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The present work aims to carry out modal analysis of orthotropic thin rectangular plate 

to determine its natural frequencies and mode shapes by using analytical method based 

on Rayleigh-Ritz energy approach. To demonstrate the accuracy of this approach, the 

same plate is discritisated and analyzed using the finite element method. The natural and 

angular frequencies were computed and determined analytically and numerically by 

using ABAQUS finite element code. The convergency and accuracy of the numerical 

solution was examined. The effects of geometrical parameters and boundary conditions 

on vibrations are investigated. The results obtained showed a very good agreement 

between the analytical approach and the numerical simulations. Also, the paper presents 

simulations results of testing of the plate with passive vibration control. 
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1. INTRODUCTION

Because of their good resistance to shocks and vibrations, 

composite plates have found widespread applications in 

various fields of engineering such as aeronautic, marine and 

automobile industry [1]. As the vibratory movements are at the 

root of many problems that can lead to the ruin of structures, 

the knowledge and the understanding of the vibratory behavior 

of thin plates has become an important and crucial parameter 

that must be taken into account when designing structural 

elements.  

Many of research have been dedicated to the study of 

structural vibrations and methods to reduce the resonant 

amplitudes, including analyses which determine how to 

modify the structure to avoid coupling resonant frequencies 

with excitation sources. The study of the free vibration of 

orthotropic plates increased during the last two decades. There 

are number of solutions on free vibration of rectangular plates 

in the natural frequencies with a wide range of support 

conditions. The most widely known are those of Warburton [2] 

and Leissa [3]. The work of Warbuton has been extended by 

Hermon [4] to analyze the free vibration of rectangular 

orthotropic plates having either clamped or simply supported 

edges using the Rayleigh method. Grootenhuis, O’Boy, 

Krylov and Hosseini have proposed an exact solution for free 

flexural vibration of rectangular thick plates using third order 

shear deformation plate theory [5, 6]. Ramu and Mohantyb 

have provided a suitable study on free vibration of rectangular 

plate structures using finite element method [7]. Werfalli and 

Karoud have conducted a free vibration analysis of rectangular 

plates using Galerkin based finite element method [8]. Mama 

studied and proposed a solution of free harmonic equation of 

simply supported plates using Galerkin-Valsov method [9].  

Hatiegan analyzed by finite element method thin clamped 

plates of different geometric forms [10]. Pouladkhan have 

determined different frequencies and shape modes of thin 

rectangular plates by using modal analysis [11]. Rock and 

Hinton developed a new finite element to analyze free 

vibration and transient response of thick and thin plates [12]. 

Also, Liux and Chen developed a mesh-free method for static 

and free vibration analyses of thin plates of complicated shape 

[13]. Zhou investigated the natural vibration of circular and 

annular thin plates by Hamiltonian approach [14]. Benamar 

examined the effects of large vibration amplitudes on the mode 

shapes and natural frequencies of thin isotropic plates [15]. 

Alfano and Pagnotta performed a suitable approximate 

relationships, relating the resonance frequencies to the elastic 

constants of isotropic thin plates [16]. Ritz and Rayleigh-Ritz 

methods have also been used for vibration analysis of thin 

rectangular plates. Hanna and Leissa developed an approach 

based on higher-order shear deformation plate theory of Reddy 

to analyze free vibration of fully free rectangular plates using 

Rayleigh–Ritz method [17]. Dozio used a trigonometric Ritz 

method for general vibration analysis of rectangular Kirchhoff 

plates [18]. Vescovini used the Ritz method to estimate the 

free vibration and buckling analysis of highly anisotropic 

plates [19].  

The vibration damping can be achieved by attaching patches 

elements on to the structure. This allows a convenient method 

of damping vibrations without adding significant mass and 

volumetric occupancy, unlike the bulky mechanical dampers. 

The application of patches for reducing vibrations and 

structure borne noise has been studied by many researchers in 

the past few years [20-22]. This paper presents studies made 

on fundamental flexural frequencies of thin orthotropic 

rectangular plates by using Rayleigh approximation method 

and finite element method (FEM). Three types of boundary 

conditions are investigated (all edges clamped (CCCC), all 
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edges simply supported (SSSS) and two edges clamped, two 

edges simply supported (SCSC)). A comparison between the 

results obtained with both methods has been done. Also, the 

effect of geometrical parameters on natural vibrations of 

rectangular plates was carried out. The values of frequency 

parameter of the plate having different (length/width) ratios in 

case of (a/b1) were studied. Vibration control of the structure 

is realized through patches attached to the plate. Simulations 

and numerical computations of the structure are performed in 

ABAQUS. 

 

 

2. ANALYTICAL APPROACH 

 

2.1 Theoretical formulations 

 

Main used plate theories can be classified into four classes: 

classical thin plate theory of Kirchhoff (CPT) used in this work 

[23], first-order shear deformation plate theory of Mindlin 

(FSDT) [24], higher-order shear deformation plate theory of 

Reddy (HSDT) [25] and three-dimensional (3-D) elasticity 

theory [26]. The simplest plate theory (CPT) is based on the 

assumption that straight lines perpendicular to the mid plane 

before deformation remain straight and normal to the mid 

plane after deformation. It is considering a thin homogeneous 

orthotropic plate of a constant thickness, as shown in Figure 1. 

Denote the length and width of the plate by a, b. The plate 

occupies a region given by Eq. (1): 

 

by0ax0   (1) 

 

 
 

Figure 1. Typical scheme of the plate 

 

According to the classical thin plate theory of Kirchhoff, in 

the case of orthotropic plates for which (D16=D26=0), the 

fundamental relations are written, taking into account the 

absence of transverse loads (q=0).  
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In the case where the rotatory inertia terms can be neglected 

(Ixy=0), equation of motion reduces to: 
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(4) 

 

where, Dij are the effective bending and twisting stiffness, 

w0(x,y) is the deflection, s and  are the mass density and 

circular frequency, respectively. To solve the differential Eq. 

(4), consider a solution of the form: 
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where,  is the angular frequency of the vibrations, leads, by 

substituting this expression into Eq. (4) to: 
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In case of simply supported edges, the boundary conditions 

are given as follow: 

Edges x=0 and x=a: 
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Edges y=0 and y=b: 
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And w0(x, y) can be put in the form: 
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Substituting this expression which satisfying the support 

conditions into Eq. (6) yields: 
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For a nonzero value of Cmn, the expression of the natural 

frequencies becomes: 
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The deformed shape of the plate corresponding to the 

natural pulsation mn is given by Expression (9). In the case of 

other boundary conditions, it is not possible to solve Eq. (9) 

directly; the determination of the natural frequencies and the 

vibration modes requires then to use approximate methods. 

Using the Rayleigh-Ritz approach the frequency equation may 

be derived from the expression of maximum strain energy of 

bending: 
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The displacement is assumed to be an infinite series of 

admissible shape functions in the x and y directions. 
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where, Xm(x) and Yn(y) are appropriate shape functions along 

x and y axes that must satisfy the boundary conditions. Amn are 

the unknown numerical coefficients of the functions. The 

assumed displacement functions defining the deflection of the 

plate are given in the form of series functions, as follow [27]: 
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Simply supported (SSSS): 
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Simply supported - clamped (SCSC): 
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Finally, the Rayleigh approximation of the natural pulsation 

of the mode (m, n) can be written in the form: 
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c1, c2 and c3 are the coefficients introduced in the expression 

(14) for the natural frequencies of the bending vibrations of an 

orthotropic rectangular plate as presented in Table 1, Table 2 

and Table 3 [27]. 

 

Table 1. Coefficients c1, c2 and c3 introduced in the 

expression of the angular frequency in case of clamped edges 

(CCCC) 

 
(m, n) c1 c3 c2 

(1,1) 1.5 4.730 151.3 

(2,1) 2.5 4.730 12.3 c1(c1-2) 

(3,1) 3.5 4.730 12.3 c1(c1-2) 

(1,2) 1.5 2.5 12.3 c3(c3-2) 

 

Table 2. Coefficients c1, c2 and c3 introduced in the 

expression of the angular frequency in case of simply 

supported edges (SSSS) 

 
(m, n) c1 c3 c2 

(1,1) m n m²n²4 

(2,1) m n m²n²4 

(3,1) m n m²n²4 

(1,2) m n m²n²4 

 

Table 3. Coefficients c1, c2 and c3 introduced in the 

expression of the angular frequency in case of simply 

supported / clamped edges (SCSC) 

 
(m, n) c1 c3 c2 

(1,1) 1.5 n 12.3n²2 

(2,1) 2.5 n n²2 c1(c1-2) 

(3,1) 3.5 n n²2 c1(c1-2) 

(1,2) 1.5 n 12.3n²2 

 

The natural frequency of free vibrations is given by: 
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2.2 Results and discussion  

 

2.2.1 Effect of boundary condition 

This analysis was performed for a plate with one orthotropic 

ply of length a=250 mm, width b=100 and thickness of 1 mm. 

All elastic properties listed in Table 4, were estimated after 

calculating the homogenized properties by using EasyPBC 

open-source ABAQUS CAE interface plugin [28], in case of 

volume fraction of fibers Vf=0.6. The effect of boundary 

conditions and material type are investigated. The boundary 

conditions are applied at all four edges of the plate, with 

simply support (SSSS), clamped boundary (CCCC) and 

simple clamped conditions (SCSC) as shown in Figure 2. The 

angular and natural frequencies of the plates have been 

obtained using Eq. (17) and Eq. (19). The fundamental natural 

frequency can be obtained by letting m=1 and n=1, (m and n 

are mode numbers). Using MATLAB, for the first four 

vibration modes, angular and natural frequencies are 

computed for all used materials and for applied boundary 

conditions and listed in Table 5, Table 6 and Table 7. It can be 

seen in Figure 3, Figure 4 and Figure 5 that the frequency 

values increase as number of modes increases and that 

whatever the material, the CCCC plate has the level of highest 

frequency and the SSSS plate the lowest frequency level, the 

SCSC plate fall between these two configurations. Also, we 

can see that the Carbone plate presents the highest level of 

frequency followed by the Kevlar then glass plate. This can be 

explained by the high stiffness of the Carbone plate. 
 

 
 

Figure 2. Schematic of the considered boundary conditions: 

(a) clamped (CCCC), (b) simply supported / clamped 

(SCSC), (c) simply-supported (SSSS) 
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Table 4. Mechanical properties of the materials used in this 

Paper 

 
 Glass(E) 

Epoxy 

Carbone 

(HM) 

Epoxy 

Kevlar (49) 

Epoxy 

c (Kg/m3) 2040 1650 1370 

E1 (MPa) 45,178.86 139,369.49 73,385.35 

E2 (MPa) 13,852.18 16,139.80 15,003.60 

E3 (MPa) 13,854.28 16,143.57 15,006.51 

12 0.2656 0.3346 0.3691 

13 0.2656 0.3346 0.3691 

23 0.2209 0.2068 0.2227 

G12 (MPa) 4,803.66 5,388.84 5,068.88 

G13 (MPa) 4,804.05 5,389.39 5,069.34 

G23 (MPa) 3,435.43 3,645.06 3,536.83 
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Figure 3. Natural frequencies of the simply supported 

orthotropic plate (SSSS) 
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Figure 4. Natural frequencies of the simply supported 

orthotropic plate (SCSC) 
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Figure 5. Natural frequencies of clamped orthotropic plate 

(CCCC) 
 

Table 5. Angular and natural frequencies of the simply supported rectangular orthotropic plates obtained by using the Rayleigh-

Ritz approach 
 

  Glass/Epoxy Kevlar/Epoxy Carbone/Epoxy  

N° (m, n) Frequency 

 fmn (Hz)  

Pulsation  

ωmn (rad/s) 

Frequency fmn (Hz)  Pulsation ωmn (rad/s) Frequency 

 fmn (Hz)  

Pulsation 

 ωmn (rad/s) 

1 (1,1) 140.6246 883.5444 177.0921 1,112.7025 183.4897 1,152.9003 

2 (2,1) 224.9032 1,413.1088 316.2096 1,986.8036 344.0492 2,161.7249 

3 (3,1) 386.7651 2,430.1171 571.4343 3,590.4280 597.0400 3,751.3134 

4 (1,2) 496.7636 3,121.2578 635.5573 3,993.3246 666.0067 4,184.6435 

 

Table 6. Angular and natural frequencies of the simply supported /clamped rectangular orthotropic plates obtained by using the 

Rayleigh-Ritz approach  
 

  Glass/Epoxy Kevlar/Epoxy  Carbone/Epoxy 

N° (m, n) Frequency 

 fmn (Hz)  

Pulsation 

ωmn (rad/s) 

Frequency fmn(Hz)  Pulsation ωmn (rad/s) Frequency  

fmn(Hz)  

Pulsation 

 ωmn (rad/s) 

1 (1,1) 160.5210 1,008.5836 218.0474 1,370.0328 227.1559 1,427.2627 

2 (2,1) 284. 4284 1,787.1166 414.5913 2,604.9541 475.9437 2,990.4428 

3 (3,1) 479.7494 3,054.1796 617.6424 3,880.7621 650.7129 4,088.5502 

4 (1,2) 505.9171 3,178.7713 731.1742 4,594.1030 789.1380 4,958.3006 

 

Table 7. Angular and natural frequencies of the clamped rectangular orthotropic plates obtained by using the Rayleigh-Ritz 

approach 
 

  Glass/Epoxy Kevlar/Epoxy Carbone/Epoxy 

N° (m, n) Frequency fmn (Hz)  Pulsation ωmn (rad/s) Frequency fmn (Hz)  Pulsation ωmn (rad/s) Frequency 

 fmn(Hz)  

Pulsation ωmn (rad/s) 

1 (1,1) 293.5264 1,844.2267 371.3777 2,333.4355 381.7633 2,398.6899 

2 (2,1) 380.6673 2,391.8034 525.8076 3,303.7469 564.1705 3,544.7879 

3 (3,1) 553.1581 3,475.5949 805.7628 5,062.7574 925.6048 5,815.7467 

4 (1,2) 767.2128 4,820.5402 931.0525 5,849.9758 981.7702 6,168.6442 
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3. FINITE ELEMENT APPROACH 
 

Nowadays, numerical simulation has become the most 

efficient and the most widely used calculation tool for 

predicting the mechanical behavior of structures during 

commissioning and improving the operation of industrial 

systems and processes. The Finite element method (FEM) is a 

powerful computational technique widely used for numerical 

simulation and optimization of structural geometry [29], based 

on the concept that one can replace any continuum by an 

assemblage of simply shaped elements with well-defined force 

displacement and material relationships. In this paper, 

geometric and FE model for the same orthotropic plates is 

carried out using the ABAQUS software which is one of the 

popular FEM software and which has been used for wide range 

of study. Extracting accurate results in ABAQUS depend on 

defining the boundary conditions, steps of the solution, type, 

and size of meshes carefully. In this this numerical study, the 

plate geometry and the boundary conditions used are shown in 

Figure 6.  

 

 
 

Figure 6. Boundary conditions considered in the study: (a) 

clamped (CCCC), (b) simply supported / clamped (SCSC), 

(c) simply-supported (SSSS) 

 

The plate is discretized into a finite number of rectangular 

elements. The S4R element, defined by four nodes was 

employed as shown in Figure 7. However, it is always good 

practice to perform a mesh convergence study. To perform this 

study, we chose a mesh of approximate global size 

respectively: AGS=20,10,5,4 and 3. Obtained results for the 

fundamental mode (m=1 and n=1), in case of simply supported 

plate (SSSS) made of glass, are presented in Table 8. We can 

notice that the nearest result into the analytical approach 

reference result (f11=140.6246) is when global approximate 

size is equal to 4.  

 
 

Figure 7. Finite element model of the orthotropic rectangular 

plate 

 

Table 8. Approximate global size used to achieve optimal 

mesh for rectangular plate 

 
AGS Number of mesh f11 (Hz) 

20 65 146.06 

10 250 141.87 

5 1000 140.83 

4 1575 140.70 

3 2937 140.58 

 

Using results extracted from ABAQUS, the first four 

vibration modes, for the three used materials and for applied 

boundary conditions are presented in Table 9, Table 10 and 

Table 11. Obtained results are compared with analytical 

natural and angular frequencies obtained by using the 

Rayleigh-Ritz approach. The relative error in theses Tables is 

estimated according to the Eq. (20).  

 

100x
Analytical

AnalyticalFEM
%e

−
=  (20) 

 

It can be seen from Table 9, Table 10, and Table 11 the 

agreement between results obtained with Rayleigh-Ritz 

approach and finite element method, with a maximum error of 

1.3987%. We can notice that it is clear with increasing mode 

number; natural frequencies and pulsations are increased. The 

first four vibration modes of the plate are shown in Figure 8, 

in case of (SSSS) glass/epoxy plate.  

 

 
 

Figure 8. Mode Shapes of the orthotropic rectangular plate with simply-supported boundary condition:(a): (m,n) =(1,1), (b): 

(m,n) =(2,1), (c): (m,n) =(3,1) and (d): (m,n) =(1,2) 
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Table 9. Angular and natural frequencies of the simply supported rectangular orthotropic plates obtained by using FEM approach 

 
  Glass/Epoxy Kevlar/Epoxy Carbone/Epoxy 

N° (m, n) Frequency 

 fmn (Hz) 

Pulsation  

ωmn (rad/s) 

% Error  Frequency fmn (Hz) Pulsation ωmn (rad/s) % Error Frequency 

 fmn (Hz) 

Pulsation 

ωmn (rad/s) 

% Error 

1 (1.1) 140.70 884.0181 0.0536 177.15 1,113.0334 0.0326 183.57 1,153.3703 0.0437 

2 (2.1) 224.78 1,412.2924 0.0547 316.04 1,985.6793 0.0536 343.81 2,160.1582 0.0695 

3 (3.1) 386.83 2,430.4528 0.0167 571.51 3,590.7973 0.0132 600.63 3,773.7582 0.6012 

4 (1.2) 499.87 3,140.6832 0.6253 639.43 4,017.5386 0.6093 665.78 4,183.0957 0.0340 

 

Table 10. Angular and natural frequencies of the simply supported /clamped rectangular orthotropic plates obtained by using 

FEM approach 

 
  Glass/Epoxy Kevlar/Epoxy Carbone/Epoxy 

N° (m, n) Frequency 

 fmn (Hz) 

Pulsation  

ωmn (rad/s) 

% Error  Frequency fmn (Hz) Pulsation ωmn (rad/s) % Error Frequency 

 fmn (Hz) 

Pulsation 

 ωmn (rad/s) 

% Error 

1 (1,1) 160.27 1006.9764 0.1563 217.78 1,368.3117 0.1226 226.95 1,425.9268 0.0906 

2 (2,1) 284. 17 1,785.4401 0.0908 414.23 2,602.6070 0.0871 475.29 2,986.2470 0.1373 

3 (3,1) 486.46 3,056.4281 1.3987 653.22 4,104.1812 0.3852 620.28 3,897.2192 0.4270 

4 (1,2) 507.85 3,190.8215 0.3820 731.41 4,595.4490 0.0322 789.90 4,962.9417 0.0965 

 

Table 11. Angular and natural frequencies of the clamped rectangular orthotropic plates obtained by using FEM approach 

 
  Glass/Epoxy Carbone/Epoxy Kevlar/Epoxy 

N° (m, n) Frequency 

 fmn (Hz) 

Pulsation  

ωmn (rad/s) 

% Error  Frequency fmn (Hz) Pulsation ωmn (rad/s) % Error Frequency 

 fmn (Hz) 

Pulsation 

 ωmn (rad/s) 

% Error 

1 (1,1) 294.13 1,848.0187 0.2056 372.09 2,337.8414 0.1917 382.51 2,403.3103 0.1955 

2 (2,1) 380.71 2,392.0009 0.0112 525.69 3,302.9102 0.0223 563.78 3,542.2297 0.0692 

3 (3,1) 552.97 3,474.3105 0.0340 805.17 5,058.8831 0.0735 926.77 5,822.8959 0.1258 

4 (1,2) 774.09 4,863.6074 0.8963 933.87 5,867.5052 0.3026 990.39 6,222.6203 0.8779 

3.1 Effect of geometrical parameters 

 

To confirm the reliability and the accuracy of the analytical 

and finite element approaches, a parametric study is conducted 

in order to examine the effect of geometrical parameters on 

natural vibrations of the rectangular plate. The values of 

frequency parameter of the plates having different 

(length/width) ratios in case of (a/b≥1) and for different 

boundary conditions used in this work, corresponding to the 

first natural mode (1,1), are respectively listed in Table 12, 

Table 13 and Table 14. As shown in Figure 9, Figure 10 and 

Figure 11, we can see a rapidly increasing parabolic rate for 

the interval a/b=1 to a/b=2. In case of (length/width) ratios 

a/b2 an asymptotic attenuation is imposed. This can be 

explained by a transfer of rigidity going from the case finite 

plate into the case of infinite plate. 
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Figure 9. Variation of frequencies with respect to ratio a/b 

case of glass/epoxy plate 
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Figure 10. Variation of frequencies with respect to ratio a/b 

case of Carbone/epoxy plate 
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Figure 11. Variation of frequencies with respect to ratio a/b 

case of Kevlar/epoxy plate 
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Table 12. Frequencies with respect to ratio a/b case of 

Carbone/epoxy plate 

 
 

a/b 

f11(Hz) (SSSS) f11(Hz) 

(CCCC) 

f11(Hz) (SCSC) 

1 486.25 1032.4 984.84 

1.5 270.23 557.51 496.73 

2 203.68 421.03 298.81 

2.5 177.15 372.09 226.95 

3 164.59 351.38 192.62 

 

Table 13. Frequencies with respect to ratio a/b case of 

glass/epoxy plate 

 
 

a/b 

f11(Hz) 

(SSSS) 

f11(Hz) 

(CCCC) 

f11(Hz) (SCSC) 

1 296 595.36 536.15 

1.5 188.13 373.24 276.24 

2 154.65 314.7 193.67 

2.5 140.7 294.13 160.27 

3 133.68 285.2 144.54 

 

Table 14. Frequencies with respect to ratio a/b case of 

Kevlar/epoxy plate 

 
 

a/b 

f11(Hz) 

(SSSS) 

f11(Hz) 

(CCCC) 

f11(Hz) (SCSC) 

1 428.65 879.74 815.06 

1.5 258.03 516.59 405.17 

2 205.24 417.48 272.36 

2.5 183.57 382.51 217.78 

3 172.89 367.50 191.95 

 

3.2 Passive vibration control using patches 

 

This section presents simulations and research results of 

testing the passive vibration control with damping patches 

bonded to the top surface of the Carbone/epoxy plate used and 

analyzed previously in this study as is depicted in Figure 12. 

For various boundary conditions: simply supported (SSSS), 

clamped (CCCC) and simply supported/clamped (SCSC), a 

Carbone/epoxy test plate of dimensions 250x100x1 mm3 is 

modeled in ABAQUS and meshed with S4R elements. Three 

rectangular patches denoted P1, P2 and P3, made of one layer 

of orthotropic glass/epoxy and of sections representing 

respectively 1, 2 and 3% of the plate section, are glued to the 

center of the plate as shown in the Figure 12. The glass/epoxy 

was considered because this material has the lowest frequency 

level. Also, the patch was modeled with S4R elements as 

shown in Figure 13. Note that the material properties of both 

plate and patch are listed in Table 4. The mode shapes of the 

plate with patch corresponding to the four first modes are 

presented in Figure 14. Using data extracted from ABAQUS, 

the natural frequencies of vibration corresponding to the first 

four modes are obtained with and without damping patches 

and listed in Tables 15, 16 and 17. The relative error between 

plate’s frequencies with and without dumping patches is 

computed and presented in the same Table. It is observed that 

for the three configurations of considered boundary conditions, 

the patch P3 which covers 3% of the surface area of the plate 

offers the minimized vibration level with a reduction in 

frequency which retches 13.4026%, in case of clamped plate. 

It is clear that with increasing the surface area of the patch we 

can control better the plate frequency level. In this 

investigation we also examined the influence of the patch 

geometry on the passive control of plate vibration. We 

consider three fully clamped plates with rectangular, square 

and circular patches attached to the center as shown in Figure 

15 witch cover 1% of the global surface area. It can be seen 

from the results presented in Table 18 that the rectangular 

patch gives the maximum reduction level in frequency. 
 

 
Figure 12. Considered plate with attached damping patch 

 

 
 

Figure 13. Meshing model (plate with patch) using S4R 

elements 
 

 
 

Figure 14. Mode shapes of the plate with patch for the first 

four modes (a): (1,1), (b):(2,1), (c):(3,1) and (d): (1,2) 

 

Table 15. Natural frequencies of vibration corresponding to the first four modes obtained with and without damping patches case 

of clamped plate 

 
Mode 

 

Frequency 

Plate only 

Frequency (Hz) 

with patch 

(P1) 

Diff % Frequency (Hz) 

with patch (P2) 

Diff % Frequency (Hz) 

with patch 

(P3) 

Diff % 

1 372.09 363.18 2.3946 341.84 8.1297 322.22 13.4026 

2 563.78 559.42 0.7733 555.03 1.5520 531.38 5.7469 

3 926.77 911.41 1.6573 891.62 3.7927 884.61 4.5491 

4 933.87 926.05 0.8373 922.17 1.2528 895.55 4.1033 
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Table 16. Natural frequencies of vibration corresponding to the first four modes obtained with and without damping patches case 

of simply supported plate 
 

Mode 

 

Frequency 

Plate only 

Frequency (Hz) 

with patch 

(P1) 

Diff % Frequency (Hz) 

with patch 

(P2) 

Diff % Frequency (Hz) 

with patch 

(P3) 

Diff % 

1 177.15 174.93 1.2531 168.79 4.7191 162.99 7.9932 

2 343.81 342.63 0.3432 341.05 0.8027 332.62 3.2547 

3 600.63 598.38 0.3746 596.72 0.6509 586.76 2.3092 

4 665.78 656 1.4689 639.67 3.9217 632.5 4.9986 

 

Table 17. Natural frequencies of vibration corresponding to the first four modes obtained with and without damping patches case 

of simply supported/clamped plate 
 

Mode 

 

Frequency 

Plate only 

Frequency (Hz) 

with patch 

(P1) 

Diff % 

Frequency (Hz) 

with patch 

(P2) 

Diff % 

Frequency (Hz) 

with patch  

 (P3) 

Diff % 

1 226.95 222.66 1.8902 211.94 6.6137 201.6 11.1698 

2 475.29 474.87 0.0883 469.01 1.3212 451.23 5.0621 

3 620.28 619.95 0.0532 615.45 0.7786 603.56 2.6955 

4 789.9 786.98 0.3696 784.47 0.6874 781.08 1.1165 

 

Table 18. Natural frequencies corresponding to the first four modes obtained with and without: rectangular, square and circular 

patches case of clamped plate 
 

Mode 

 

Frequency 

Plate only 

Frequency  

plate with 

rectangular patch  

Diff % 

Frequency  

plate with square 

patch  

Diff % 

Frequency  

plate with 

circular patch) 

Diff % 

1 372.09 363.18 2.3945 366.39 1.5318 367.6 1.2066 

2 563.78 559.42 0.7733 560.23 0.6296 563.66 0.0212 

3 926.77 911.41 1.6573 912.99 1.4868 913.68 1.4124 

4 933.87 926.05 0.8373 933.29 0.0621 933.83 0.0042 

 

 
 

Figure 15. Different patches shapes attached to the plate:(a): 

rectangular, (b): square and (c): circular 

 

 

4. CONCLUSIONS 

 

The present study provides a modal analysis of orthotropic 

thin rectangular plate to determine its natural frequencies and 

mode shapes by using analytical method based on Rayleigh-

Ritz energy approach. The obtained results were compared 

with those computed with ABAQUS software. The second 

part of this work covered the study of the effects of 

geometrical parameters and boundary conditions on vibratory 

behaviour of the plate. Also, the paper presents simulations 

results of testing of the plate with passive vibration control. 

From the analytical and numerical results, the following 

conclusions can be stated: 

- The FEM study showed acceptable results in 

comparison with analytical solution.  

- All results agree well with those in the literature. 

- This work reviewed the robustness and capability of the 

shell element (S4R) provided by ABAQUS software in 

case of modal analysis. 

- The frequency values increase as number of mode 

increases and that whatever the material, the fully 

clamped plate has the level of highest frequency and the 

simply supported plate the lowest frequency level, the 

simply/clamped plate fall between these two 

configurations. 

- For the 4 first natural modes, the frequencies obtained 

with Rayleigh-Ritz approach energy agree closely with 

those of the conventional finite element method, with a 

maximum error of 1.3987%. 

- For various configurations of considered boundary 

conditions, vibration attenuation can be achieved by 

attaching patches elements on to the plate.  

- With increasing the surface area of the patch, we can 

control better the plate frequency level. 

- The patch geometry has big influence on the passive 

control of plate. 

In case of rectangular structures, rectangular patch gives the 

maximum reduction level in frequency compared with square 

and circular patches. 
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