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ABSTRACT
A typical disaster surveillance and early warning system often needs to make timely and critically 
important preparedness decisions before disasters strike. When crowdsourcing observational data from 
people to enhance its sensor coverage, the system must be able to make effective use of volunteers, 
guide them during their exploration of the threatened area, and process reports from them in real time to 
extract decision support information of sufficiently good quality. This article focuses on the participant 
selection problem (PSP) which the system must solve in order to select participants from available vol-
unteers given the benefits and costs of deploying them. The PSP-Greedy (PSP-G) algorithm proposed 
is known to be a near-optimal solution with a small fraction of execution time when compared with 
well-known optimization methods. The article describes an implementation of the PSP-G algorithm 
and the integration of the resultant PSP-G module into the Ushahidi platform. Performance data from 
two case studies based on Haiti Earthquake, 2010, and Typhoon Morakot, 2009, also described here, 
clearly show that PSP-G is a general practical solution.
Keywords: Crowdsourcing, disaster management, maximum general assignment, social network.

1 INTRODUCTION
In recent years, smart mobile devices equipped with cameras; temperature and vibration sen-
sors, etc.; and social networking services have become increasing more pervasive. Using them, 
increasingly more people are able to participate as human sensors. Human sensor data (i.e. 
observational data captured and contributed by human sensors) from them have enabled an 
increasingly broader spectrum of crowdsourced sensing systems and applications for purposes 
such as the generation of fine-grain maps of noise level, air quality, snow depth, radiation level, 
traffic and road conditions, etc. Crowdsourcing information from mass crowd during and after 
major disasters has also proved to be an effective crisis management tool and is supported by 
well-known crisis management systems such as Sahana [1] and Ushahidi [2].

In contrast, modern disaster surveillance and early warning systems typically do not crowd 
source human sensor data. Crowdsourcing is not a routinely used tool although observational 
data captured and sent from regions threatened by an imminent disaster by volunteers selected 
by the system to participate in its surveillance effort can be an effective way to mend frag-
mentations in physical sensor coverage and improve situation awareness of the system, 
especially in scenarios such as those described in refs. [3–5] when physical sensor coverage 
may be inadequate for one or more unavoidable reasons.

Unlike typical crowdsourced sensing systems and applications, a disaster surveillance sys-
tem must be able to make critical decisions, sometimes within minutes or seconds. If the 
system uses human sensor data, it must be able to process them in real time and extract from 
them decision support information of good and quantifiable quality. Existing techniques and 
tools for processing social reports cannot meet this requirement. Often, the system should use 
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as few participants as possible, direct them to locations where physical sensor coverage is 
poor, and help them to stay away from dangerous locations. The system needs tools for these 
purposes as well. CROwdsouring Support system for disaster Surveillance (CROSS) [6] was 
motivated by these needs. The proof-of-concept prototype contains a basic set of tools for 
managing human sensor data collection (HSDC) processes, including a fusion unit to help 
the system decide whether human sensor data is needed; a broadcast manager for soliciting 
volunteers; a participant selection module for selecting participants from volunteers; and a 
tour planning module, a map manager, and an emergency communication module for guiding 
participants in their exploration of the threatened area, tracking their locations, and support-
ing their communication with the command center and with each other.

This article focuses on the participant selection component of the system. The problem that 
the module must solve is to select from volunteers, participants of each HSDC process, and 
assign selected participants to collect data in different regions of the threatened area in order 
to optimize some specified objective, subject to constraints in the number, benefits and costs 
of available volunteers is called the participant selection problem (PSP). An earlier article [7] 
presented a natural formulation of the PSP and a heuristic algorithm, called PSP-Greedy 
(PSP-G), for solving the problem. Preliminary data show that PSP-G can find near-optimal 
solutions with a small fraction of execution times of Branch-And-Reduce Optimization Nav-
igator (BARON) [8] and Basic Open-source Nonlinear Mixed Integer programming 
(BONMIN) [9], two well-known optimization solvers.

This article aims to demonstrate that PSP-G is a practical solution for selecting participants 
from volunteers in general and should be included in tool libraries of not only experimental 
systems such as CROSS but also in a commonly used platform such as Ushahidi [2]. For this 
purpose, the effectiveness of PSP-G was evaluated in two case studies based on real-life situ-
ations: Haiti, 2010, earthquake [10] and Typhoon Morakot, 2009 [5,11]. A PSP-G module that 
implements the algorithm has been integrated into the Ushahidi platform. The module, the 
extended platform Ushahidi+, and the case studies are presented in Sections 4 and 5, respec-
tively. To make the paper sufficiently self-contained, Sections 2 and 3 present an overview of 
the results in Chu et al. [7]: The formulation of the PSP and related problems are presented in 
Section 2. The PSP-G algorithm and the preliminary performance data on its performance are 
presented in Section 3. Section 6 summarizes the article and presents future work.

2 PSP AND RELATED PROBLEMS
Specifically, the solution of a PSP is a selection of participants of a HSDC process, or a 
crowdsourcing process in general, from available volunteers and an assignment of the selected 
participants to regions in order to optimize some objective function subject to constraints in 
terms of the number, qualities, and costs of the volunteers available for selection. The input 
parameters of the PSP are represented by the following notations:

•  V is the objective function and is referred to as the (total) value of the selection.

 • The disaster threatened area has r regions R1, R2, … Rr, and their values are v1, v2, … vr, 
respectively.

 • π volunteers P1, P2, … Pπ are available for selection to be participants.

 • For i = 1, 2, … π and k = 1, 2, … r
 º bik(0 ≤ bik ≤ vk ) is the value (benefit) achievable by Pi if he/she is selected and assigned 

to explore region Rk, and

 º cik(0 ≤ cik) is the cost of Pi when assigned to explore region Rk

•  B (> 0) is the total budget available to be spent on all selected participants.
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Without loss of generality, the values of regions, costs of participants, and total budget are 
assumed to be positive integers.

The PSP can be stated as follows in terms of these notations:
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The variable xik = 1 means that volunteer Pi is selected to participate in the current HSDC 
process and is assigned to region Rk; it is equal to 0 if otherwise. The set {xik} for all i = 1, 
2, … π and k = 1, 2, … r gives an assignment of a subset of participants to regions. Equation 
(3) allows {xik} to be a proper subset of the set of all volunteers. The term V in eqn (1) is 
equal to the sum of benefits contributed by all the participants; it is the total value achievable 
by all the selected participants when they explore their assigned regions. Equation (5) shows 
that the total cost incurred by them must not be greater than the budget B. Equation (2) 
ensures that the solution {xik} never assigns more participants to any region than needed to 
achieve the full value of the region. The variant of the PSP is called PSP-Frugal because of 
this constraint.

In the case of infinite budget (i.e. B = ∞), PSP-Frugal is a special case of the well-known 
maximum general assignment problem (GAP) [12,13], which in turn is a generalization of the 
assignment problem [14]. The assignment problem is often stated as that of seeking an optimal 
placement of objects in bins. For each bin, each object in it has a profit and a weight that are 
dependent on both the object and the bin. The objective is to find placements of objects in bins 
so that the total profit is maximized subject to the constraints that the total weight of all objects 
placed in every bin is no greater than the given weight limit of the bin. The GAP is known to 
be NP-hard (Non-deterministic Polynomial-time hard) and APX-hard (Approximable hard) to 
approximate it. Some algorithms for solving the problem use algorithms for the 0-1 knapsack 
problem [15] as the basis. An example is the greedy (d + 1)-approximation algorithm in [12]. 
It finds a solution of the GAP iteratively using a d-approximation algorithm for the knapsack 
problem to find a tentative solution of the single-bin sub-problem, and one bin at a time.

The special case of equal weight and profit knapsack problem is known as the subset sum 
problem [16]. The functional form of the subset sum problem can be stated as follows: Given 
a set of N non-negative integers, find a subset of integers with the maximum sum among all 
subsets with sums equal to or less than the given limit. This problem is known to be NP-hard 
in general, but can be solved exactly in a reasonable amount of time by exhaustive search 
when N is small (e.g. less than 20) or by dynamic programming when the precision of the 
problem is small. For the PSP-Frugal, N is the number π of available volunteers, which can 
be large. On the other hand, the number of distinct values of bik is usually small. In practice, 
it also makes sense to adjust the unit of bik’s to reduce the precision of the problem.

The PSP can also be thought of as a variant of human resource allocation problem, which 
has also been treated extensively for many other types of applications. As examples, Kwon and 
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Cho [17], Bartoli et al. [18], and Chen et al. [19] proposed human resource allocation algo-
rithms for various scenarios. Compared to the formulation presented above, their models and 
problem formulations are ad hoc. Indeed, the work on PSP described here is among the first 
ones that apply GAP and knapsack algorithms to resource allocations by disaster surveillance 
and response applications.

3 PSP-G ALGORITHM AND ITS PERFORMANCE
Table 1 describes the heuristic PSP-Greedy (PSP-G) algorithm for solving the PSP in poly-
nomial time [7]. It is presented here to make this article more self-contained.

After initializing related parameters (line 1), PSP-G calculates the benefit-to-cost (B2C) 
factors Qi,k (= bik/cik) of each volunteer Pi (line 2) and each region Rk and sorts all the B2C 
factors by their values in non-increasing order (line 3). It then selects from volunteer partici-
pants and dispatches (i.e. assigns) selected participants in turn to the regions according to 
volunteers’ B2C (lines 4–13): Each time, the volunteer with the highest B2C is selected 
(line 5) and is dispatched to a region where he or she can increase the total value most if this 
assignment satisfies both the budget and the value constraints (line 6). The participant selec-
tion process stops when all volunteers are selected and assigned or when the total value 
cannot be further increased. The last line (line 14) says that a new call for participation in 
HSDC is issued to solicit more volunteers if the threatened area is not fully explored.

As one sees from Table 1, PSP-G takes O(rπ) to calculate the B2C factors (line 2). It takes 
O(rπ log(rπ)) to sort them (line 3). The time complexity of the selection process (lines 4–13) 
is bounded by O(rπ). Therefore, the time complexity of PSP-G is O(rπ ln rπ).

Table 1: Pseudocode description of PSP-G algorithm.

Algorithm for PSP-G
bk: The current benefit region k gets from the selected participants
y: The remaining budget
Q: An ordering set to record all benefit-to-cost (B2C) factors Qi,k of participant i to region k.

1: Set y = B and bk = 0, k = 1, 2, …, r;
2: Calculate all B2C factors (i.e. Qi,k = bik/cik );
3: Sort Qi,k by their values in descending order;
4: while (Q is not empty)
5: Hi,k = the first element in Q;
6: if (Pi is not selected and (bk + bik ≤ vk ) and (y− cik ≥ 0))
7:	 bk + = bik; y− = cik;
8: Dispatch Pi to Rk;
9: Remove all Pi ‘s B2C factors from Q;
10: Mark Pi as a selected participant;
11: end if
12: Remove Hi,k from Q;
13: end while
14: If participants are not enough to cover all regions, broadcast a call-for-volunteer message 

on social network again.
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The PSP-G algorithm was evaluated via simulation experiments conducted on an Intel i7 
processor with CPU speed 3.3 GHz and the total RAM is 6 GB [4]. The algorithm PSP-G 
was written in Java with Eclipse. The simulated scenario is a big earthquake that seriously 
damaged parts of Yunlin county, Taiwan. The affected area has the nine regions marked by 
dots and numbered by 1, 2, … 9 in the map shown in Fig. 1. The system started a HSDC 
process to collect data in the regions. It uses three types of volunteers with characteristics 
listed in Table 2. The total number of volunteers available for selection is 1,000. The num-
ber of each type of volunteers is one-third of the total volunteers. In other words, the first 
333 volunteers are of type I, volunteers no. 334–666 are of type M, and remaining volun-
teers are of type U. Initially, volunteers of all types are uniformly distributed in the 
threatened area.

The simulation study in Chu et al. [7] assumes that the system sets the values of the regions 
at 100, 100, 80, 60, 80, 60, 60, 60, and 60, respectively. It uses three parameters to compute 
the benefit and cost of a participant assigned to a region: Basic_Benefit, Basic_Cost, and 
Distance from his/her initial location to the assigned region. The Basic_Benefit and Basic_
Cost of a type-I participant are 10 and 3, of a type-M participant are 5 and 2, and of a type-U 
participant are 3 and 1, respectively. For sake of simplicity, it sets the distance between each 
pair of regions to the minimum number of region boundaries that a participant must cross to 
reach from one region to the other region. (e.g. the distance between regions 6 and 7 is 1, 

Figure 1: Map of Yunlin County, Taiwan.

Table 2: Model of volunteers.

Type Property Benefit Cost

I Professional responders High High
M Registered volunteers Medium/low Medium/low
U Unregistered volunteers Low Low
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whereas the distance between regions 6 and 5 is 5.) The benefit bik and the cost cik for partic-
ipant Pi and region Rk are computed according to

bik = Basic_Benefit × Distance
cik = Basic_Cost/Distance

respectively, from the distance between the region where the participant is initially and the 
region Rk.

The performance of the PSP-G algorithm was compared with two commonly used optimi-
zation solvers: BARON [8] and BONMIN [9]. Both solvers were executed by NEOS servers 
online [20]. BARON is a global optimization solver for convex optimization problems. It 
solves both linear programming and nonlinear programming problems by using branch and 
bound strategies. BONMIN, also a global optimizer, adopts six different strategies (i.e. B-BB, 
B-OA, B-QG, B-Hyb, B-ECP, and B-iFP) to have better performance in optimization. These 
solvers represent the state of the art in optimization software.

Figure 2 shows the performance ratios of the total value achieved by PSP-G relative to 
the values achieved by the optimizers: Vg, Vbr, and Vbo denote the total values achieved by 
PSP-G, BARON, and BONMIN, respectively. In the figure, the x-axis is the number of 
threatened regions and y-axis is the performance ratios Vg/Vbo, and Vg/Vbr, i.e. the ratios of 
the total benefit achieved by PSP-G algorithm relative to the total benefits achieved by 
BONMIN and BARON, respectively. One can easily see from Fig. 2 that in all test cases, 
performance ratios Vg/Vbr and Vg/Vbo are close to 1. This fact indicates that PSP-G is near 
optimal: It delivers almost the same total value as BARON and BONMIN.

The execution times of PSP-G, BARON and BONMIN were also measured. In this exper-
iment, the number of regions was set at nine and the number of participants was varied from 
1,000 to 8,000. As Fig. 3 shows, compared with BARON and BONMIN, the execution time 
of PSP-G increases only slightly when the number of participants increases. Most of the 
experiment configurations can be finished by PSP-G in a few seconds. In contrast, the execu-
tion times of BARON and BONMIN increase significantly when the number of participants 

Figure 2: The performance ratios.

Figure 3: The execution time.
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becomes large. When the number of participants comes to 8,000, the execution time BARON 
is almost 10 times longer than PSP-G.

4 IMPLEMENTATION OF PSP-G MODULE
To demonstrate the applicability of PSP-G in general for selecting participants of crowd-
sourcing processes from volunteers, Ushahidi platform [8] was enhanced by adding to it a 
PSP-G module that implements the algorithm and a mobile emergency APP that allows offi-
cial responders and volunteers to easily communicate with Ushahidi server. The enhanced 
system is called Ushahidi+. This section describes the architecture of Ushahidi+ and the new 
emergency APP together with the flow of crowdsourcing disaster information.

4.1 The architecture of Ushahidi+

Figure 4 shows the architecture of Ushahidi+. The workflow diagram on the left illustrates a 
standard operating procedure (SOP) followed by a crowdsourcing-enhanced emergency 
management system. In particular, the figure shows how a PSP-G module and other partici-
pant selection tools may be used to support crowdsourcing information when a disaster is 
imminent or during emergencies. The procedure typically starts by official responders from 
the collection from physical sensors and eyewitnesses of data and information needed to 
acquire situation awareness. When the emergency manager or the response system finds 
available data and information insufficient for threat level evaluation and situation assess-
ment (or when some response operations need to be performed), a volunteer recruitment 
message containing required and desired attributes (e.g. identifications, locations, skills) of 
volunteers is posted online. After a sufficient number of people have volunteered by reporting 
their attributes to the system, one or more participant selection tools are used to select partic-
ipants of the current crowdsourcing process and assign each selected participant to a region 
in the threatened area. The system may send to each selected and assigned participant a route 
for the participant to follow, in addition to information on the tasks (e.g. reporting damaged 
buildings or emergency events encountered along the route) to be performed by the partici-
pant. During the current process, more data and information are collected by the system, 
allowing the system to better assess the situation and make a decision, including the decision 

Figure 4: Architecture of Ushahidi+.
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on whether to recruit more volunteers and start new processes. Without loss of generality, the 
workflow diagram assumes that the current process is stopped manually when no more data 
needs to be collected.

The diagram on the right-hand side of Fig. 4 shows the structure and components of the 
Ushahidi+ that supports the SOP. Ushahidi+ has three key modules: Database, PSP-G module, 
and Path Planner. The database stores information on all events reported by participants, as 
well as information on volunteers and selected participants. A default voting mechanism is 
used to verify the correctness of reported events. System administrator can delete events that 
cannot be identified and verified. PSP-G module is used for selecting participants, whereas 
Path Planner is used for determining a route for each participant. In other words, the PSP-G 
module supports the participant selection step and a part of task assignment step. A path 
planner implementing a tour planning algorithm such as the one described in Chu et al. [6] 
can be used to compute routes for all the selected participants.

The diagram on the right-hand side of Fig. 4 also shows that the data collection (Step 1) 
is done by an active emergency disaster system (AEDS), in addition to official responders, 
eye witnesses, or victims. The AEDS [21] is an advanced disaster response system. Smart 
devices in it can parse standard-based warning messages sent by alert authorities (i.e. central 
weather bureau) and automatically perform emergency tasks (e.g. shutdown gas intake and 
return elevator to the ground floor) to avoid possible dangers. The AEDS can also collect 
information about victims through sensors deployed in buildings and report emergencies to 
Ushahidi+. Once in the database, collected data and information are analyzed (Step 2). The 
Ushahidi classifies events into eight types: emergency, vital lines, public health, security 
threats, infrastructure damage, natural hazard, services available, and others. In Ushahidi+, 
system administration should assign a score to each type of event to indicate its emergency 
level. If the additional participants are needed to deal with emergencies, the emergency 
manager posts volunteer recruitment messages on social network, such as Facebook or Twit-
ter, in order to attract more volunteers (Step 3). Volunteers can report their personal 
information, including name, location, and professional speciality, to the server via the 
mobile emergency APP described below or Ushahidi+ web interface shown in Fig. 5. After 
a sufficient number of volunteers have been recruited, the PSP-G module is triggered to 
perform participant selection (Step 4) followed by task assignment (Step 5) and tour plan-
ning (Step 6) as described earlier.

4.2 Mobile emergency APP

The new Ushahidi+ mobile emergency APP was developed to assist volunteers, participants, 
and victims to communicate with Ushahidi+ server. It is based on the original Ushahidi client 
APP. In addition to the default functions provided by the Ushahidi client APP, the Ushahidi+ 
APP provides several functions for crowdsourcing volunteers to report their personal infor-
mation (including their ids, skills, and locations) and data captured and events witnessed by 
them back to the server. Volunteers can also use the APP to receive information from the 
server on whether or not they have been selected to participate, the regions to which they are 
assigned, and to record and visualize the paths planned for them by the path planning module. 
The APP also supports online text and audio communication so that registered users can 
easily communicate with each other. Finally, victims and responders can also use the emer-
gency APP to report events and needs instead of Ushahidi client APP.

Figure 6 shows user interfaces of the Ushahidi+ emergency APP. When the user opens the 
mobile emergency APP, it first identifies the role of the user. If the user is a victim, the mobile 
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emergency APP will enter the victim page where the user can report his/her emergency to the 
official agency (Fig. 6a). On the other hand, if the user is a volunteer, the mobile emergency 
APP will enter the participant pages, shown in Fig. 6b, where the user can fill in personal 
information, such as location, expert knowledge, skill, and what items he/she needs (e.g. 
food, water, etc.). After the registration process completes, the volunteer then logs into the 
Ushahidi+ server to get an updated disaster map (Fig. 6c). If the volunteer is selected to be a 

Figure 5: Ushahidi+ web interface.

Figure 6: User interfaces of mobile emergency APP.
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participant, Ushahidi+ server sends the map of the target region to him/her. The participant 
then follows the instruction to move to the target region. After the participant arrives at the 
target region, Ushahidi+ server determines a route, shown in Fig. 6b, for him/her to follow 
and perform rescue actions, such as reporting damaged buildings or checking an emergency 
event.

The disaster event synchronization between Ushahidi+ server and mobile emergency APP 
is crucial because it helps participants to avoid possible dangers. A monitoring server was 
implemented to periodically check a flag file stored in the Ushahidi+ server. Whenever the 
monitoring server finds an update, it will notify mobile emergency APP to download the lat-
est events. The major advantage of this synchronize mechanism is that it does not need to 
modify the kernel of Ushahidi and can be applied to different versions of Ushahidi.

4.3 The default settings of Ushahidi+

Before starting the process of participant selection, the system administrator has to set up the 
values of several variables. They are the value of each region, the cost(s) of each participant 
and the achievable value(s) of each participant. Clearly, the right choices of these parameters 
depend on the emergency scenarios. As an example, the administrator may assign a score to 
each type of event. As a choice, the administrator may set the value for each region equal to 
the sum of emergency scores of all events happening in that region. Table 3 lists the default 
threat scores of Ushahidi-defined events, which can be used to compute the values of regions. 
System administrators can modify the setting according to their needs.

To determine the cost of each participant, a volunteer can specify his/her needs through the 
mobile emergency APP. Ushahidi+ also includes a questionnaire for volunteers to fill in their 
skills, such as medical skills, language skills, multicultural sensitivity/awareness, mental 
health, and driver license. Administrators can assign a score to each type of skill in order to 
assess the achievable value of each participant.

5 CASE STUDIES
As stated in Section 1, the case studies described here were carried out in order to demon-
strate the applicability of PSP-G module in general. In the simulation experiment described 
in Section 3, the values of input parameters of the greedy algorithm were chosen in a more or 
less ad hoc manner. This section presents more rationale choices of the parameter values 
based on two real-life disaster scenarios. Moreover, it aims to show that the relative merit of 
the PSP-G algorithm is not sensitive to values of the input parameters.

The scenarios of the case studies are the 2010 Haiti earthquake [10,22] and 2009 Morakot 
typhoon in Taiwan [5,11]. The former was a catastrophic magnitude 7.0 MW earthquake that 
occurred at 16:53 local time (21:53 UTC) on Tuesday, 12 January, 2010. At least 52 after-

Table 3: Default threat score of each Ushahidi-defined event.

Ushahidi event type Threat score Ushahidi event type Threat score

Emergency 20 Infrastructure damage 12
Security threats 18 Natural hazard 10
Public health 15 Vital lines  8
Services available 13 Other  5
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shocks measuring 4.5 or greater had been recorded. Approximately 222,500 people were 
dead and 196,000 were injured [10]. Typhoon Morakot was the most destructive storm of the 
deadly 2009 Pacific typhoon season. It was also the deadliest typhoon to affect Taiwan in 
recorded history. Typhoon Morakot wrought catastrophic damage in Taiwan, leaving 461 
people dead and 192 others missing [11].

Because of their severity and devastation, extensive historical records on these disasters are 
available. This fact enabled the choices of input parameters values of PSP-G based on histor-
ical data, in case of Haiti earthquake based on data stored in Ushahidi research website [2] 
and wiki website [10], and in case of Morakot typhoon, based on historical data [11]. For 
both case studies, the basic cost of a participant was randomly generated in the range of 1–10 
USD, and his/her cost is equal to the basic cost times the travelling cost, which is proportional 
to the traveling distance. The achievable value of each participant assigned to a region was 
randomly generated in the range of [5,100] percent of the value of the region.

5.1 Case study on Haiti earthquake 2010

According to the historical data [10,22], 10 counties (regions) were seriously damaged by the 
earthquake. They are Nord-Ouest, Nord, Nord-Est, Artibonite, Centre, Ouest, Sudest, Nippes, 
Grande-Anse, and Sud. Over 5,000 volunteers participated in rescue and relief operations. The 
total budget of the operations was 12.5 million USD. Most of the events reported by partici-
pants were classified as emergencies. For sake of simplicity, the total value of all regions is set 
at (22,25,000 + 1,96,000) × 20 = 8,370,000, where 20 is the threat score of emergency events. 
It seems reasonable to make the value of each region proportional to the number of dead and 
injured in the region. Table 4 lists the values of 10 counties set in this way.

In addition to BARON and BONMIN, the performance of PSP-G was compared with two 
more well-known online optimization solvers: AlphaECP [23] and DICOPT [24]. AlphaECP 
is based on the extended cutting plane (ECP) method, which is an extension of Kelley’s cut-
ting plane method. DICOPT is a program for solving mixed-integer nonlinear programming 
(MINLP) problems that involve linear binary or integer variables and linear and nonlinear 

Table 4: Historical record and region values.

Region 
number Region

Number of dead  
and injured Percentage Region value

1 Nord-Ouest 5,901  1.40 1,18,017
2 Nord 8,244  1.96 1,64,889
3 Nord-Est 293  0.07 5,859
4 Artibonite 20,883  4.98 4,17,663
5 Centre 4,394  1.05 87,885
6 Ouest 3,33,210 79.62 66,64,194
7 Sudest 32,643  7.80 6,52,860
8 Nippes 3,515  0.84 70,308
9 Grande-Anse 2,051  0.49 41,013
10 Sud 7,366  1.75 1,47,312
Total 4,18,500 100 83,70,000
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continuous variables. As Fig. 7 shows, PSP-G algorithm is at least five times faster than any 
of the evaluated optimization solvers: The execution time of PSP-G is 0.026 seconds, making 
it particularly suitable at the early stage of a disaster response when multiple rounds of vol-
unteer recruitment, and participant selection may be required to deal effectively with fast 
changes in threat level.

In these experiments, some solvers could not converge to the optimal solution when the 
number of participants was larger than 5,000. In contrast, PSP-G does not have this problem. 
Figure 8 shows the benefits achieved by different methods. The results show that PSP-G can 
deliver a near-optimal solution. In particular, PSP-G performs better than BARON and 
BONMIN in this case because BARON and BONMIN do not converge to the optimal  solution.

5.2 Case study on Typhoon Morakot 2009

According to historical data [10], 11 counties (regions) in Taiwan were seriously damaged by 
Typhoon Morakot. They are Taipei, Yilan, Hualien, Taitung, Nantou, Chunghua, Yunlin, Chiayi, 
Tainan, Kaoshiung, and Pintung. Over 5,000 volunteers participated in rescue operations. These 
events are regarded as emergency events with a threat score of 20. Therefore, the total value of 

Figure 7: Execution time ratio in case study of Haiti earthquake.

Figure 8: The achieved benefits in case study of Haiti earthquake.
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all regions is (660 + 46) × 20 = 14,120. Table 5 lists the value of each region when values are 
set to be proportional to the number of dead and injured in the region.

As Fig. 9 shows, PSP-G is at least four times faster than the selected optimization solvers. 
The execution time of PSP-G is 0.035 seconds. This fact again indicates that PSP-G is par-
ticularly useful at the early stage of a disaster when many rounds of participant selections 
may be required. Figure 10 shows the achieved benefits of different methods. The results 
show that PSP-G can also deliver a near-optimal solution. In particular, PSP-G performs 
better than BARON and BONMIN in this case study. The possible reason for their poor 
performance is that BARON and BONMIN cannot converge to the optimal solution in 
this case.

Table 5: Historical record and region value.

Region  
number Region

Number of the  
dead and injured Percentage Region value

1 Taipei  13  1.84 260
2 Yilan   4  0.57 80
3 Hualien   1  0.14 20
4 Taitung  18  2.55 360
5 Nantou  17  2.41 340
6 Chunghua   3  0.42 60
7 Yunlin   1  0.14 20
8 Chiayi  14  1.98 280
9 Tainan  29  4.11 580
10 Kaoshiung 559 79.18 11,180
11 Pintung  47  6.66 940
Total 706 100 14,120

Figure 9: Execution time ratio in case study of Typhoon Morakot.
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6 SUMMARY AND FUTURE WORK
This article first presented an overview of the authors’ earlier work [7] that introduced a for-
mal formulation of the PSP. The problem aims to maximize the total benefits contributed by 
all participants subject to a budget constraint. The PSP-G greedy algorithm as developed to 
solve the problem. The algorithm first calculates the B2C factor of each participant and then 
dispatches participants to regions in non-increasing order of their B2C. Each time the algo-
rithm tries to maximize the total benefit of the partial assignment. According to experimental 
results presented in the previous section, PSP-G delivers a near-optimal solution in far less 
time than four well-known optimization solvers. In particular, its execution time can be 
reduced to only one tenth of that of the solvers.

A module implementing the PSP-G algorithm was integrated into Ushahidi, the web-based 
crowdsourcing support system that has been used in recent years to support emergency 
response operations world-wide. The enhanced system is called Ushahidi+. Two case studies 
were conducted to demonstrate the applicability of PSP-G in real-life situations. The experi-
ment results show that PSP-G is a practical solution and should be included in the tool kits of 
crowdsourcing support systems. The PSP-G module and the Ushahidi+ mobile emergency 
APP will be released under GPL license and make it available through Ushahidi. Future work 
also includes enhancements of the participant selection module to provide solutions to other 
formulations of the PSP and implementations of the solutions will also be released and made 
available through Ushahidi.
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