
 

 

 

 

 
 

 
1. INTRODUCTION 

Among various issues in the parametric shifts problem, 
estimation and test of mean shifts have no doubt been 
regarded as one of the core areas of research in econometrics 
since the underlying model of time series is often subject to 
change owing to governmental policy and critical social 
events: for the references, as to the change point test in time 
series models, see Picard [1], Incla ń and Tiao [2], Andrews 
and Ploberger [3], Jach and Kokoszka [4]. Hence, one would 
like to estimate the location of the change point when tests 
suggest that a parameter change has occurred. Detecting 
structural change beforehand is an important step, and it can 
make us interpret better and more accurately forecast the data. 
Moreover, it is well known that ignoring such a parameter 
change can lead to some false conclusion in statistical 
analysis. See the examples in Hamilton [5]. Therefore, for 
correct inference, it is imperative to figure out whether the 
parameters continue to be constant during the whole series or 
not. Parametric shifts estimation methods have been 
extensively studied by Bai and Perron [6], Nunes et al. [7], Su 
and Xiao [8] among others; see also Busetti and Taylor [9], 
and the references therein. 

In this article, special attention is paid to the ergodic 
stationary processes including linear autoregressive (LAR) 
time series since they accommodate important linear time 
series models, such as AR(P), which have been central to the 
analysis of data with linear characteristics (cf. [10,11,12]). 
For AR(P) models, there are p+1 parameters, the variance of 
the white noise and the p autoregressive parameters. Change 
in any of these over time is a sign of disturbance that is 
important to detect. Gombay [13] used maximum likelihood 
function to test for changes in any one of these   parameters 
separately. Lee and Park used the cusum of squares test to test 
for variance changes in infinite order moving average 
processes. Unfortunately, they did not consider testing for 

structural changes in collection of them. Hence, the goal of 
this paper is that we focus on the CUSUM testing for p+1 
parameter changes in AR(P) models. 

These and other issues will be addressed in this paper 
whose structure is as follows. Section 2 first describes the 
models considered and the assumptions made on the various 
components. Section 3 contains the main results. Finally, 
Section 4 presents brief concluding remarks. 

2. ASSUMPTIONS AND MODELS 

We consider the following model 
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where t  is an AR(P) process, p  is a positive integer. t  

are independent identical distribution random variables with 

0tE  and   1tVar   . The objective here is to test the 

following hypothesis: 

 0 1 2: , , , ,p tH       remains the same for the 

whole series; 
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The following assumptions are needed to prove 

asymptotic validity of our approach. 

Assumption 2.1 
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Assumption 2.2 All of the roots of 
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Remark 2.3 For the problem of detecting structural 
changes, Assumption 2.1 may be quite standard in these 

econometric literature and states that the 't s  moment of 

order 4 exists. The Assumption 2.2 can ensure 
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The preparatory lemma collects fundamental result 
required to derive these asymptotic distributions as the 
sample size approaches to infinity. 

Lemma 2.4 If Assumption 2.1 and 2.2 hold, then 

 ˆT    has a proper, nondegenerated limiting 

distribution, 

where ̂  is a ordinary least squares estimator. 

Remark 2.5   Lemma 2.4 is proved by Kokoszka and 

Leipus [14] and suggests that  1 2ˆ
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and  1 2ˆ , 1, ,i i pO T i p     . 

 
 

3. MAIN RESULTS 
 
In this section, we will derive the CUSUM test statistics 

under null hypothesis. For some convenience, we denote 

t t   under 0H . 

Theorem 3.1   Consider following statistic test that 
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the residual of ty  regressing on aconstant. If Assumption 

2.1 and 2.2 hold, then under 0H , we have 
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where ( )BB v  is a standard Brownian bridge. 
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Due to the invariant principle for strong mixing process, it 

follows that  
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Which implies that  

 
[ ]

2 1/2

1, 1,
0 1

1 1 1

1 1
max 2 ( ) ( ) (1),

Tv T T

T T p p
v

t t t

v O T
T T

    




 
  

        (3) 

 
and  

 
[ ] [ ]

1/2

3, 3,
0 1 0 1

1 1 1

1 1
max 2 ( ) max ( ) (1),

Tv TvT

T T t p p
v v

t t t

v O T
T T

     




   
  

      
 (4) 

 
Note that  
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To show  4, 1T po  , it is sufficed to show 

 
 

 , ,
0 1

1 1

1
max 1

T T

t i T t i T p

t t

u D u D o
T






 
 

   ， 1, 2.i   

  
Together with Lemma 2.4 and (2), we get 
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Thus  4, 1T po   is proved. Furthermore, the proof of 
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Combining these results, we have 
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4. SIMULATIONS 

 

Table 1. Empirical size and power, (0.3,0.3,1)   

 

 
 500T   800T   1000T   

(0.3, 0.3, 1) 0.042 0.047 .0.051 

(0.2, 0.3, 1) 0.381 0.653 0.838 

(0.1, 0.3, 1) 0.425 0.756 0.921 

(0.2, 0.3, 1) 0.452 0.756 0.921 

(0.1, 0.3, 1) 0.478 0.793 0.946 

(0.2, 0.3, 1) 0.499 0.838 0.954 

(0.1, 0.3, 1) 0.523 0.874 0.963 

 
In the section, we use Monte Carlo simulation methods to 

investigate finite sample size and power properties of the 
CUSUM test statistics. They   are independent identically 

distribution standard normal random variables. The test 
requires experiments are programmed using 5000 replications. 



 

All results refer to the test run at 0.05 nominal asymptotic 
level, for samples of size T = 500, 800, 1000. Now we 
consider the problem of test following hypothesis: the 

parameters change from 2

1 2( , , )     to 2

1 2( , , )        

at k=0.5T. 
 

Table 2. Empirical size and power, (0.3,0.3,2)   

 

 
 500T   800T   1000T   

(0.3, 0.3, 2) 0.048 0.053 0.050 

(0.2, 0.3, 4) 0.552 0.731 0.921 

(0.1, 0.3, 4) 0.597 0.778 0.965 

(0.2, 0.2, 4) 0.629 0.820 0.994 

(0.1, 0.2, 4) 0.648 0.877 0.997 

(0.2, 0.1, 4) 0.683 0.912 1.000 

(0.1, 0.1, 4) 0.715 0.943 1.000 

 

We now discuss the main conclusions that can be drawn 
from our simulation. The results summarized in Tables show 
that the test produces good sizes and the powers increase as 

either the difference between   and 


 or T increase as 

might be anticipated. Tables 1-2 also indicate that test for 

changes in 2

1 2, ,    simultaneously is generally more 

powerful test for changes only in 2

1,   or 2

2 ,  . The factor 

may be that, the more change   is, the more probability a 

series will contain ‘oscillations’, and the easier the series 
contains a structural change. In a word, the simulation 
evidence is intensely in favors of  

using CUSUM test to detect parameter change for AR(p) 
models. 

5. CONCLUDING REMARKS 

In this paper, the CUSUM test for variance changes in 
autoregressive processes including AR(p) is proposed. We 
have derived the asymptotical distribution of the RCUSQ test 
statistic is the function of a standard Brownian bridges. The 
results in simulation show that the new CUSUM test produce 
good sizes and powers. In concluding, the CUSUM test 
constitute a functional tool for testing for variance changes in 
autoregressive time series. 
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