
 C.-S. Shih et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015) 13–28

© 2015 WIT Press, www.witpress.com
ISSN: 2041-9031 (paper format), ISSN: 2041-904X (online), http://www.witpress.com/journals
DOI: 10.2495/SAFE-V5-N1-13-28

LANDMARK-BASED SERVICE RECOVERY FOR
DISTRIBUTED PUB/SUB SERVICES ON DISASTER

MANAGEMENT

C.-S. SHIH, H.-Y. CHEN, L.-Y. CHEN & L.-J. CHEN
Graduate Institute of Networking and Multimedia, National Taiwan University, Taiwan and Research Center

for Information Technology Innovation, Academia Sinica, Taiwan

ABSTRACT
A communication system that supports timely, scalable, and highly available information exchanges
over a heterogeneous plug-and-play network systems is called an Open Information Gateway (OIGY).
Our work focuses on design for disaster resiliency, i.e. means to provide an OIGY with capabilities to
deliver critical messages to parties in a disaster management system even when the underlying physi-
cal network has sustained serious damages. This article first presents the design of such an information
gateway in general. It then presents the design and implementation of a middleware layer service recov-
ery mechanism, essential for the gateway to achieve the aforementioned objectives. The mechanism
is called landmark-based service recovery mechanism. It aims at recovering real-time publishing and
subscription services within a disaster affected region. The article describes its design, together with its
performance, measured in terms of its transmission and recovery overheads as a function of the number
of message brokers in the network.
Keywords: Message publish and subscription, middleware, service recovery.

1 INTRODUCTION
Timely and effective disaster response during and after a disaster requires collaborations
among numerous parties, including service providers, decision makers, responders and res-
cuers, victims, and general public. Making essential information exchange services disaster
resilient, capable of delivering critical messages to them on a timely, scalable, and always
available basis is of paramount importance. In the last few decades, many special communi-
cation devices have been developed and communication channels have been reserved for
disaster response and rescue. Examples include satellite phones [1], IP-based 911 [2], and
rescue radio [3]. However, the applicability of these technologies has been limited. For exam-
ple, satellite phones can be particularly effective for rescuers in mountainous areas and over
the sea. Unfortunately, transmissions to the satellite can be blocked by thick clouds and heavy
rain, making satellite phones ineffective during typhoons [4] and other weather-related disas-
ters. Moreover, high deployment cost typically prevents the inclusion of a satellite phone in
every emergency kit.

The work on disaster resilient information on exchange described in this article and in ref.
[5] was motivated by information exchange models that exploit all available communication
pathways. Experiences in response efforts during recent major disasters show that effective
use of all available communication devices and services is a key to successful operations. For
example, during 2010 Haiti earthquake, victims trapped in the damaged buildings sent text
messages via their cell phones and thus allowed the rescuers to locate them in the left-behind
area. When 2009 Morakot typhoon flooded parts of Taiwan [4], heavy damages of communi-
cation infrastructure prevented victims from contacting their family members and emergency
responders. Their family members posted messages on social network services and marked
their possible locations on online maps. The information was broadcast by phones and social

14 C.-S. Shih et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015)

network web services. Rescuers were able to locate many victims using information obtained
in this way.

An information exchange framework designed to collect and distribute data and informa-
tion on a timely, scalable and highly available basis even when parts of the telecommunication
network systems have been damaged by disaster is called an Open Information Gateway
(OIGY). An OIGY stays responsive by exploiting complementary merits of different network
access technologies, approaches, and network types to make the physical connectivity as
robust as possible during and after disasters. Section 2 will provide more details on this
approach to maintain physical connectivity. The attention of this article is primarily on the
OIGY component that is responsible for resilient logical connectivity necessary to facilitate
real-time information exchanges among information sources, fusion modules, applications,
and end-users. Section 2 will also describe the OIGY component responsible for local con-
nectivity.

The contributions of this work on disaster resilient communication include the middle-
ware-layer service recovery mechanism described here. The mechanism, called landmark-based
service recovery mechanism, is designed to keep the gateway responsive and available as
much as possible when parts of message delivery services are not available due to damages to
the underlying communication network and computing services. Today’s communication sys-
tems used to support disaster management typically provide static communication services. It
can take from a few days to a few months to restore damaged communication infrastructure,
and the deployment of temporary communication services typically requires manual efforts by
communication experts. In contrast, landmark-based service recovery mechanism is auto-
matic; it makes the message exchange services support by OIGY self-healing. As performance
data presented later in this article will show, recovery can take place within minutes and hours.

The remainder of this article is organized as follows. Section 2 presents the structure and
key components of OIGY and provides background and motivation of the landmark-based
service recovery mechanism. Section 3 presents related works. Section 4 describes the design
and implementation of the landmark-based recovery algorithm for publication and subscrip-
tion services. Section 5 presents the performance evaluation results on the overheads and
service delay achievable by the algorithm. Section 6 summarizes the article and discusses the
work to be done in the near future.

2 SYSTEM ARCHITECTURE OF OIGY
An Open Information Gateway (OIGY) is designed to provide the desired features of informa-
tion exchange services mentioned above. Figure 1 shows the system and software architecture
of OIGY. In OIGY, information exchange services are provided by a distributed middleware
over heterogeneous networks: OIGY services execute on diverse devices and computers,
including computationally weak platforms, such as cell phones owned by individuals and
computers in convenient stores, supermarkets, schools, etc., as well as computationally pow-
erful platforms, such as cloud servers for weather forecast service, etc. and data repository
servers in data centers. When there is no need to be specific, all of them are called points of
service (POS) or POS resources. It is also assumed that by arrangements made during disaster
preparedness phase, POS resources are pervasively deployed in the affected region for the sake
of availability.

To support the aforementioned desired features of information exchange services, this
work proposes to deploy OIGY to support distributed timely information exchange over het-
erogeneous networks. This section presents the methodology and advantages of each
component in the system and how they interact with each other.

 C.-S. Shih et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015) 15

As discussed earlier, in response to a disaster, individual users, news agencies, government
agencies, and emergency responders, etc. must collaborate with the help of information deliv-
ery services. Each of them can be a provider and/or a consumer of data and information. For
instance, during emergency, a data center of a government agency may subscribe data from
sensors in the disaster affected area and publishes processed and verified data to subscribers
including first responders, victims, news reporters, and general public. Victims in the affected
area may publish messages to the others and subscribe information from their family mem-
bers, news media, and government agencies. To achieve scalability, OIGY is designed to be
a middleware-layer software component in the communication system. Victims can install
OIGY widgets on their cell phones; a weather forecast agency can install an OIGY message
delivery service on their powerful servers. In general, one or more OIGY widgets and ser-
vices for publishing and subscribing information are made available via POS resources
throughout the affected region.

OIGY consists of two major components. One is the distributed Truthful Real-time Infor-
mation Publishing and Subscribing (TRIPS), and the other is the Heterogeneous And
Plug-n-PlaY networks (HAPPY). The objective of HAPPY [6] is to maintain physical con-
nectivity. It does so by interconnecting network-capable devices in all possible manners: It
makes use of heterogeneous network access technologies (e.g. WiFi, Bluetooth, Professional
Mobile Radio (PMR), and 3G/GPRS) and diverse networking approaches (e.g. Infrastruc-
ture-based networks, wireless mesh networks, mobile ad hoc networks, and opportunistic
networks).

The objective of TRIPS is to support distributed real-time publication and subscription
services, hereafter referred to as P/S services. Note that a device/service in the system may be
an information publisher, or a subscriber or both. Typical resource limited devices/services
act as information publishers only. Sensors used to detect mud-slide, measure rainfall and
water level in rivers, and monitor earthquakes are some examples. Services such as weather
forecast services and GIS systems subscribe information from sensors, GIS databases, and
other information sources and publish their information to the applications and end-users of
the disaster management system. While requesting for P/S service, an application specifies

Figure 1: System Architecture of Open Information Gateway (OIGY).

16 C.-S. Shih et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015)

the Quality of Service (QoS) or Class of Service of the service using QoS parameters such as
response time and resource requirements. Upon establishment of a P/S service, TRIPS will
register and announce the service. Hence, one capability of TRIPS is to manage service dec-
larations, automatically establishing connections between publishers and subscribers for a
matching topics and dynamically detecting new status in the system. When a subscribed
message arrives or is sent, TRIPS delivers the message to its subscribers. The component that
does this work is called a P/S broker, or simply broker, and a logical network of publishers
and subscribers serviced by brokers is called a PubSub network.

Figure 2 illustrates the architecture of a PubSub network over a HAPPY network. In a
PubSub network, P/S brokers are responsible for storing and forwarding messages to the
brokers and subscribers. Broker nodes (i.e. the POS resources on which brokers run) are
connected by HAPPY networks, and the messages are routed over the switches and gateways
in HAPPY networks. In the P/S network, a link between two P/S brokers may be a route of
multiple IP links and a shorter path on P/S networks may not necessarily be a route with a
shorter message transmission delay. Within a HAPPY network, HAPPY agents are deployed
on the nodes with multiple communication interfaces to facilitate communication among
multiple physical communication networks.

3 RELATED WORK
This section discusses prior efforts closely related to this research, including work on infor-
mation exchange protocols for distributed message delivery and time decoupling message
delivery. Distributed message delivery avoids single-point and any-point failures. Time
decoupling message delivery allows the message senders and receivers to be active in differ-
ent time intervals. These capabilities are essential for information exchanges during disasters.

3.1 Publish/Subscribe model for message exchange

Publish/Subscribe is a messaging model that supports asynchronous and persistent mes-
sage-oriented communication [7]. This model views the system and applications as consisting
of three types of components. The first two types are publisher and subscriber: A publisher is
a producer of information, and a subscriber is a consumer of information. The third compo-
nent is the middleware, which is responsible for delivering information from publishers to
subscribers.

Specifically, when a publisher produces a message containing information to be disseminated,
it gives the message to the middleware. The middleware routes the message to subscribers of
this and related messages. If some subscriber is not active at that time, the middleware buffers

Figure 2: Pub/Sub Network over IP Network.

 C.-S. Shih et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015) 17

the message until the subscriber becomes active and ready for receiving the message. Conse-
quently, in comparison with traditional messaging models, the distinguishing feature of publish/
subscribe model is decoupling in the following three dimensions [7].

•  Space decoupling: A publisher does not need to know the address of the subscribers.

 • Time decoupling: A subscriber does not need to be active when the publisher is sending
messages.

•  Synchronization decoupling: The publisher and subscriber(s) are not blocked.

These decoupling properties make publish/subscribe messaging scalable and flexible and,
therefore, suitable for the disaster management applications. They are the reasons that TRIPS
supports publish/subscribe messaging model.

3.2 The Apache Qpid AMQP and Pubsubhubhub Protocol

The prototype P/S broker described in the next section runs on Apache Qpid. The Apache
Qpid AMQP (Advanced Message Queue Protocol) distribution [8] is a widely deployed pro-
ject and implements AMQP [9] according to publish/subscribe messaging model. AMQP is
an open standard for message-oriented middleware (MOM) communication. Its primary goal
is to enable better interoperability between MOM implementations. Since the inception of
AMQP, several open-source messaging software distributions have emerged, including
Apache Qpid AMQP. This distribution provides a broker federation option which enables
workload sharing among a group of brokers linked with each other in decentralized
 architecture.

Qpid also has built-in fault-tolerance features, the most critical of which is High Availabil-
ity Messaging Cluster. A cluster is a group of Qpid brokers with the same configurations for
exchanges, queues, and other entities. The brokers in the cluster synchronize their events with
each other and hence are in the same state. With replicated states, the publish/subscribe ser-
vice does not fail unless all the brokers in the cluster fail. Cluster incurs high synchronization
overhead. It is sustainable when used for message delivery in a small area where the network
connecting brokers is stable and fast. This assumption is clearly not valid for wide-area net-
works and disaster management. Moreover, cluster requires redundant computation resources.
This requirement is too demanding since information/communication support systems for
disaster response and relief are typically resource poor. The self-healing mechanism for Qpid
described in the next section incurs lower overhead than the cluster approach.

TRIPS also makes use of pubsubhubhub [10], which is a simple and flexible publish and
subscribe protocol over the Internet. The protocol can provide subscribers with near instant
notifications via web-hook callbacks when a feed URL subscribed by them is updated. The
protocol does not incur the network traffic introduced by periodically polling the feed server
as existing RSS/Atom services do. However, services speaking the protocol cannot recover
from failures caused by disaster. The recovery mechanism described here can enhance the
availability of such services.

3.3 Data distribution service and content centric networks

TRIPS also plans to support Data distribution service (DDS) and content-centric networking
(CCN). DDA is a publish/subscribe protocol featuring QoS support. As pointed by A. Corradi
et al. [11,12], current implementations of DDS suffer from scalability issue. A way to improve

18 C.-S. Shih et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015)

scalability of DDS is to divide the global space of support infrastructure into domains. Each
domain has components responsible for copying or relaying data. With separated, domains
and redundant services, scalability and availability of pub/sub messaging services can be
enhanced. To prevent the services interruptions caused by partitioned networks, TRIPS take
advantage of the domain concept: Computing devices are grouped into subnetworks accord-
ing to their network connectivity and each group is managed individually so as to increase the
scalability and availability.

In a CCN, the packets are routed according to their content descriptor. According to a typ-
ical content delivery procedure in CCN, the client first expresses its interest in certain content.
The CCN routers then forward the interest to the content providers to fulfill the request. In
response to the request, the content is not only delivered but duplicated to the routers on the
delivery path. The other clients requesting for the same content can retrieve the duplication
from any of the routers instead of the provider. The idea of CCN is similar to content-based
publish/subscribe. The difference between publish/subscribe and CCN is that the interest in
CCN is transient while the subscription in publish/subscribe is persistent [13].

4 DESIGN AND IMPLEMENTATION
In the landmark-based service recovery framework described here, the PubSub network is
divided into several disjointed subnets. Brokers are grouped into subnets. Each broker is
included in only one subnet. The broker has a unique identification within the subnet (e.g.
with an ID that combines its IP address and port number). Figure 3 illustrates the architecture
of the PubSub network within the subnet. Dashed arrows represent flows of control mes-
sages; solid arrows represent flows of pub/sub messages. In addition to broker nodes, each
subset has at least a backbone node, i.e. a service node responsible for transmitting messages
among subnets. Each subnet also has a landmark monitor, or simply landmark. The term
refers to a service process that is responsible for monitoring and recovering the message
delivery service in case of failure and manages all the brokers in the subnet. Landmark should
be deployed on a reliable node so that it has a very low failure rate or it can be recovered

Figure 3: Pub/Sub networks with Landmark and backbone nodes.

 C.-S. Shih et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015) 19

automatically. Moreover, the landmark of a subnet is reachable from all the brokers in the
subnet. In practice, one may deploy landmark and backbone on a single POS for the sake of
simplicity. Hereafter, this article is confined to one pub/sub subnet. Broker, landmark, and
backbone nodes refer to the nodes in one subset.

4.1 Overview of service recovery process

The rationale of landmark-based service recovery is to reduce the recovery overhead by col-
lecting sufficient information before failure occurs. In the meantime, the impact of information
collection should be minimized. During runtime, the landmark listens to the sent messages
and state changes by each broker. Qpid/AMQP and several other Pub/Sub frameworks sup-
port this functionality. Specifically, when a broker service is active and health, its QMF (Qpid
Management Framework) monitor transmits messaging activities conducted by the broker
and changes in its queue configuration and queue state to the landmark monitor. The moni-
toring process on the landmark will be described shortly. The landmark monitor also
duplicates the service objects on broker nodes to its local repository when the landmark
monitor starts and when it detects a new broker. Qpid/AMQP and several other Pub/Sub
frameworks support this functionality. When a broker learns that a link connected to or from
itself is down, it sends a control message to the landmark monitor to report the link failure.
Consequently, the landmark monitor can keep track of the activities and health conditions of
all brokers in the subnet without actively probing the broker nodes. When the landmark learns
that a broker service has failed, it starts the recovery process. The first step of the recovery
process is to update the distance vector table which the landmark maintains to keep track of
route lengths in terms of the average transmission delay or average bandwidth between every
pair of broker nodes in the subnet.

Figure 4 illustrates the process carried out collaboratively by all the nodes in the subnet to
update distance vector table. To support the process, each broker node executes a ping dae-
mon which sends a response to ping requests from other broker nodes and the landmark. The
landmark monitor starts the process by sending a distance update request (i.e. Step  in
Fig. 4) to brokers. When the daemon of a broker node receives the request from the landmark
monitor, it sends a ping message to the corresponding broker node (i.e. Step ). When the
daemon on the corresponding broker node receives a ping request, it echoes a null message
back to the sender (i.e. Step ). After receiving the echo message, the sender calculates the
distance based on the remained TTL (Time-To-Live). TTL is a counter in the packet header
that limits the number of lifespan of a packet in the network, and is usually represented by the
number of hops in the packet header (Step in the figure). When the landmark learns the
remaining TTLs from a pair of broker nodes, it calculates the number of hops between them
and estimates the route length. Note that there is no need to update the distance vector table
for all pairs of broker nodes in the subnet and only the distance of the routes connected to the

Figure 4: Procedure for Ping daemon to collect route distance.

20 C.-S. Shih et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015)

neighbours of the failed node require updates. Moreover, the distance vector table only keeps
track of the distance between brokers, which are monitored by the landmark node, and the
messages will not be forwarded to neighbouring subnet by backbone nodes.

4.2 System architecture for QpidR

The landmark-based service recovery mechanism is implemented on Qpid. The mechanism
is called Qpid Recovery or QpidR for short. QpidR is designed as an application in Qpid and
does not modify the core services of Qpid. Hence, the landmark-based recovery protocol can
also be implemented on other message publication and subscription services. Figure 5 shows
the system architecture of QpidR to illustrate how QpidR interacts with typical message pub-
lish and subscription systems. In the figure, Qpid serves the underlying message publish/
subscribe services. Landmark-based service recovery mechanism is realized by three types of
servers in QpidR: landmark, servicing brokers, and backup brokers. As discussed earlier,
there is only one landmark node in the subnet to monitor the status of brokers and to recover
failed services. Servicing brokers are brokers that send and receive messages, and thus pro-
vide messaging services. Backup brokers are the candidate broker nodes to recover failed
servicing brokers when there is any. A backup broker does not send and receive messages
before it is selected to recover failed service.

Landmark node starts the landmark service when the node starts and does not stop until the
node terminates. Landmark service conducts three operations: monitoring brokers, scoring
backup brokers, and recovering failed brokers. To monitor broker nodes, landmark service
sends heartbeat messages to a list of servicing brokers and backup brokers periodically,
shown as solid lines in Fig. 5. The returned messages from service brokers and backup bro-
kers are received and stored in GET_READY_TIMEOUT file descriptor.

To choose a backup broker to recover a broken servicing broker, the landmark service
requests each backup broker to evaluate its own capability of being a broker and return the
evaluation results. The capability of being a broker depends not only on the static hardware
configuration but also on the run-time parameters such as CPU workload and network connec-
tivity. In fact, the evaluation is conducted repeatedly. The evaluation schedule can be configured
for either periodically renewals or event driven renewals. The messages for scoring are repre-
sented by dashed lines in Fig. 5. When detecting a failed broker node, landmark service chooses
a backup broker node which has best evaluation scores to recover the failed broker. The recov-
ery process consists of reconfiguring the message routing tables, updating the list of servicing
brokers, and selecting additional backup brokers. Landmark service coordinates the Qpid ser-
vices in the network to accomplish the work, which are represented by dotted lines in Fig. 5.

Figure 5: System architecture for QpidR.

 C.-S. Shih et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015) 21

4.2.1 Implementation of landmark service
As mentioned above, landmark service monitors servicing brokers and recovers failed ser-
vices. The service makes use of Qpid management framework (QMF), the general purpose
management bus built on Qpid messages. To handle concurrent events and reduce run-time
overhead, utility select is used in a single thread. In the thread, the following three file
descriptors are used to handle events for three types of services.

•  recoverysfd: This file descriptor receives messages from specific functions called
by SessionManager within QMF. When it starts, landmark registers with Con-
soleListener into SessionManager. Callback functions implemented in Con-
soleListner include object-Props, event, and brokerDisconnected.
When brokerDisconnected function is called, it will send the message BROKER-
DISCONNECTION to recoverysfd to delete the broker. When object-Props
function is called, it will send the message OBJECTPROPERTY to the recoverysfd
to add the broker into the broker listening list. When called with event name bro-
kerLinkDown, the event function will send the message LINKDOWN to the recov-
erysfd. Recoverysfd will check if the service IP is still alive. If the service is
disconnected, recoverysfd will search for one broker from listening list and then use
the function listenAddressChange to reroute the service. Function listenAd-
dress-Change will send the request to querysfd to retrieve the broker’s informa-
tion and then start rerouting from linkdown broker to a new one.

 • querysfd: When the function listenAddressChange is called, it sends a mes-
sage to querysfd. Landmark will retrieve the name embedded in the message, received
in file descriptor querysfd, to locate the servicing broker and reply with the broker’s
information.

•  GET_READY_FD_TIMEOUT: This file descriptor is needed for checking whether the
broker node is shut down. When a broker node is broken, it will be replaced by a back-
up broker. This function is different from the message LINKDOWN in recoverysfd
which only checks the specific serving broker for rerouting but not all serving brokers.
GET_READY_FD_TIMEOUT needs to monitor all serving and backup brokers’ internet
connections.

To collaborate with servicing brokers and backup brokers, Landmark services interact
with heartbeat_server on servicing brokers and backup brokers, and scoring_
server on backup brokers. Heartbeat_server on each broker waits for the requests
from the landmark. Landmark sends a message to heartbeat_server at either certain
constant time intervals or predefined events. A response timeout is also configured to detect
a failed broker node. (Note that a service may fail for different reasons such as broken con-
nection and failed broker messaging service. Broken connection can be detected by either
QMF, as discussed above, or heartbeat message.) If landmark service does not receive the
response within the predefined timeout, it assumes that the service is not reachable and will
start the recovery process. Scoring_server on backup brokers wait for the request from
landmark. Receiving the request, scoring_server will create a thread to evaluate the
backup brokers according to the predefined scoring criteria.

The scoring procedure [14] is conducted in two steps: collect the resource usage from
multiple resources, and compute the overall score for each backup broker. Below shows the
scenario for using CPU utilization, available memory, batter level, and network bandwidth

22 C.-S. Shih et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015)

to evaluate a backup broker. On UNIX-like systems, one can utilize system APIs to collect
the resource usages. For example, one can use the command cat /proc/cpuinfo |
grep MHz to query CPU frequency and, then, use mpstate to query CPU usage. After
having the usage parameters, one can combine these values and estimate CPU utilization by
eqn (1). Similarly, one can use the command free −b to query memory usage and estimate
memory utilitization by eqn (2). For battery, one can use command acpi −i to query bat-
tery lifetime and, then, use eqn (3) to estimate the battery utilization. When scoring_server
receives the request to estimate bandwidth, it first queries all the IPs connected to the broken
service and then use the PBProbe tool [15] to estimate each IPs bandwidth and average them
by eqn (4).

UC = exp({[Ce ∗ (1 − Cu) − Cn, 0]}) (1)

 UM = exp({[Me ∗ (1 − Mu) − Mn, 0]}) (2)

UBA = exp({[BAe − BAn), 0]}) (3)

 U BW m BW
BW ei n

i

m

= −
=

∑exp({[),]})/
1

0 (4)

The second step is to compute the overall score of a backup broker. Specifically, each
 scoring_server assigns weights to different resources, where the sum of weights must
be equal to one, and computes the overall score by eqn (5). Again, the users can define their
different evaluation criteria in QpidR. The example shown here was a default setting for
QpidR and was used in our experiments.

 UT = WC * UC + WM * UM + WBW * UBW + WBA * UBA (5)

where
 WC: weight for CPU utilization
 WM: weight for memory utilization
WBW: weight for bandwidth estimation
 WBA: weight for battery usage
WC + WM + WBW + WBA = 1

4.2.2 Distributed testing and configuration
To allow the users to evaluate QpidR in different distributed environments, the mechanism
provides an installation package to reduce the burden of configuring landmark-based recov-
ery and distributed message publish and subscription. For the sake of testing and illustration,
ESTINET and virtual machines are used. ESTINET is the emulation environment for net-
work services which provide different network topologies and configuration settings for
bandwidth and packet delay. Thus, the tool can be used to emulate distributed environments
having ten to hundred nodes, as described below:

Configuration Files The installation package of QpidR requires three configuration files:
network configuration, Qpid configuration, and QpidR configuration. Figure 6 shows how
these three configuration files are imported into the services. Network configuration file is
imported into the network simulator to configure the network topology. If QpidR is installed
on a physical machine, network configuration file is not needed. Qpid configuration files are

 C.-S. Shih et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015) 23

imported into all the Qpid nodes for landmark, servicing brokers, and backup brokers to
configure the connection among Qpid broker nodes. QpidR configuration files are imported
into all brokers to initialize heartbeat messages, scoring service, and recovery services.

Supported Commands In current implementation, QpidR supports three recovery
configurations: (1) static nodes serve as servicing brokers and landmark, (2) mobile nodes
serve as servicing brokers, and (3) mobile nodes serve as backup brokers. The commands to
start the services are listed as follow:

•  qpidd −p PORT_NUM --no-data-dir --auth no
This command starts Qpid services in background. For servicing brokers, qpidd provides
service for message clients. For backup brokers, qpidd starts in background to recover
failed servicing brokers. PORT_NUM is the port number for client to connect. --no-da-
ta-dir configures that the application will store the information in the memory. --auth
no configures that authentication is not required.

 • heartbeat_server
On landmark, servicing brokers and backup brokers, the above command is used to start
the heartbeat server. The process will send, receive, and respond to heartbeat messages.

 • landmark BROKERLIST_FILE BACKUP_LIST_FILE
The above command is the main function for the recovery mechanism. Users provide the
list of all serving services in the subnet and the backup file for backup services in the file.
Landmark will send heartbeat messages to the brokers listed in file BROKERLIST_FILE.
In addition, landmark reads IPs about backup brokers from BACKUP_LIST_FILE and
choose the proper broker for recovery once the serving broker is broken.

 • scoring_server scoringServer.ini
The above command starts scoring_server services, according to the configuration
specified in file scoringServer.ini. File scoringServer.ini defines the
resources and parameters for scoring. For example, one can specify CPU utilization, memory
utilization, battery, and bandwidth. Scoring_server will read the configuration file, do
the calculation and, then, send the score to the landmark. Figure 7 shows an example config-
uration file for scoring. In the file, RunOnExecution specifies the path for the application.
INPUTFILE specifies the file for application to read. OUTPUTFILE specifies the output file
for the application. Scoring server will use the value from OUTPUTFILE to compute the
utilization. WEIGHT is the weighting for the application. In Figure 7, the weighting factor for
CPU is 1/(1 + 1 + 50 + 60).

Figure 6: QpidR Configuration.

24 C.-S. Shih et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015)

5 PERFORMANCE EVALUATION

5.1 Experiment environment

To evaluate the design described in the previous sections, the discrete-time simulator EstiNet
[16] was used. Again, EstiNet is capable of simulating network interfaces, network devices,
topologies, and protocols for the applications. The users can also configure numerous param-
eters of the environment such as bandwidth, latency, link down, and node failure. In addition,
every node in the simulated environment has a synchronized clock so as to calculate the
interval between events on different nodes by logging their timestamps. The EstiNet simula-
tor was installed on a virtual machine. The guest system is Fedora Linux 14. The CPU on the
host machine is Intel Xeon E5620 @ 2.4 GHz. A CPU core and a 2 GB-RAM are allocated
to the virtual machine.

5.2 Evaluation results

This section presents the results for verifying the correctness of recovery operation, evaluat-
ing transmitted data size during recovery and monitoring and measuring the latency of
recovery and initialization for monitoring.

Figure 7: Configuration for scoring server.

 C.-S. Shih et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015) 25

5.2.1 Correctness
Here, correctness refers to the fact that service recovery indeed prevents the subscribers from
losing messages. Synthetic workload is designed to verify correctness of our implementation.
In the experiments, messages are published periodically. They are transferred from one bro-
ker to another and finally received by the subscriber. Besides, the brokers temporarily store
the messages until the messages expire. Figure 8 shows the time sequence of a publisher and
a subscriber. When there is no broker failure, the messages are delivered to the subscriber in
a short time. During broker service failure, the delivery path is interrupted. The subscriber
cannot receive any message. With the service recovery mechanism, the failed broker service
is replaced by a backup service. When the failed routes are reconnected to the backup service,
the non-expired messages are transferred to the backup service and its succeeding brokers.
The messages published during broker failure are delivered to the subscriber right after
recovery. Hence, in the experiments, brokers will be temporarily disconnected from the net-
work. The mechanism is correct if the periodic messages are all received by the subscriber.

5.2.2 Data size
To determine the size of transmitted data during monitoring and recovery, the network traffic
was measured by recording the I/O flows on the simulated network interface. The network is
a subnet consisting of a number of brokers and one centralized recovery service. In order not
to count any background traffic, the subnet contains no clients.

In the first experiment, the data rate of control messages is measured. Even when there is
no failure, the recovery service has to exchange control messages, including events and sta-
tistical data, with the monitored broker services. These data are generated either by QMF or
recovery protocol. Except for events such as broker disconnection, link down, and object
property change, the period and size of control messages are fixed. Here, objects refer to
message queues, broker names, broker ports, et al. This information is stored by the recovery
service, and does not change.

Table 1 shows the relationship between number of monitored brokers and data rate of peri-
odic control messages. The experiment result shows that the data rate grows linearly with
number of monitored brokers. It takes approximately 2.3 KB/s of bandwidth to monitor a
broker.

In the second experiment, the amount of network I/O during recovery is measured. The
subnet used for experiment consists of a recovery service, a failed broker, and a backup

Figure 8: Time sequence of correctness test.

26 C.-S. Shih et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015)

broker. The experiments record the network I/O on the recovery service during recovering
the failure. The amount of network I/O is related to the type and number of objects on the
backup broker.

In the second experiment, the amount of network I/O during recovery is measured. The
subnet used for experiment consists of a recovery service, a failed broker, and a backup broker.
The experiments record the network I/O on the recovery service during recovering the failure.
The amount of network I/O is related to the type and number of objects on the backup broker.

Table 2 shows the relation between data size and the number of objects. Without loss of
generality, only queues and routes are shown. It takes about 10 KB to create a queue and
12 KB to create a route. In the case where there are no objects, the recovery service does not
perform any operation on the backup broker. The I/O data is used for initializing a QMF
session, receiving events, and terminating the session. Table 3 shows the relation between
data size and the number of routes. When the number of routes increase, the network traffic
increases at the rate of approximately 12 KB per route. Compared to the traffic of service
recovery, the increase is negligible.

Table 1: Data rate of periodic control message.

Number of brokers Average data rate (KB/sec) Standard deviation

10 23.97 1.67
20 42.68 2.97
30 68.92 3.27
40 89.49 6.68

Table 2: Traffic size of recovering queues.

Number of queues Average traffic size (KB) Standard deviation

0 496.38 4.51
10 595.80 5.16
20 704.23 5.48
30 800.05 6.09
40 907.87 5.80

Table 3: Traffic size of recovering routes.

Number of routes Average traffic size (KB) Standard deviation

5 627.87 3.99
10 690.02 5.30
15 751.34 6.19
20 810.38 6.91

 C.-S. Shih et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015) 27

5.2.3 Average latency
The experiments also evaluated recovery latency of centralized framework in different net-
work environments. In the experiment, the parameters are network size, bandwidth, and
number of concurrent failures. The size of network is represented by the number of hosts. The
available bandwidth is not only affected by the link bandwidth, but also by the background
traffic, including client messages and control messages produced by non-failed brokers.

The first simulation environment was done in a small network in which there are 24 hosts.
The bandwidth between the host and the router is 10 Mbps which is relatively large to the
background traffic. In centralized service recovery, every host runs a broker service and one
of the hosts is the landmark. In distributed framework, every host runs a broker service and a
recovery service. Table 4 shows the latency of centralized recovery.

In the case of concurrent failures, the latency of centralized recovery increases linearly.
This is mainly caused by the sequential operations on the recovery service.

6 SUMMARY
Autonomous service recovery is critical and desirable for information exchange service for
disaster management. This article presents a landmark-based service recovery mechanism to
restore the failed message publishing and subscription services. The mechanism requires a
central server, i.e. the landmark server, to collect service configuration and monitor the states
of broker services. Given the collected status data, the landmark server chooses a backup
service node to recover failed service. The developed mechanism consists of status monitor-
ing component, service evaluation component, and online reconfiguration component. The
experiment results presented above confirm the aforementioned properties for a publish/
subscribe network in a reasonable size. Specifically, the services can be recovered within
15 seconds up to five concurrent failures. Future work includes the extension of the central
mechanism into a distributed service recovery mechanism to support large sized publish/
subscribe networks.

ACKNOWLEDGEMENT
This work was partially supported by National Science Council under Grants 102-2219-E-
002-022 and by Academia Sinca under Grants AS-102-SS-A04.

REFERENCES
 [1] Chiu, W.T., Arnold, J., Shih, Y.T., Hsiung, K.H., Chi, H.Y., Chiu, C.H., Tsai, W.C. &

Huang, W.C., A survey of international urban search-and-rescue teams following the Ji
Ji earthquake. Disasters, 26(1), pp. 85–94, 2002. doi: http://dx.doi.org/10.1111/1467-
7717.00193

Table 4: Centralized recovery latency in a small network.

Number of failures Average latency (sec) Standard deviation Max Min

1 2.92 0.34 3.43 2.39
2 5.50 0.64 6.78 4.35
3 8.52 0.77 9.56 6.99
4 11.46 0.82 12.63 9.93
5 14.37 0.87 15.71 12.37

28 C.-S. Shih et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015)

 [2] United States Department of Transportation, Next generation 9-1-1 (accessed January
2012), available at http://www.its.dot.gov/ng911/

 [3] United States Coast Guard, Rescue 21 (accessed January 2012), available at http://
www.uscg.mil/acquisition/rescue21/

 [4] Chanson, H., The impact of Typhoon Morakot on the southern Taiwan coast. Shore &
Beach, 78(2), pp. 33–37, 2011.

 [5] NBC news services, Rescue crews pull 2 more from Haitian market (accessed 17
 January 2010), available at http://www.nbcnews.com/id/34829978/ns/world_news-
haiti/t/rescue-crews-pull-more-haitian-market/

 [6] Chen, L.-J., Li, C.-W., Huang, Y.T. & Shih, C.-S., A rapid method for detecting geo-
graphically disconnected areas after disasters. Technologies for Homeland Security
(HST) (Nov 2011), pp. 501–506, 2011. doi: http://dx.doi.org/10.1109/ths.2011.6107919

 [7] Eugster, P.T., Felber, P.A., Guerraoui, R. & Kermarrec, A.-M., The many faces of pub-
lish/subscribe. ACM Computing Surveys, 35(2), pp. 114–131, 2003. doi: http://dx.doi.
org/10.1145/857076.857078

 [8] Apache Qpid, http://cwiki.apache.org/qpidl
 [9] Advanced Message Queuing Protocol, http://www.amqp.org
[10] Fitzpatrick, B., Slatkin, B. & Atkins, M., Pubsubhubbub core 0.3 working draft. Techni-

cal Report, 2010.
[11] Corradi, A. & Foschini, L., A DDS-compliant P2P infrastructure for reliable and QoS-

enabled data dissemination. Proceedings of 2009 IEEE International Symposium on
Parallel & Distributed Processing (IPDPS 2009), pp. 1–8, 23–29, 2009, doi: 10.1109/
IPDPS.2009.5160957

[12] Corradi, A., Foschini, L. & Nardelli, L., A DDS-compliant infrastructure for fault-
tolerant and scalable data dissemination. Proceedings of 2010 IEEE Symposium on
Computers and Communications (ISCC 2010), pp. 489–495, 2010, doi: 10.1109/
ISCC.2010.5546756.

[13] Carzaniga, A., Papalini, M. & Wolf, A.L., Content-based publish/subscribe net-
working and information-centric networking. Proceedings of the ACM SIGCOMM
workshop on Information-centric Networking, pp. 56–61, 2011. doi: http://dx.doi.
org/10.1145/2018584.2018599

[14] Chen, L.-J., Sun, T., Chen, B., Rajendran, V., & Gerla, M., A smart decision model for
vertical handoff. The 4th International Workshop on Wireless Internet and Recongu-
rability (ANWIRE04), May 2004.

[15] Chen, L.-J., Sun, T., Wang, B.-C., Sanadidi, M.Y. & Gerla, M., PBProbe: A capacity es-
timation tool for high speed networks. Journal of Computer Communications, 31(17),
pp. 3883–3893, 2008. doi: http://dx.doi.org/10.1016/j.comcom.2008.05.047

[16] EstiNet, http://www.estinet.com/
[17] Lin, K.J., Zhang, J., Zhai, Y. & Xu, B., The design and implementation of service

process reconfiguration with end-to-end QoS constraints in SOA. Service Oriented
Computing and Applications, 4(3), pp. 157–168, 2010. doi: http://dx.doi.org/10.1007/
s11761-010-0063-6

[18] Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H. & Braynard,
R.L., Networking named content. Proceedings of the 5th international conference on
Emerging networking experiments and technologies, pp. 1–12, 2009. doi: http://dx.doi.
org/10.1145/2063176.2063204

[19] Wu, Q. & Li, P., Study and implement of dynamic routing based on QoS in enterprise
service bus. Journal of Computational Information Systems, 6(7), pp. 2093–2098, 2010.

