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ABSTRACT
In the vertebral body (VB), the load carrying and transmitting function is primarily performed by the cortical VB.
Hence, we have modelled the cortical VB as a hyperboloid shell whose geometry and composition are made up
of its generators. This paper analyses the forces in the VB generators due to compression, bending and torsional
loadings. The unique feature of the hyperboloid geometry is that all the loadings are transmitted as axial forces
in the generators. This makes the VB a high-strength structure. Furthermore, because the cortical VB material is
primarily made up of its generators (through which all the loadings are transmitted axially), it also makes the VB
an intrinsically lightweight structure. We then analyse for the optimal hyperboloid shape and geometry by mini-
mizing the sum of the forces in the hyperboloid VB generators with respect to the hyperboloid shape parameter
(angle β between pairs of generators). The value of β is determined to be 26.5◦, which closely matches with the
in vivo geometry of the VB based on its magnetic resonance imaging scan. In other words, for the hyperboloid
shape parameter β = 26.5◦, the VB generators’ forces are minimal so as to enable it to bear maximal amounts
of loadings. In this way, we have demonstrated that the VB is an intrinsically, functionally optimal structure.
Keywords: axial force, bending, toque, generators, hyperboloid, optimal structure, shape parameter, stress
analysis, uniaxial compression, vertebral body.

1 INTRODUCTION
The skeletal system is important to the body both mechanically and metabolically. The bone is the main
constituent of the skeletal system and differs from the connective tissues in rigidity and strength. The
rigidity and strength of the bone enable the skeleton to maintain the shape of the body, to protect the
soft tissues and organs, to supply the framework for the bone marrow, and to transmit the force of mus-
cular contraction from one part of the body to another during movement. The mineral content of the
bone serves as a reservoir for ions, particularly calcium, and also contributes to the regulation of extra-
cellular fluid composition, particularly ionized calcium concentration. In addition, the bone is a self-
repairing structural material that is able to adapt its mass, shape and properties to change in mechanical
requirements and endures voluntary physical activity for life without breaking or causing pain.

As per the concept of optimal design in nature [1, 2], anatomical structures are also customized to
be functionally optimal. If it is a load-bearing structure, then it is adroitly designed to be a lightweight
and high-strength structure. For example, a long bone is modelled such that it can sustain maximum
loading with least material. Consider the case of the femur. Its shape and material density correspond
to its stress trajectories under its functional loading (see Fig. 1) as per Wolff’s law [3]. In other words,
there needs to be less density of bone where the stress trajectories are apart (such as in the trabecular
bone) and more density of bone where the stress trajectories are closer (as in the cortical bone).

1.1 Optimal dimensions of the femur cortical bone

Now, let us examine the diaphysial part of a long bone (e.g. the femur) that carries most of the
bending stress. Using the Euler–Bernoulli flexural equation, the normalized bending strength (BS)
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Figure 1: Wolff’s drawing of the trabecular orientation in the proximal part of the femur and the cross
section of the femur. It can be noted that the bone material distribution corresponds to the
orientation of the stress trajectories [3].

can be defined as
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where M is the moment on the bone, σb is the maximum stress on the bone induced due to M , re is the
external radius of the bone and ri is the internal radius of the bone (considering the long bone to be
a hollow cylinder). Here, normalization is carried out with respect to the moment carrying capacity
of a long bone.

Moreover, the normalized weight factor (WF, i.e. normalized weight per unit length) of a long
bone can be represented as

WF ≡ π(r2
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Maximizing the function (BS – WF) with respect to ri/re, the optimal ri/re is found to be 1
/√

2
(=0.707), at which the long bone has minimum weight and maximum bending strength; the cor-
responding area ratio (inner to outer cross-sectional area) is 0.5. Based on our measurements of
femur diaphysial cross-sections, this area ratio is in the range 0.5 ± 0.2. This analysis shows that
at ri/re = 0.707, bone has maximum bending stiffness, torsional strength and stiffness for minimal
weight.

1.2 The spinal vertebral body as an optimal structure

Let us now consider the spine. It protects the spinal cord, while allowing for a full range of motion of
the trunk of the body. Spinal biomechanical efficacy is to a large extent based on the optimal intrinsic
designs of the spinal vertebral body (VB) and the disc for load bearing. This makes it possible for all
types of loadings to be effectively sustained by the VB. In this paper, we first carry out a stress analysis
of how effectively the cortical VB can bear uniaxial compression, bending and torsional loads.

Then the relationship between the dimensions of the VB (based on physiological loading condi-
tions) that makes it to be a functionally optimal (lightweight and high-strength) structure is analysed.
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Figure 2: (a) The cortical VB is shaped as a hyperboloid (HP) shell formed of two sets of generators.
The height of the HP can be expanded or reduced by the inclination of the generators.
It also shows a typical VB. (b) The geometry of the HP shells [4, 5].

In other words, we will provide the relationship between the geometrical parameters of the VB that
makes it an intrinsically optimal structure. Finally, the optimal design parameters obtained from the
analysis are compared with published magnetic resonance imaging (MRI) scans of VBs.

2 VB SHAPE AND MEMBRANE STRESSES

2.1 Hyperboloid geometry of the VB

The hyperboloid geometry of the cortical VB is formed by two families of generators, as shown
in Fig. 2a. Using shell membrane theory, we will analyse how this hyperboloid VB geometry
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enables the VB to efficiently sustain: (i) compressive loading C on the VB, to cause axial com-
pression in both sets of generators; (ii) bending moment M , to result in compressive forces in
one set of generators (i.e. on the compression side of the neutral axis) and tensile forces in the
other set of generators; (iii) torsional loading T , to result in compressive forces (per unit length) in
one family of generators and tensile forces in the other family of generators oriented in the other
direction.

Figure 2b illustrates the hyperboloid geometry of the spinal VB. If we intersect the hyperboloid
shell surface with a vertical plane parallel to the yz plane but at x = −a, then the intersecting curves
will be

a2 + y2

a2
− z2

b2
= 1 or z = ±

(
b

a

)
y, (3)

which has the same slope as the asymptotes. Based on the hyperboloid geometry [4], the hyperboloid
surface can be generated by a pair of intersecting lines inclined at an angle β = tan−1 (a/b) in the
vertical plane tangent to the waist circle (r0 = a).

The construction of the cortical VB hyperboloid by a set of generators [5] is illustrated in Fig. 3,
wherein the end plate radius AN is R, the radius of the waist circle is a and the height of the VB is
2H . Based on this, we define

tan β =
√

R2 − a2

H
= a

b
. (4)

The primary dimensional parameters of the VB hyperboloid are (R, a and H ), and tan β provides the
relationship between them.

Figure 3: The geometry of hyperboloid generator: the generators AD and BC form the basis for the
construction of the hyperboloid.
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2.2 Membrane stresses in the VB cortex

We follow the membrane theory of shells to analyse the stresses in the cortical VB [6]. Mem-
brane stresses σφ (along the meridian) and σθ (along the hoop) have a relationship with the normal
pressure pr , as depicted in Fig. 4. The equilibrium of forces in the radial (r) direction gives

−2σφt(r2dθ) sin

(
dφ

2

)
+ 2σθt(r1dφ) sin

(
dθ

2

)
+ pr

[
2r1 sin

(
dφ

2

)
· 2r2 sin

(
dθ

2

)]
= 0, (5)

wherein, in the case of a hyperboloid, r2 is considered to be positive and r1 is considered to be
negative, and their magnitudes in terms of a, b and φ are

r1 = a2b2

(a2 sin2 φ − b2 cos2 φ)3/2
, (6)

r2 = a2

(a2 sin2 φ − b2 cos2 φ)1/2
. (7)

For small angles, sin θ ≈ θ, which leads eqn (5) to

−σφtr2(dθ)(dφ) + σθtr1(dφ)(dθ) = −pr[r1(dφ) · r2(dθ)]

Figure 4: The stresses acting on an element of the hyperboloid shell.
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or
σφt

r1
− σθt

r2
= pr. (8)

Denoting Nφ = σφt and Nθ = σθt as the stresses per unit wall thickness (or stress resultants), with t
being the VB wall thickness, we obtain

Nφ

r1
− Nθ

r2
= pr , (9)

which is the membrane equation for the hyperboloid VB shell. This is because, for a hyperboloid
shell, r1 is negative and r2 is positive. Now pr is negligible due to the cancellous bone within the
VB cortical shell. Hence, by substituting pr = 0 (i.e. for an internally non-pressurized cortical VB
hyperboloid shell) in eqn (9), we obtain

Nφ =
(

r1

r2

)
Nθ. (10)

Substituting r1 = (b2/a4)r3
2 from Fig. 2 into eqn (10), we obtain

Nφ =
(

b2

a4
r2

2

)
Nθ. (11)

3 ANALYSIS OF FORCES IN THE VB GENERATORS UNDER DIFFERENT LOADINGS

3.1 Stress analysis under axial compression

We will now analyse the stresses in the hyperboloid shell (generators) due to a uniaxial compressive
force, as shown in Fig. 5. Assume that there are two sets of n number of straight bars, placed at an
equal spacing of (2πa/n) measured at the waist circle, which constitute the hyperboloid surface as
shown in Fig. 5b. Due to the axisymmetric nature of the vertical load, no shear stresses are incurred in
the shell, i.e. σφθ = 0 as in Fig. 5a. We then delineate a segment of the hyperboloid shell and consider
its force equilibrium (as illustrated in Fig. 5c). At any horizontal section, by force equilibrium

(2πr0) Nφ( sin φ) = C. (12)

Now, consider the segment at the waist circle, where φ = 90◦ and r2 = r0 = a (throat radius),

(2πa) Nφ (φ=90◦) = C or Nφ (φ=90◦) = C

2πa
(compressive). (13)

At the waist circle where r2 = a, eqn (11) yields

Nθ(φ=90◦) =
(

a4

b2

1

r2
2

)
Nφ (φ=90◦) =

(
a2

b2

)
Nφ (φ=90◦),

which on combining with eqn (13), leads to

Nθ(φ=90◦) =
(

a2

b2

)
C

2πa
= C

2πa
tan2 β, (14)

which is compressive in nature.
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Figure 5: The stresses at the waist section of a hyperboloid shell. (a) Stress components; (b) equivalent
straight bars (aligned with the generators) placed at equal spacing to take up the stresses;
(c) equilibrium of forces on a shell segment.

From Fig. 6, the equivalent resultant compressive force Fc in a fibre (generator of the hyperboloid
surface) is given by

F2
c =

[
Nφ

(
πa

n

)]2

+
[

Nθ

(
πb

n

)]2

. (15)

Substituting eqns (13) and (14) into eqn (15), we have

Fc = C

2n cos β
= C

√
H 2 + R2 − a2

2nH
. (16)

Thus the total axial loading is transmitted into the hyperboloid shell’s straight generators as compres-
sive forces.

3.2 VB stress analysis under bending moment

When the VB is subjected to a bending moment (M ), normal stresses (σy) are developed at the waist
circle (r0 = a) cross-section, as shown in Fig. 7. The bending moment sustained at the waist circle
is given by

M = 2
∫ a

0
σy

[
2

t

cos α
dy

]
y, (17)
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Figure 6: The equivalent diagonal forces in the intersecting bars to take up the stresses around a shell
element.

Figure 7: (a) The bending moment on the VB. (b) Plan view at the section BB (i.e. at the waist circle).

where σy is the compressive stress normal to the cross section (due to the bending moment M ) acting
on the two rectangular elements of length 2(t/ cos α) and width dy. In addition,

σy = y

a
σa, (18)

where σa is the stress at y = a.
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Combining eqns (17) and (18), we have

M = 4
∫ a

0

y2

a
σa

t

cos α
dy

M = 4tσa

∫ a

0

y2

a cos α
dy. (19)

Substituting for y = a sin α and dy = a cos α dα, eqn (19) can be rewritten as

M = 4tσa

∫ π/2

0

a2 sin2 α

a cos α
a cos α dα. (20)

Integrating eqn (20) gives

M = πa2tσa. (21)

The normal stress at the waist circle in terms of the bending moment can be written as

σa = M

πa2t
. (22)

Then, Nφ, on the waist-circle element at distance a from the neutral axis, is given by

(Nφ)a = σat.

Thus from eqn (22),

(Nφ)a = M

πa2
. (23)

According to Fig. 8c the force (Fm) in the generator is given by

F2
m =

[(
πa

n
(Nφ)a

)2

+
(

πb

n
(Nθ)a

)2
]
. (24)

Substituting the value of Nθ from eqn (11), we get

F2
m =

[(
πa

n

(
Nφ

)
a

)2

+
(

πb

n

(
a2

b2
(Nφ)a

))2
]
. (25)

Since tan β = a/b, eqn (25) reduces to

F2
m =

(
M

πa2

)2 (
πa

n

)2 [
1 + tan2 β

]
or

Fm = M

na cos β
, (26)

where Fm can be either compressive or tensile force based on the location of the generators relative
to the plane about which the bending moment is applied.
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Figure 8: (a) Stress resultants at the waist section of the hyperboloid shell under bending. (b) Equi-
librium of forces on a shell segment. (c) Equivalent diagonal forces in the intersecting bars
to take up the stresses around a shell element on the compression side of the hyperboloid
shell.

3.3 Stress analysis under torsional loading

Next, we analyse the compressive and tensile forces in the hyperboloid shell generators when the VB
is subjected to pure torsion (T ). In this case (refer to Fig. 9a), the normal stress resultants are zero
and only have shear resultants

Nφ = Nθ = 0 and Nφθ = τt. (27)

The equilibrium of a segment of the shell at a horizontal section (as in Fig. 9b) gives,

[(2πr0)Nφθ]r0 = T or (2πr2
0)Nφθ = T . (28)

At the waist circle, r2 = r0 = a (throat radius):

(2πatτ)a = T , i.e. Nφθ = T

2πa2
. (29)

Now, consider an element at the waist circle as shown in Fig. 9c. The equivalent compressive force
(FcT ) and tensile force (FtT ), in the direction aligned to their respective set of shell generators, are
given by

F2
cT = F2

tT =
(

Nφθ

πa

n

)2 +
(

Nφθ

πb

n

)2
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Figure 9: (a) Stress resultants in the hyperboloid shell element (Nφ = Nθ = 0 and Nφθ = τt) due to
torsion T acting on the VB. (b) Equilibrium of a shell segment under torsion (T ) and shear
stresses (τ) (or shear stress resultant Nφθ). (c) Equivalent diagonal forces in the intersecting
generators to take up the stresses around the shell element.

or

|FcT | = |FtT | = T

2na sin β
. (30)

Thus, a torsional loading on the hyperboloid shell VB is taken up by one set of generators being in
compression and the other set of generators being in tension.

4 OPTIMAL DESIGN

4.1 Structural analogy of the VB to the cane stool

The above analyses illustrate how the intrinsic hyperboloid shape design of the VB enables the load-
ings to be transmitted as axial (compressive/tensile) forces through the generators of the hyperboloid
shell. In this regard, the VB can be compared to a hyperboloid cane stool (shown in Fig. 10a), which
is an ideal high-strength and lightweight structure. This is because all the loading exerted on it (by a
person sitting on it) is transmitted (to the ground) as axial forces in the cane generators. A material
(such as cane) is strongest in compression provided its length is less than the buckling length. This
makes the cane stool a high-strength and high load-bearing structure.

If the two sets of canes (at ±β) are encircled at the waist circle by a band, it increases the load-
carrying capacity of the cane stool. If, additionally, these two sets of canes (±β) are tied at all
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Figure 10: A couple of man-made hyperboloid structures: (a) the humble cane stool (reproduced
with permission from www.exbali.com) weighing 2.5 kg but capable of bearing a load of
5000 N in compression; (b) the Shabolovka radio tower, Moscow, needed just 2200 tons
of steel to build a 350 m high tower [7].

their intersecting points (as shown in Fig. 10a), their functional lengths are reduced, which further
enhances the strength and load-carrying capacity of the cane stool. Furthermore, the cane stool is
very light as it is just made up of discrete canes (as generators of the hyperboloid structure). This
structural configuration makes the cane stool a very simple but effective load-bearing, high-strength
and lightweight structure. Incidentally, such a cane stool of (R = 200 mm, H = 175 mm) has a nominal
weight of 2.5 kg (or 25 N), but it can easily bear a load of at least 5000 N, which is 200 times its
weight.

The spinal VB cortex has similar structural configuration and properties as the cane stool, which
also make it an efficient load-bearing and load-transmitting, high-strength and lightweight structure.
The VB wall can be considered to be primarily comprised of the two sets of generators. Just as in the
case of the cane stool and the Shabolovka radio tower (Fig. 10), the VB wall transmits all the loading
as axial forces through its generators. This is the basis for a high-strength and lightweight VB design.

4.2 Optimization of the hyperboloid shape of the VB

The spinal VB has a definitive value range for the hyperboloid shape parameter β and hence for its
hyperboloid shape. In order to determine the structural basis of this β value, we will calculate that
value of β which makes the combined axial force in its generators to be minimum. In this case, the
optimized VB structure will be able to sustain maximal loading, before the ultimate failure load of
its generators is reached.

The VB is subjected to the combined compression, bending moment and torsional loadings.
Under this combined loading, the forces in the generators given by eqns (16), (26) and (30) can be
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Figure 11: MRI of lumbar vertebrae. H/R = 0.7 (average of L2–L5) and a/R is 0.91 (average of
L2–L5).

combined using the principle of linear superposition. For its optimal intrinsic design with respect
to the hyperboloid shape parameter β, to sustain the combined loadings [i.e. compression from
eqn (16), bending moment from eqn (26) and torsion from eqn (30)], we need to have

d

dβ
[Combined forces in the generators] = 0. (31)

Hence from eqns (16), (26) and (30), we obtain

d

dβ

(
C

2n cos β
+ M

na cos β
+ T

2na sin β

)
= 0.

or (√
R2 − a2

H

)3 (
C

2
+ M

a

)
= T

2a
. (32)

Equation (32) gives the relationship between the applied loading and the geometry of the VB.
Interestingly, the value of a is not found in the literature [8, 9, 10]. However, for a specific set of
values of R and H and functionally occurring ratios of the loading values (C, M , T ), the value of
the hyperboloid shape parameter a can be calculated from eqn (32), for the intrinsic design of the
VB. In eqn (32), considering the representative values of C = 1000 N, M = T = 3 Nm, along with
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R = 21.6 mm and H = 14.75 mm, based on Zhou et al. [10] and Guo et al. [11], we obtain a ≈
20.3 mm; hence, from eqn (4), β = 26.5◦.

Hence, the optimal lightweight, high-strength spinal VB geometry is given by β = 26.5◦ with
a/R = 0.939 (for H = 14.75 mm). The a/R value of 0.91 measured from the lumbar vertebrae MRI
scan shown in the Fig. 11 confirms our analysis. Thus, the intrinsic design of the VB hyperboloid
geometry is such that it bears the combined loadings of compression, bending moment and torsion
by minimizing the axial forces in the generators. In other words, it can sustain and transmit maximal
values of the loadings with minimal amounts of material (because of all the loadings being transmitted
as axial forces through the hyperboloid generators).

5 CONCLUSION
We have carried out an internal stress analysis of the hyperboloid VB under compression, bending
moment and torsional loading. The analysis shows that all the loading states are transmitted by the
VB generators as axial forces, thereby making it a high-strength structure with a high load-bearing
capacity. Explicit expressions for these axial forces in the VB generators under compression, bending
moment and torsional loading conditions are obtained (in terms of the VB geometrical parameters).

Minimization of the total axial force for the combined loadings gives the value of the hyperboloid
shape parameter β = 26.5◦, for which a/R = 0.939, which closely matches the measured value of
a/R = 0.91 from the VB MRI. Therefore, for this value of β, the spinal VB can maximize its load-
bearing capacity. Thus, we have demonstrated that theVB shape and material distribution are modelled
by the loading to be an optimal high-strength and lightweight structure, in the same way as the
femur’s shape and material distribution are based on the stress trajectories (Fig. 1) due to the loading
sustained by it.
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