.1 

Computer simulations were carried out on the profile data of the selected sections using a full vehicle 
model to measure the DWL associated with the drive and trailer axle groups. The vehicle model used 
in the simulation is a prime-mover semi-trailer combination unit with tandem drive and trailer axles, 
both fitted with airbag suspensions. The simulation results included the distribution of the dynamic 
wheel forces associated with all axles in the outer (OT) and inner (IN) wheel paths sampled at 0.005 s 
intervals. These dynamic wheel forces were reduced to a simple parameter called the Dynamic Load 
Coefficient (DLC) [13]. The DLC provides a measure of the variation of DWL and is determined as 
the ratio of the standard deviation of the forces to the mean tyre force [13]. 

For the purpose of this study, only the forces generated by the leading axles of the tandem drive 
and trailer axle groups were considered. The DLC value for each section was determined by averag-
ing the DLC values of the two axle groups in both wheel paths. Fig. 8 shows the DLC values for the 
test sections with similar IRI values. The figure clearly indicates that sections in high reactivity 
region (high) are associated with higher DLC values than those in low reactivity region (low) as they 
have higher HATI values. 

Further analysis4.2 

To establish a reliable regression model that can predict the dynamic performance of the vehicle 
(represented by the DLC) more data points were required. To achieve this, the profile data of each 
test section was divided into 100 m subsections resulting in a total of 31 sections. Their HATI and 
IRI values in both wheel paths and their averages were determined. Knowing the simulation speed, 
100 km/hr (27.78 m/s), it was also possible to calculate the DLC values for each 100 m subsection 
of the test sections from the original dynamic forces signals. The original signal (load vs time) of 
each section was divided into segments of 3.6 seconds, then the mean and standard deviation of the 
loads for each segment were calculated to produce the DLC. 
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The DLC average values for the test sections were correlated with the corresponding HATI and 
IRI values. The correlation coefficients are presented in Table 3 for all sections combined, and when 
grouped by region reactivity level. These results indicate that both HATI and IRI are good indicators 
of pavement sections subject to high DWL in low reactivity regions. HATI is a better predictor of 
pavement damage due to DWL, represented by the DLC than IRI as it can explain 90% of the vari-
ation in DLC compared to the 85% explained by the IRI. Both models were found to be significant 
at 95% confidence level. On the other hand, both HATI and IRI proved to be poor indicators of the 
dynamic behaviour of road pavements in high reactivity regions. 

Further analysis was undertaken to test other profile-based indices as predictors of DLC. They 
included a number of 4-pole butterworth band pass filters in the wavebands of interest. The butterworth 
band-pass filter is defined by the short and long wavelengths where the filter gain is 0.707 as shown in 
Fig. 9a. The output of the filter is reduced to yield RMS slope value called Profile Index (PIb). The PIb 
values of the two wheel paths are averaged using a similar formula to eqn (1). The wavebands tested 
cover the frequency bands where the peak forces were observed in the DWL spectra for all sections as 
can be seen in Fig. 9b for one section. These frequency bands are described here. The subscript next to 
PIb of each band represents the relevant vibration mode of the waveband.
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Figure 8: DLC values for sections with similar IRI values.

Table 3: Correlation results between HATI, IRI and the DLC.

Variable 

DLCave

All, n = 31 Low, n = 16 High, n =15

IRI 0.46 0.88 0.42
HATI 0.60 0.92 0.46

dwl br bbPI PI PI= +
0.81 0.93 0.88

dwl br bb baPI = PI +PI +PI
0.71 0.94 0.69
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PI•  br = profile index (PIb) in body roll (r) frequency band 0.4–0.8 Hz, wavelengths at 100 km/hr = 
34.7–69.4 m
PI•  bb = profile index in body bounce and pitch (b) frequency band 1.5–4 Hz, wavelengths at  
100 km/hr = 6.94–18.52 m 
PI•  ba = profile index in axle hop (a) frequency band 8–15 Hz, wavelengths = 1.85–3.47 m

The DWL index, PIdwl, which is determined by taking the square root of the sum of roughness 
contents in two frequency bands represented by the RMS of PIbr and PIbb proved to be the best pre-
dictor for low (r2 = 0.90, similar to HATI) and high (r2 = 0.83) reactivity regions and for all sections 
(r2 = 0.80), refer to Table 3. Adding roughness content in the frequency band of PIba improved the 
predictions (r2 = 0.93) for low reactivity sections only. All these models were developed using power 
transformation and were found significant at 95% confidence level.

These results indicate that the contribution of the high frequency excitation (axle hop) to DWL 
is only significant for sections in low reactivity regions. However, the contribution of the low 
frequency (body bounce and pitch) excitations is significant for all the test sections considered 
herein. Further, the results indicate that the contribution of body roll excitation is only significant 
for sections in high reactivity regions. The profile characteristics of these sections were examined 
carefully and it was found that they are associated with high variations in profile elevation between 
the two wheel paths, as can be seen in Fig. 10 for one of the test sections. This variation results in 
exciting the body roll motion, which occurs at very low frequencies (0.4–0.8 Hz) for the simula-
tion vehicle. However, further testing is required before a final conclusion can be drawn regarding 
the contribution of body roll.

CONCLUSIONS5 
This paper provided a description of the methodology and outcomes of a research project to address 
the problems of pavement rideability as perceived by heavy vehicle operators. Road surface char-
acteristics that affect the comfort and perception of heavy vehicle drivers were found to include 
high contents of LWR only or combined with high roughness variation between the wheel paths 
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Figure 9: (a) Butterworth band pass filter and (b) dynamic wheel loads spectrum for a test section.
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and/or high variation in crossfall. Long roughness wavelengths are associated with high elevation 
variations that induce vertical and longitudinal motions due to excitation of body bounce and pitch 
vibration modes. Variation in roughness between the two wheel paths and crossfall variation induce 
longitudinal and sideway motions due to excitation of body roll and pitch vibration modes. LWR 
occurs as a result of subgrade soil movement due to settlement of soft soils or differential movement 
of expansive soils due to seasonal moisture variation. 

A profile based index called HATI has been developed to identify sections providing poor 
ride to heavy vehicle occupants. HATI is a distance-domain index and easy to determine, which 
makes it suitable for pavement management at a network level. Validation analysis using two 
data sets from New Zealand and Victoria proved that HATI is effective in identifying such sec-
tions in different regions, soil types and climatic conditions. The analysis also showed that 
climate and reactivity of the subgrade soil have great influence on roughness characteristics of 
pavement surfaces and their dynamic interaction with heavy vehicles. Sections in high reactiv-
ity regions are associated with high contents of LWR and ultimately high HATI values and 
subject to high DWL.

Limited analysis also showed that HATI is effective in identifying sections subject to high DWL 
in areas with low reactivity soils and located in climatic zones that are not prone to having problems. 
Analysis of the simulated DWL also showed that most of the contribution to DWL, of the test sec-
tions in high reactivity regions, is attributed to excitation of the low frequency body bounce, pitch 
and roll vibration modes. A new DWL index, PIdwl, proved to be a better predictor of DWL induced 
damage for all the sections tested herein. The adoption of such index is beneficial to road authorities 
as it removes the need for using simulation programs in identifying road sections subject to high 
DWL. The proposed DWL index however, requires validation and further simulation studies to test 
its applicability to other representative fleet vehicles.

Vicroads and other Australian State Road Authorities have adopted HATI in their pavement man-
agement systems to identify sections providing poor rideability to heavy transport operators. 
Adopting HATI and the other diagnostic measures proposed herein helps road authorities implement 
appropriate maintenance strategies to ensure the sustainability of their pavement assets and reduce 

Figure 10: Elevation profiles in the outer (LElev.) and inner (RElev.) wheel paths for a test section.
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emissions generated by heavy and light vehicles, in addition to providing acceptable level of service 
to all road users. 

The findings of this study are applicable to heavy articulated trucks, in particular, prime-mover 
semi-trailer combination units. However, the methodology is transferable and could be applied to 
other freight transport vehicles but the results need to be validated using subjective assessment  
surveys.

REFERENCES
Hassan, R.,  [1] Assessment of Road Roughness Effects on Heavy Vehicles on State Highways in 
Victoria/Australia, PhD Thesis, Swinburne University of Technology: Melbourne, Australia, 
2003.
Austroads,  [2] A Road Profile Based Truck Ride Index (TRI), AP-R177/00, Austroads: Sydney, 
Australia, 2000.
Jamison, N.J. & Cenek, P.,  [3] Validation of a Proposed Truck Rotational Response Model, Central 
Laboratories Report 02-529706.00, Opus International Consultants Limited: New Zealand, 
2002.
Papagiannakis, A.T. & Gujarathi, M.S., Roughness model describing heavy vehicle-pavement  [4] 
interaction. Transportation Research Record, 1501, pp. 50–59, 1995.
Cebon, D.,  [5] Interaction between Heavy Vehicles and Road (The 39th L. Ray Buckendale  
Lecture), SAE: Pennsylvania USA, 1993.
Sweatman, P. & McFarlane, S.,  [6] Investigation into the Specification of Heavy Trucks and  
Consequent Effects on Truck Dynamics and Drivers, Final Report, Federal Office of Road 
Safety: Australia, 2000.
International Standard Organisation (ISO) 2631-1,  [7] Mechanical Vibration and Shock Evalu-
ation of Human Exposure to Whole Body Vibration, Part 1 General Requirements, 2nd edn, 
International Organization for Standardisation, 1997.
Cramer, D.,  [8] Fundamental Statistics For Social Research, step-by-step calculations and  
computer techniques using SPSS for Windows, Routledge, London/New York, 1998.
Sayers, M.W. & Karamihas, S.M.,  [9] The Little Book of Profiling, The University of Michigan, 
Transportation Research Institute: USA, 1998.
Granlund, J., Ahlin, K., & Lundström, R., [10] Whole Body Vibration When Riding on Rough Roads, 
Vagverket Publication 2000: 31E, Sweden, 2000.
Cebon, D., [11] Handbook of Vehicle Road Interaction, Swets & Zeitlinger Publishers: London, 
1999.
De Pont, J., [12] Road Profile Characterisation, Transit New Zealand Research Report No. 29, 
1994.
Sweatman, P.F., A Study of the Dynamic Wheel Forces in Axle Group Suspensions of Heavy [13] 
Vehicles, ARRB Special Report No. 27, 1983.


