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Nowadays, relevant actors are searching for solutions to produce energy with a low impact 

on the environment. Indeed, transmitting power via large distances with maintaining low 

losses is one of the main challenges. To improve electricity communication between 

countries and offshore wind, a new interconnections line must be built. Therefore, Voltage 

Source Converter High Voltage Direct Current (VSC-HVDC) transmission is incoming as 

the exceptive technology in order to address the challenges related to the integration of 

future offshore wind power plants. In spite of its many advantages, VSC-based HVDC 

transmission systems can experience unexpected instability and interaction phenomena: 

Small disturbances that occur continually in VSC-HVDC transmission systems due to the 

complex VSC based interconnections and an important number of components with non-

linear nature that may cause failure. Thus, before installing the HVDC system, there is a 

significant need for studying a hybrid AC-DC system to guarantee the reliable and stable 

operation. This paper deals with the stability of a VSC-HVDC system by the use of a small 

signal stability method; such procedure enables to study the stability of a linearized VSC-

HVDC system through state-space modeling and eigenvalue-based stability analysis.  
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1. INTRODUCTION

The environment is facing today a worldwide energy

evolution challenge since developed and budding countries 

require more energy for their economy growth in a structure 

of limited and poorly distributed energy resources. In the same 

time, the climate change because of the greenhouse gas 

emission which induces the change of the energy aspect with 

more climate-friendly energy resources such as hydro, solar or 

wind renewable resources [1].  

The integration of the offshore wind power will aid many 

countries to attain their objectives in terms of renewable 

energy. Since future offshore wind farms are predicted to be 

built farther away from shore and have larger capacities than 

today. It shows the way to new challenges concerning grid 

connection, for large distances longer than 100 km [2]. In the 

second half of the 20th century, it becomes possible to start 

projects of DC links for the transmission of power beyond the 

seas thinks to the development of electronic power 

components, for example: (Italy-Corsica-Sardinia, France-

England or Those in the Baltic Sea) [3] or over very long 

distances. 

For long-distance, HVDC technology allows larger 

transmission capacity because of the nonexistence of reactive 

power generated by submarine cables which restricts the 

transmission capacity in HVAC [4]. Moreover, HVDC 

network is a reliable technology for connecting asynchronous 

networks. It enables also the transfer of the power between 

grid systems which have not the same values of frequencies; 

this act allows having a wind turbines higher production at the 

Maximum Power Point Tracking (MPPT). This enhances the 

economy and stability of each grid by permitting the 

interchanging of power through diverse networks [4, 5].  

In literature, there are two configurations of HVDC: 

Conventional Line-commutated converter (LCC) which is not 

appropriated to be connected to weak grids for example 

offshore wind farms. Voltage Source Converter technology 

(VSC) [6] which is the most preferred technology to connect 

islanded grids. The appearance of Voltage Source Converter 

(VSC) has prolonged the flexibility and operability of HVDC 

technology [3]. 

The connection of wind farm could be joined with DC 

interconnections between AC systems to enhance power 

transit flexibility between AC systems.  

The control principles and the protection scheme ought to 

be looked at before the achievement of such DC grids. With a 

view to guarantee that the HVDC grid is always stable even 

after major events, the stability problems have to be resolved. 

For example, the variation of the rotor angle of the wind 

synchronous machines which corresponds to the capacities of 

a coupled synchronous machine on an alternating three-phase 

network to maintain the equilibrium between the 

electromagnetic couple attached to the network and the 

mechanical couple related to the load [7]. Furthermore, the 

variations of the electrical frequency of alternative grids which 

correspond to the balance between the power spend on the 

network and the power generated from it. An important factor 

also is the stability of the bus voltage when it is submitted to a 

major variation: This means that amplitudes of the bus voltage 

which varies after each power step on the network will be 

stabilized around a point of equilibrium [8].  

Whenever a system is equilibrated at an operator point after 

a physical disturbance, we can say that this system is stable [9]. 

Normally, the study of system stability differs according to its 

type: linear or non-linear. 
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With the aim of studying the linear system stability, the 

eigenvalues evaluation method is the more used one [8]. For 

the non-linear system, the complexity of analysing the VSC-

HVDC system stability shows the way to make a linearized 

model around an operating point for this system. 

Small-signal stability analysis (SSSA) with power 

electronics has been studied while researchers specified the 

stability problems due to the control of the LCC. 

The integration of non-conventional power sources to the 

grid is enabled by the converters. Owing to the complexity of 

the power electronics converter, various instability and 

interaction phenomena have been noted in these types of 

systems. Indeed, small disturbances occur continually in the 

case of wind turbines and HVDC systems due to the 

continuous variation of the loads and generations. 

Modern works have investigated SSSA of VSC-HVDC 

system and have analysed the control strategy of a VSC-

HVDC chain connected to weak AC grids [10]. They have 

investigated control strategies of VSC-HVDC transmission in 

order to upgrade damping of electromechanical modes of AC 

systems [9]. In recent years, researchers are focused on 

studying the stability of power system equipped with power 

electronics using the eigenvalue method [11-13] or the 

impedance based method [14, 15]. Indeed, the impedance 

based method is utilized in the aim of regulating the converters 

of the VSC-HVDC system that assures the stability of the 

system and minimizing the interaction phenomena. But, the 

drawback of this method is the limited observability of some 

states considering its dependence on the definition of local 

source-load subsystems which insures the necessity of 

investigating the stability at different subsystems. 

State-space modeling and the eigenvalue study is a well-

established method which is used to study the stability of 

HVDC systems [11, 12].  

In the literature, amount of papers treat the primary control 

strategy of a VSC-HVDC system [16, 17]. However, rare of 

them which look to the impact of these controls on the stability 

of the HVDC system [18, 19]. Though, a state space system 

linearized model of the VSC-HVDC system is analysed in 

view of evaluating the stability.  

In this context, the work presented in this paper attempts to 

check the effectiveness of the system control used and to 

analyse the dynamic stability of a point to point VSC-HVDC 

transmission system by the use of its state space model and the 

analyse of the root locus. The eigenvalues of the system are 

retrieved and the root places are analysed after getting linear 

state equations. This is a simple procedure used for the sake of 

studying VSC-HVDC system stability. 

The three main sections of the rest of this paper are outlined 

as follows: The architecture of the studied VSC-HVDC system, 

the control strategy applied, the linearization of the total 

system and a comparison between the linearized and non-

linearized HVDC system are described in Section 2. The state 

space model of the total chain HVDC is then studied. Finally, 

in Section 3, the root locus analysis of the total system is 

detailed and the main conclusions are drawn in Section 4. 
 
 

2. A BASIC CONTROLLED POINT TO POINT VSC-

HVDC SYSTEM FROM AVERAGE TO LINEARIZED 

MODEL 
 

2.1 Study of two terminals VSC-HVDC controlled system 
 

The converter is outlined as a fundamental part of the VSC-

HVDC network. The fundamental ingredient of the converter 

is a permanent switch which is adapted to turn on or off a 

current [20]. The asymmetric structure of IGBT (Insulated 

Gate Bipolar Transistor) used in this VSC-HVDC system, 

enables lower on-state voltage droop and higher brazen 

voltage blocking capability at the expense of reverse voltage 

blocking capability efficiency reduced [21]. 

The VSC-HVDC scheme is shown in Figure 1. A DC cable 

is made as connection between the two VSC stations. On the 

DC side, capacitors permit to conserve the DC voltage and the 

phase reactors filter injected grid currents. On the AC side, the 

converter is connected to an AC network or a wind turbine 

with a transformer in order to insulate the station from the AC 

source and provides the appropriate AC voltage. The phase 

reactors associated with the transformer filter injected grid 

currents. Optional AC filters are exploited to supply the 

reactive power and also to filter Pulse-Width Modulation 

(PWM) harmonics.  

 

 
 

Figure 1. VSC-HVDC transmission system 

 

The various control methods developed in view of 

controlling the VSC-HVDC system can operate suitably in 

case of a communication failure. Specially the Master-Slave 

method and the Voltage Droop method [22]. The Voltage 

Droop method is typically used when more than one converter 

is controlling the DC voltage at the same time. On the other 

hand, the Master-Slave method is a simple control method 

adapted to command the VSC-HVDC system. Indeed, there is 

only one converter called Master one. It controls the DC bus 

voltage to keep it in a certain range. While the other converters 

which are called Slave, control their power by injecting or 

extracting the power to from the DC grid. For point to point 

HVDC structure the Master Slave control method is usually 

sufficient [22]. 

The dq rotating structure used for the modelling and 

controlling of an AC system is employed with the aim of 

attaining stationary electrical equations. To pathway the AC 

grid voltage frequency and the phase angle, a Phase Lock Loop 

(PLL) is applicated. In such a case, the q-axis voltage is null 

and the d-axis is synchronized with the grid voltage vector and 

has similar amplitude as the point of common coupling voltage 

vector. Thus, the active and reactive powers are separately 

controlled by current constituent [9]. 

As shown in Figure 2 which presents a VSC substation 

controlled in dq synchronous frame, the control system is 

divided into two parts: the inner control loop is used to control 

the currents (isd and isq) by adjusting d and q coordinates of 

modulated voltages (Vmd and Vmq) in the Park frame, and the 

outer control loop is used to achieve precise functions: The d-

axis current reference (isd-ref) can be generated by an active 

power or DC voltage controller. The q-axis current reference 

(isq-ref) can be obtained by a reactive power or AC voltage 

controller.  
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Figure 2. Point to-point controlled VSC-HVDC link 

 

where:  

Rs Ls: Resistance, Inductance of the phase reactors 

associated with the interface transformer filter. 

Cs: DC capacitors. 

Lsr: Smoothing reactors. 

Lg Cg: Inductance, Capacitance of the AC filter. 

(vgi, igi): The couple voltage-current of an AC grid. 

(usi, ici): The couple voltage-current of the DC bus. 

(vmdi-ref, vmqi-ref): Direct and quadrature control voltages of 

converter. 

(vmi, imi): Couple voltage-current delivered by the converter. 

(Pgi, Qgi): The active and reactive power through the system. 

(Usi-ref): The DC Voltage reference. 

(Pgi-ref, Qgi-ref): The reference active and reactive power 

delivered by the transformer. 

(Pmi, Qmi): Active and reactive power delivered by the 

converter. 

isi: The phase reactor current. 

ili: The cable current. 

uCci: The voltage cable. 

The i index ϵ {1, 2}, it indicates the station number. 

 

2.2 Stability study of the HVDC link via small signal 

stability method 
 

2.2.1 Linearization of a VSC-HVDC link 

The stability of a system is its capability, for an operating 

point to find equilibrium after a physical disturbance. 

Traditionally, the system stability is tested when it is 

submissive to small disturbance. Therefore, a linearized model 

of the system is created to analyse its stability [7-23]. In this 

part, we present a technique to model VSC-HVDC converter 

station for dynamic study. 

In this work, the converter is deemed ideal and it is 

simulated by its average model in view of not taking into 

account harmonics effects [24], which are not our a matter of 

interest in this work. Indeed, the average-value model of the 

converter has the same dynamic performance of the detailed 

model, it is also more efficient for simulation time steps as 

explained in the study [25]. In this section, the linearization of 

the various components of a HVDC liaison is presented. 

The general state space of a linearized system is expressed 

by [26]: 

 

{𝛥𝑋
.

= 𝐴𝛥𝑋 + 𝐵𝛥𝑈
𝛥𝑌 = 𝐶𝛥𝑋 + 𝐷𝛥𝑈

 (1) 

 

where, for each considered subsystem: ΔX is the state vector, 

∆U is the input vector and the output vector is presented by ∆Y, 

A is the state matrix, the input matrix is B, the output matrix is 

presented by C, and the feed-forward matrix is presented by D. 

We notice that the linearized block diagram of each 

subsystem presented in Figures 3, 4, 5 and 6 contains a 

proportional integral (PI) regulator. Therefore, to facilitate the 

creation of a global state space model, we choose to change 

the model defined by Eq. (1) to an increased one by adding a 

new state auxiliary vector "∆Z" to the main state vector "∆X" 

in order to eliminate the use of the controller [9]. Thus, the 

new state space system is obtained: 

 
. .

' ' ' ' '

' ' ' ' '

X A X B U

Y C X D U

 =  + 

 =  + 

 (2) 

 

With '
X

X
Z

 
 =  

 

 (3) 

 

where, ∆X’ is the new state vector, ∆U’ is the new input vector, 

the new output vector is presented by ∆Y’, A’ is the new state 

matrix, B’ is the new input matrix, new output matrix is given 

by C’ and finally, D’ is the new feed-forward matrix. However, 

when the state matrix A’ is. null, we fix the controlled state 

vector ∆U’ as: ∆U’=k∆X’. With: k is the gain matrix assuring 

the stability of the system. 
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A current controller linear model 

The model of the VSC-HVDC system associated to its 

current control loop as given in Figure 2 is the basic structure 

for such VSC system connected to grid. Disregarding the 

switching losses, power at both sides of the converter is the 

same: Assumptions are made with the aim of simplifying the 

complexity of the system and making the AC side of the VSC 

not to impact the DC system. With this assumption and 

referring to Figure 2, we can assume that: 

 

 

(4) 

 

Eq. (4) is not linear. So, with the aim of evaluating its 

stability, we should linearize the system around an operating 

point. Each quantity is prescribed by an operating point 

denoted by capital letter and the subscript 0, and a small 

variation denoted by the Greek symbol. After linearization, Eq. 

(4) becomes: 

 

0 0 0

0 0 0

mdi sd sdi md mqi sq

sqi mq si m mi s

V I i V V I

i V U I i U

 + +

+ =  +

 
(5) 

 

The i index refers to the station number which is in this case 

ϵ{1, 2}. 

Thus, the linearized current controller of a VSC is presented 

in Figure 3. 

The steady state error between the reference and the output 

current ought to be avoided by the integration of a PI controller 

in the current controller. The corrector gain of the current 

controller PI corrector is defined by: 

 

pi iiK p K
PI

p

+
=  (6) 

 

With: p presents Laplace Coefficient. The transfer function 

(TF) of the current control is the same for the two axes. The 

expression of the d-axis current control loop transfer function 

is expressed by: 

 

2

1

( )

1

pi

sd ii

pi s ssd ref

ii ii

K
p

i K
p

K R Li
p p

K K
−

+

=
+

+ +

 (7) 

 

The formulations of Kpi and Kii deduced from the pole 

placement method, are: 

 

2pv n sK w C=  and 2

ii s nK L w=  (8) 

 

where: 𝜁 is the damping ratio. 

𝑤𝑛
3

𝑇𝑟
 is the natural frequency [rad/s]. 

To create the new state space current controller, we choose 

new state variables ∆𝑍1𝑖 and ∆𝑍2𝑖 such as:  

 

1

2

( )

( )

i
sdi ref sdi

i
sqi ref sqi

d Z
i i

dt

d Z
i i

dt

−

−


=  −


 =  −



 (9) 

 

The vectors and the following matrices represent the new 

linearized current controller state space representation 

according to the system (2). 

 

1

2

'

sdi

sqi

si

i

i

i

i

X U

Z

Z

 
 

 
  = 
 
 
  

'
sdi ref

sqi ref

i
U

i

−

−

 
 =  

  

; '

sdi

sqi

si

i

Y i

U

 
 

 =  
  

 
(10) 

 

 
 

Figure 3. Linearized block diagram of the current controller VSC 

 

0 0 0 0 00 3 0 51 2 4

0 0 0 0 0

1
0 0 0

1
0 0 0

'
' '' ' '

( ) ( ) ( ) ( ) ( )

1 0 0 0 0

0 1 0 0 0

s

s s

s

s s

md sq s mq sd s sqm sd

s s s s s s s s s s s s s s s

R

L L

R

L L
A

V I L w V I L w II z I zz z z

C U C C U C C U C C U C C U C

− 
 
 
 −
 
 =
 − − − + −−

+ + + + + 
 
 −
 

−  

 

(11) 

mdi sdi mdi sqi si mi miV i V i U i P+ = =
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0 0

0 0

' 0 0

1 0

0 1

B

 
 
 
 =
 
 
  

;
1 0 0 0 0

' 0 1 0 0 0

0 0 1 0 0

C

 
 

=
 
  

;
0 0

' 0 0

0 0

D

 
 

=
 
  

 

 

where, The i index ϵ {1, 2}, it means the station number and 

𝑧′1, 𝑧′2, 𝑧′3, 𝑧′4, and 𝑧′5, are constant values. 

 

A Power controller Linear model 

 

 
 

Figure 4. Linearized block diagram of the active power 

controller 

 

The linearized model of the active power controller is 

illustrated in Figure 4. 

After linearization, the expressions of the active power 𝑃𝑔𝑖  

and reactive power 𝑄𝑔𝑖  presented in Figure 2 become: 

 

0 0gi gdi sd sdi gdP V I i V =  +   (12) 

 

0 0( )gi gdi sq sqi gdQ V I i V = −  +   (13) 

 

The PI power controller is expressed by: 

 

pp ipK p K
PI

p

+
=  (14) 

 

The power control transfer function has the following form: 

 

1

( )
1

1

pp

g ip

ppg ref

ip

K
p

P K
p

KP
p

K
−

+

=
+

+

 
(15) 

 

This TF is assimilated at a first order TF with a time 

constant Γ𝑝 =
𝑇𝑟

3
. In order to reach a required response time, 

the parameters of the power controller are:  

 

0ppK =  and 
1

ip

p

K =


 (16) 

 

According to the active power controller linearized block 

diagram defined in Figure 4, we define the new state variables 

“ ∆𝑍𝑎𝑖 ” and “ ∆𝑍𝑟𝑖 ” respectively related to the active and 

reactive power controller: 

 

0 0

0 0

ai
gi ref sdi gd gdi sd

ri
gi ref sqi gd gdi sq

d Z
P i V V I

dt

d Z
Q i V V I

dt

−

−


=  − −


 =  − −



 
(17) 

 

For the active power controller, we obtain: 

 

'
sdi ref

ai

i
X

Z

− 
 =  

 

;
'

gi ref

sdi

gdi

P

U i

V

− 
 

 =  
  

; ' sdi refY i − =   
(18) 

 

0 0
'

0 0
A

 
=  
 

;

0 0

0 0 0
'

1 gd sd

B
V I

 
=  

− − 

; 

0

1
' 0

gd

C
V

 
=  
  

 

and 0

0 0

1
' 0 sd

gd gd

I
D

V V

 
= − 
  

 

(19) 

 

And for the reactive power controller, we obtain: 

 

'
sqi ref

ri

i
X

Z

− 
 =  

 

;
'

gi ref

gdi

sqi

Q

U V

i

−
 
 

 =  
 
 

; ' sqi refY i − =   
(20) 

 

0 0
'

0 0
A

 
=  
 

;

0 0

0 0 0
'

1 sq gd

B
I V

 
=  
 

;

0

1
' 0

gd

C
V

 
= − 
  

 

and 0

0 0

1
' 0

sq

gd gd

I
D

V V

 
= − − 
  

 

(21) 

 

In this case the gain K defined in the respective feedback 

power controller, is fixed assuring the final form of the matrix 

A’1=N’K [27]. 

 

B. DC voltage controller Linear Model 

The balance of powers proves that the DC power is 

converted to real power in the AC part when we neglect the 

phase reactor and the shunt conductance capacitance losses. 

Indeed, the conclusions of our analysis will be only due to the 

interaction between converter controllers and the DC grid. So 

the relation between AC and DC side can be written as follows: 

 

m s g sd gdi U P i V= =  (22) 

 

Thus, the linearization of the Eq. (22) is developed as 

follows: 

 

0 0 0 0m si s mi sd gdi sdi ref gdI U U i I V i V− +  =  +  (23) 

 

The PI used in the DC voltage controller is expressed by: 
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pv ivK p K
PI

p

+
=  (24) 

 

The linearized model of the DC voltage controller is 

illustrated in Figure 5. 

 

 
 

Figure 5. Block diagram of the linearized DC voltage 

controller 

 

The voltage control loop transfer function is: 

 

2

1
( )

1

si

pv ssi ref

iv iv

U
p

K CU
p p

K K
−

=

+ +

 

(25) 

 

The parameters of the controller are deduced by identifying 

the polynomial characteristic of the voltage TF to the desired 

second order polynomial.  

 
2

iv s nK C w= and 2pv n sK w C=  (26) 

 

where, 𝜁 is the damping ratio and wn is the natural frequency. 

In accordance with the linearized block diagram of the 

voltage controller defined in Figure 5, a new state variable 

“∆𝑍𝑣𝑖” ought to be created.  

where, 

 

vi
si ref si

d Z
U U

dt
−


=  −  (27) 

 

Thus, we obtain: 

 

;
'

si ref

vgdi

si

li

U

U

V

U

i

−
 
 
 

 =  
 
 
  

;    
(28) 

 

; ;

and  

(29) 

 

2.2.2 Studied VSC-HVDC model association 

To find a liaison between two subsystems which are 

constituents of a total system ⅀, two systems ⅀A and ⅀B are 

designed.  

The index 'a' is an auxiliary subscribe identifying ⅀A. The 

state space model of ⅀A is defined by: 

1 1 1

2 2 2

1 1 1

2 2 2

a a a

a a

a a a

a a a

a a

a a a

X X Ud
A B

X X Udt
A

Y X U
C D

Y X U

      
= +      

      
 = 

     
= +     

     

 
(30) 

 

The index 'b' is an auxiliary subscribe identifying ⅀B. The 

state space representation of ⅀B is defined by: 
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(31) 

 

In the whole system, the transfer matrix Tab links the inputs 

of subsystem ⅀A to the outputs of subsystem ∑ 𝐵: 
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In the same manner, the transfer matrix Tba links the inputs 

of subsystem ∑ 𝐵  to the outputs of subsystem ∑ 𝐴 , in the 

global system: 
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Hence, the state space representation of the global system is: 
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(34) 

 

Presuming that the state variables of the total system are a 

juxtaposition of subsystems state variables in order to build the 

system ⅀ based to [28]. As well, a combination of subsystem 

inputs constitutes the inputs of the total system. To retrieve the 

state variables of subsystems within the total system, 

subsystems are arranged in the order in the total system. 

The form of the state space matrices A, B, C and D of the 

global system which are resulted from the associations of state 

space matrices of each subsystem are defined by [28]: 
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(35) 

 

A. State space model of station1 

In order to find the state space model of station1, we studied 

the link between the state space model of the voltage controller 

and the state space model of the active power controller with 
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the state space model of the current controller as presented in 

Figure 6. 

First, a development of the state space model of the voltage 

controller with the state space model of the reactive power 

controller is done. The reached model is deduced directly from 

the state space model of each subsystem, so, we obtain: 
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(36) 

where, 𝑝𝑗; 𝑗 ∈ {3,4,5,6} is a constant value, representing the 

elements of the state matrix of the system (36).  
 

 
 

Figure 6. Global model of station1 
 

Then, to have the state space model of station1, we 

determined the transfer matrix 𝑇𝑎𝑏1  between the inputs of 

subsystem obtained by the voltage and reactive power 

controllers’ models connected together and the output of the 

current controller model. This matrix is defined as: 
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(37) 

 

The transfer matrix 𝑇𝑎𝑏1 given in Eq. (38), links the inputs 

of the voltage controller model with the reactive power 

controller model and the output of the current controller model. 
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So, we deduced the global state space model of station1, as 

given in system (39): 
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(40) 

 

B. State Space model of station2 

In the same way, we determined the state space model of 

station2, as presented in Figure 7. This station is controlled by 

the following controllers: active power, reactive power, and 

current controller. 
 

 
 

Figure 7. Model of station2 
 

First, a development of the state space model of the active 

power controller with the state space model of the reactive 

power controller is done. The reached model is deduced 

directly from the state space model of each subsystem, so, we 
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The transfer matrix Tab2 given in Eq. (42), links the inputs 

of the active power controller model with the reactive power 

controller model and the output of the current controller model. 
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So we deduced the state space model of station2: 
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C. State Space model of system reactor and cable 

The connection between the improved cable model and the 

smoothing reactor system model is illustrated in Figure 8. 

 

 
 

Figure 8. Connection of the cable to the smoothing reactor 

 

To determine the state space model of this association, we 

determined the transfer matrix Tab3 between the inputs of 

subsystem built from cable model and the output of the 

smoothing reactor model. This matrix is defined as: 
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where, 𝑈𝑐𝑐𝑖 =
𝑈𝑖

2
 

The transfer matrix Tab3 given in Eq. (45), links the inputs 

of the cable model and the output of the smoothing reactor 

model is defined by:  
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Thus, we obtained the state space model of the reactor, cable 

system association: 
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(46) 

 

where, 𝑝𝑗; 𝑗 ∈ {7,8,9,10} is a constant value, representing 

some elements of the state matrix of the system (46). 
 

D. State space model of the studied VSC-HVDC system 

In the preceding parts, each linearized subsystem of the 

VSC-HVDC liaison is modeled as a linear state space model. 

With the aim of getting a total closed-loop model of the VSC-

HVDC system, inputs and outputs of subsystems are linked 

together as shown in Figure 9. 

After developing the link between the systems composed of 

station 1, station 2 and the system smoothing reactor with 

cable, we obtain the final state matrix A of the VSC-HVDC  

System. As well, the final state vector ∆X', the final input 

vector ∆U' and the final output vector ∆Y' of the VSC-HVDC 

system are given as: 

 

1 1 1 1 1 1 11 21 2 2

2 2 2 2 12 22 1 2 1 2 1 2

VSC HVDC sd ref v sq ref r sd sq s sd ref a sq ref

T

r sd sq s l l cc cc Lc Lc

X i Z i Z i i U Z Z i Z i

Z i i U Z Z i i U U i i

− − − − −
=            

            

 (47) 

 

1 1 1 1 1 2 2 2 2 2 1 2

1 2

VSC HVDC sd ref sq ref sd sq s sd ref sq ref sd sq s l l

T

i i i i U i i i i U i iY

U U

− − − − −
=




           

 

 
(48) 

 

421



 

1 1 1 1 1 1 1 1 2 2 2 2

2 2 2 1 2 1 2

VSC HVDC s ref gd s l g ref sq sd ref sq ref g ref sd gd g ref

T

sq sd ref sq ref l l cc cc

U U V U i Q i i i P i V Q

i i i i i U U

− − − − − − −

− −

=            

       

 (49) 

 

5 6

3 4 0

0
1 2 3 4 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

gd

s

s s

s

s s

s

VSC HVDC

p p

p p V

R

L L

R

L L

U
a a a a a

A −

−

−

−

=

0

0

0

0

1 2 0

3 4 0

0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

gd

s

gd

gd

gd

gd

s

s s

V

U

V

V

p p V

p p V

R

L L

−

−
−

−

−

1 2 3 4 5

0

0

7 8

9 10

0 0 0 0 0 0 0

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s

s s

gd

gd

sr

sr

R

L L

a a a a a

V

V

p p
L

p p
L

−

−

−
−

2 2 1 2 2 12

2 2 2 2

1 2 12 1 2 12 1 2 12 1 2 12

12 12 1 12

2 2

1 2 12 1 2 12

1 1
0 0 0 0 0

1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

c

c c c

c

c c c

c c c c c c

c c c c c c c c c c c c

c c c c

c c c c c c

G

C C C

G

C C C

L L R L R M

L L M L L M L L M L L M

M M R M

L L M L L M

− − −

− −

− −
− − − −

−
− −

2 1

2 2

1 2 12 1 2 12

c c

c c c c c c

R L

L L M L L M

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −
 − − 

 

 

 
 

Figure 9. Closed-loop linearized model of the controlled point-to-point VSC-HVDC link 
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where, 𝑎1 =
−𝑉𝑚𝑑0−𝑖𝑠𝑞0𝐿𝑠𝑤

𝐶𝑠𝑈𝑠0
+

𝑧1
′

𝐶𝑠
; 𝑎2 =

−𝑉𝑚𝑞0−𝑖𝑠𝑞0𝐿𝑠𝑤

𝐶𝑠𝑈𝑠0
+

𝑧2
′

𝐶𝑠
; 

𝑎3 =
𝑖𝑚0

𝐶𝑠𝑈𝑠0
+

𝑧3
′

𝐶𝑠
; 𝑎4 =

−𝑖𝑠𝑑0

𝐶𝑠𝑈𝑠0
+

𝑧4
′

𝐶𝑠
; 𝑎5 =

−𝑖𝑠𝑞0

𝐶𝑠𝑈𝑠0
+

𝑧5
′

𝐶𝑠
. 

 

 

3. SIMULATION RESULTS 

 

All the elements of the VSC-HVDC system are modeled 

separately, then they are gathered to generate the desired 

HVDC system topology. The principle is to place the pre-

constructed blocks corresponding to each element of the 

system (power sources, VSC converters, lines or nodes), to 

configure the system parameters and to use the various control 

techniques detailed previously. The simulation of this HVDC 

system was realized by using the MATLAB Simulink software 

for 50 MW transferred power and 100 [km] DC transmission 

cable during 10 [s]. We consider that the first converter 

performs the role of the master and it adjusts the voltage at 640 

[kV] and the second converter is the slave, it controls the 

power flow with power reference submitted into the DC 

network equal to 50[Mw]. Results reached by « 

Matlab/Simulink » for the HVDC-VSC state space model and 

its average model are compared in Figures 10, 11, 12 and 13. 

The evolution of the linearized current controller VSC in 

each station is similar to the evolution of its average model. 

Therefore, the linearized current controller model in VSC-

HVDC link is proved. 

The architecture of the point to point VSC-HVDC system 

studied is composed of 2 converters. All the currents, voltages 

and powers control loops are implemented in the converters 

control. The small instability found in the initial period of the 

average current is caused by the sizing of the proportional gain 

(Kp) of the PI regulators. So, in the start-up, the reverse power 

of the converter in the network can lead to instability because 

the converter will sometimes inject power and sometimes take 

power. This instability was shown during the response of the 

different controlled variables of the currents, powers, and 

voltage controls loops. Knowing that, the calculation of the 

regulators is based on the decoupling and compensation 

technique used in the control technique of the linear systems. 

As a solution, we can act on the gain (Kp) empirically to 

improve it in order to have less significant oscillations. 

 

 
 

Figure 10. State space model validation of the vector current 

controller VSC 

 

The evolution of the powers transmitted through the two 

converters of the VSC system is given in Figure 11. In 

accordance with this figure, the complementarity of the 

waveforms of powers transmitted through the two stations 

during time simulation is assured. The DC link was 

transferring 50 [MW] from Station 2 which controls the power 

transfer to station 1 which controls the DC bus voltage. 

In addition, it is notable that the evolution of the linearized 

active power in each station is similar to the evolution of the 

average model. Hence, the linearized active power controller 

model in VSC-HVDC link is proved. 

Whenever station 2 changes its power flow, there is an 

excess of the current il2 into the DC cable from the sending 

station 2 to the receiving station 1. Thus, the negative sign of 

the current il2 is clarified. While the current il1 flows in the 

opposed path. 

There is no remarkable difference between the waveform of 

the DC bus voltages Us1 and The DC bus voltages Us2, their 

curve is constant at 640 [KV] during time simulation as 

presented in Figure 13. In fact, the balance between the power 

generated by the station 2 and the power absorbed by the 

station 1 empowers the DC bus voltage to be adjusted to its 

reference value. Thus, this pace shows the effectiveness of the 

control loop used. 

In addition, it is notable that the evolution of the linearized 

DC voltage in each station is similar to the evolution of the 

average model. Hence, the linearized voltage controller model 

in VSC-HVDC link is proved. 

 

 
 

Figure 11. State space model validation of the active power 

controller in VSC-HVDC link 

 

 
 

Figure 12. DC current 
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Figure 13. Voltage controller of the VSC-HVDC link state 

space model validation 

 

 
 

Figure 14. Root locus of the VSC-HVDC link 

 

Table 1. Eigenvalues of the VSC-HVDC system 
 

Number Eigenvalues  

1 -1.297 

2 -2.838 

3 -2.885 

4 -2.885 

5 -2.885 

6 -7.778 

7 -7.778 

8 -7.778 

9 -7.82 

10 -100.002 

11 -100.002 

12 -100.002 

13 100.125+2038j 

14 -100.125+351j 

15 -217.48+351j 

16 -217.48-351j 

17 0 

18 0 

19 -1.39e-43 

20 -3.410e-42 

21 -236.17 

22 -19997.55 

23 -19997.55 

24 -9999999.99 

 

As conclusion, we approved that the global state space 

model of the VSC-HVDC is validated. After that, the stability 

of the VSC-HVDC system will be checked by the eigenvalue-

based Stability analysis. 

Eigenvalues of the state matrix are resumed in Table 1.  

The number of eigenvalues is equal to the number of states 

variables: 10 for the current controller, 2 for the active power 

controller, 4 for the reactive power controller, 2 for the voltage 

power controller, 2 for the smoothing reactor, and 4 for the DC 

cable. 

The plot of Figure 14 illustrates the roots referred to the total 

VSC-HVDC system, we notice that all the eigenvalues have a 

negative real part, the root is clearly oscillating but finally 

converges until reaching the abscissa axis. Which prove that 

the VSC-HVDC system is asymptotically stable. 

 

 

4. CONCLUSION 

 

Small-signal stability analyses (SSSA) becomes essential in 

the design of HVDC controllers in order to enhance their 

flexibility to faults, and to boost their aptitude to contribute to 

power grid operation. 

The stability of two terminal VSC-HVDC system using the 

small signal stability technique for a linearized state space 

model is studied in this paper. The state space model of each 

subsystem was developed then a connection between each 

block was made to create a global linear state space model. 

The study of eigenvalues associated to the global linearized 

state space system is automatically used to improve the 

stability of the VSC-HVDC link. This work will help us to 

develop a generic method, with a view of providing flexible 

models to study the stability of a multi-terminal MTDC grid. 
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NOMENCLATURE 

 

VSC Voltage Source Converter 

HVDC High Voltage Direct Current 

AC Alternating Current 

DC Direct Current 

LCC Line-commutated converter 

HVAC 

MPPT 

High Voltage Alternating Current 

Maximum Power Point Tracking 

SSSA 

PWM 

PLL 

Small Signl Stability Analysis 

Pulse-Width Modulation 

Phase Lock Loop 

PI
 

Proportional Integral 

TF
 

Transfer Function 
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APPENDIX 

 

The control loops characteristics are resumed in this table. 

 

Table 2. VSC control loop characteristics 

 
 Response Time [MS] The damping ratio 

Current loop 10 0.7 

Power loop 200 - 

Voltage loop 100 0.7 

PLL 1 0.7 

 

For a DC transmission, two cables buried beneath the 

ground, are used. One for the positive pole and the other for 

the negative pole (Table 3).  

 

 

 

Table 3. Cable parameters 

 

 
Cable 320 kV 2500 

mm² 

Cable section [mm²] 2500 

Nominal current [A] 1800-2700 

Rc1: Core resistance[mΩ/km] 5.3 

Lc1: Core inductance [mH/km] 3.6 

Lc2: Screen inductance [mH/km] 3.5 

Mc12: Core-screen mutual inductance 

[mH/km] 
3.5 

Rc2: Screen resistance [mΩ/km] 60.2 

Mc12: Core Screen mutual inductance 

[mH/Km] 
0.15 

GC1, GC2: Core-to-ground conductances 

[μS/km] 
0.06 

Cc1, Cc2: Core to ground Capacitances 

[μF/km] 
0.24 
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