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ABSTRACT
Fractional calculus provides novel mathematical tools for modeling physical and biological processes. The
bioheat equation is often used as a first order model of heat transfer in biological systems. In this paper we
describe the formulation of the bioheat transfer in one dimension in terms of the fractional order differentiation
with respect to time. The solution to the resulting fractional order partial differential equation reflects the
interaction of the system with the dynamics of its response to the pulsed surface or volume heating and cooling.
The resulting expression for the heat flux in terms of the fractional order is used to derive an expression for the
depth of thermal penetration. This depth of thermal penetration, expressed as a function of time, is optimized
using constructal theory, which in turn leads to the determination of the optimal time of pulsating (on–off) heating
and cooling. The advantage of using the fractional heat flux expression is demonstrated by comparing the results
with that of optimization of the integer heat flux expression, which yields an ideal unrealistic condition of equal
time periods for optimal cooling and heating. An example from cryogenic spray cooling of a peripheral tissue
region during laser surgery is used to illustrate the utility of combining the methods of fractional calculus and
constructal theory. This combined approach is useful to develop an approximate solution to complex biomedical
problems that involve pulsating behavior and rhythmicity.
Keywords: bioheat transfer, constructal theory, diffusion, fractals, fractional calculus, laser surgery, modeling,
temperature.

1 INTRODUCTION
The methods of fractional calculus, reviewed recently by Magin [1], are developed as the basis for the
formulation and solution of the bioheat transfer problem in peripheral tissue regions. Investigators
have studied bioheat transfer using mathematical models for more than 50 years [2, 3, 4]. In these
models tissue cooling (or warming) is approximated by coupling tissue perfusion to the bulk tissue
temperature through Newton’s law of cooling (or heating). In addition to full body models, there
are numerous models in the literature that describe heat transfer mechanisms in a single organ or
a portion of the body. In this regard, an analytical model developed by Keller and Seiler examines
bioheat transport phenomena with heat generation (metabolism) occurring in the peripheral tissue
regions. The Keller and Seiler [5] model was solved numerically using parallel computers to simulate
all possible modes of bioheat transfer by Boregowda et al. [6].

Recently a number of investigators [7, 8, 9] have applied the bioheat transfer model to periodic
diffusion problems in localized tissue regions such as that which occurs in the skin when laser heating
and/or cryogen cooling is applied. Fractional calculus is ideally suited to address this kind of periodic
heating or cooling, but to our knowledge it has not been used in modeling bioheat transfer either at the
tissue, organ or whole body level. The present study demonstrates that fractional calculus can provide
a unified approach to examine the periodic heat transfer in peripheral tissue regions. For example, in
an experimental study conducted by Pikkula et al. [10], cryogen spray cooling was utilized to cool
the skin surface during laser skin surgery. A generalized fractional calculus approach developed by
Kulish and co-workers [11, 12] is adopted to model the localized periodic bioheat transfer problems
similar to the one posed by Pikkula and co-workers [10].
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The one-dimensional heat flow problem can be completely solved for well-defined surface tem-
perature or thermal flux boundary conditions by applying Laplace transforms [13, 14]. The solution
can also be expressed as a fractional differential equation for the semi-infinite peripheral tissue region
[11, 12]. Furthermore, the fractional differential equation can be solved to compute the heat flux at
the boundary for different periodic or on–off boundary conditions that closely represent the heating
and cooling of the skin surface during laser surgery.

The approach offered by the combination of fractional calculus and constructal theory models a
large class of biomedical problems that involve localized pulse heating and/or cooling. The advantage
of this approach is that it is not necessary to solve the entire domain and the resulting fractional heat
flux expression can be used to determine the optimal heating and cooling time.

2 GENERAL FORMULATION OF THE FRACTIONAL BIOHEAT EQUATION
The approach used in this study is an approximation of the physical model developed in the study
by Deng and Liu [7]. The region of interest is the boundary and its vicinity, and the total thickness is
assumed to be large, so that rectangular coordinates in one dimension can be used for the analysis.
Note that the outermost portion, the skin, is considered to be thin so that its thickness is not explicitly
incorporated into the model. The localized tissue region that is represented by this approximate
physical model is shown in Fig. 1.

The generalized one-dimensional bioheat transfer equation for the temperature T (x, t) in the tissue
developed by Pennes [15] can be written as

ρc
∂T (x, t)

∂t
= K

∂2T (x, t)

∂x2
+ ωbρbcb[Ta − T (x, t)] + Qm + Qr(x, t), (1)

where ρ, c and K are the density, specific heat and thermal conductivity of the tissue; ρb and cb are
the density and specific heat of blood; ωb is the blood perfusion; Ta is the arterial blood temperature
(assumed to be constant); Qm is the metabolic heat generation and Qr(x, t) is the heat generation due
to spatial heating in the medium.

We assume that the problem has the following boundary conditions

T (x, 0+) = Ti(x, 0) Initial temperature distribution,

Figure 1: The assumed physical model of the localized tissue region represents the temperature in
the tissue, while �(t) describes the surface thermal flux at x = 0.
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�(t) = −K
∂T (0, t)

∂x
Surface flux,

lim
x→∞ T (x, t) = Tc Constant core temperature.

If we initially assume Qr to be zero, we can solve this problem using Liu et al.’s [9] method in terms
of T̃ (x, t) = T (x, t) − Ti(x, 0), where we have subtracted the initial temperature distribution Ti(x, 0)
which is just the solution of the steady-state problem. Applying the Laplace transformation to eqn (1)
for the given boundary conditions, we obtain for h = ωbρbcb/ρc and k = K/ρc

k
∂2 t̃(x, s)

∂x2
− (s + h)t̃(x, s) = 0, φ(s) = −K

[
∂t̃(x, s)

∂x

]
x=0

,

T̃ (x, 0+) = 0, lim
x→∞ t̃(x, s) = 0.

This second order ordinary differential equation has the following solution for the specified boundary
conditions

t̃(x, s) =
√

kφ(s)e−x
√

(s+h)/k

K
√

s + h
. (2)

If we consider only the relationship between the flux and the temperature at the x = 0 boundary,
then the result can be written in terms of a Laplace convolution integral as

T̃ (0, t) =
√

k

K

∫ t

0
�(t − τ)

e−hτ

√
πτ

dτ =
√

k

K
�(t)

e−ht

√
πt

, (3)

where we have used the Laplace transform pair L−1
{
1/

√
s + h

} = e−ht/
√

πt.
Thus, if the surface flux is modeled by �(t) = �0u(t), where u(t) is the unit step function, then

the surface temperature will increase as

T̃ (0, t) =
√

k

K

∫ t

0

�0e−hτ

√
πτ

dτ =
√

k�0

K
√

h

2√
π

∫ √
ht

0
e−u2

du =
√

k�0

K
√

h
erf

(√
ht

)
,

where u2 = hτ and the error function is defined by erf(x) = (2/
√

π)
∫ x

0 e−u2
du.

However, the convolution integral [eqn (3)] can also be written as

T̃ (0, t) =
√

k

K

∫ t

0

�(τ)eh(t−τ)√
π(t − τ)

dτ =
√

k

K

e−ht

√
π

∫ t

0

�(τ)ehτ

√
t − τ

dτ, (4)

which can be written in terms of the Riemann–Liouville fractional integral [16, 17, 18, 19] defined by

0D−α
t F(t) = 1

	(α)

∫ t

0

F(τ)

(t − τ)1−α
dτ, where 	(α) =

∫ ∞

0
uα−1eudu.

Thus, eqn (4) can be simply expressed in terms of the fractional integral by

T̃ (0, t) =
√

k

K
e−ht

0D−1/2
t

[
eht�(t)

]
.
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If we assume a step input in flux at x = 0, �(t) = �0u(t), we can write

T̃ (0, t) =
√

k

K
e−ht

0D−1/2
t

[
�0eht

]
,

which, since the fractional integral is a linear operator and the fractional integral 0D−1/2
t [eht] =

(eht/
√

h)erf(
√

ht) [18], gives the same result for the surface temperature as that obtained above by
inversion of the Laplace transform.

In the case of a specified surface temperature at the surface x = 0, a parallel analysis gives the
surface flux in terms of the fractional semi-derivative of the surface temperature, which can be written

�(t) = K√
k

e−ht
0D1/2

t

[
ehtT (0, t)

]
, (5)

where the fractional derivative of order 1/2 is defined [18] as

0D1/2
t F(t) = 1

	(1/2)

d

dt

∫ t

0

F(τ)

(t − τ)1/2
dτ.

This result can also be obtained using Babenko’s method [19, 20].
Thus, for the case where T (0, t) = T0u(t), a step in the surface temperature of T0 at x = 0, and

using the semi-derivative of eht [18], we obtain

�(t) = KT0√
k

[
e−ht

√
πt

+ √
h erf

(√
ht

)]
. (6)

A graph of this result is shown in Fig. 2.
Since the relationship between flux and temperature is assumed to follow from the Fourier law

for heat flux, it is valid at any point in the domain, not only at the x = 0 surface. Therefore, for the

Figure 2: Graph of the flux �(0, t) necessary to establish a step input in the temperature T0u(t),
assuming A = K = k = 1. Two cases are plotted: one for the bioheat equation with h = 1,
and a second for normal diffusion without blood flow cooling, i.e. h = 0.
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one-dimensional problem of heating with linear surface cooling, this allows us to write our fractional
integral and derivative results as

�(x, t) = K√
k

e−ht
0D1/2

t

[
eht T̃ (x, t)

]
, (7)

and

T̃ (x, t) =
√

k

K
e−ht

0D−1/2
t

[
eht�(x, t)

]
. (8)

Thus, given the flux or temperature profiles at a specific location we can use this information
to determine the corresponding temperature or flux. This approach could be useful in experimental
situations where the half-order fractional integrals or derivatives of known functions could be used
to determine the required input conditions needed for the desired temperature or flux outputs [21, 22,
23]. A few examples are listed in Table 1, which is adapted from Oldham and Spanier [18].

Note that if the initial temperature distribution Ti(x, 0) is assumed to be uniform and constant, i.e.
Ti(x, 0) = T0, then T̃ (x, t) = (x, t) − T0 and the flux expression, eqn (7), becomes

�(x, t) = K√
k

e−ht
0D1/2

t

[
ehtT (x, t)

] − KT0√
k

[
e−ht

√
πt

+ √
h erf

(√
ht

)]
. (9)

Table 1: Flux and temperature outputs for selected input functions.

f (t), t > 0 −
√

k

K
�(x, t) = e−ht

0D1/2
t f (t)eht K√

k
T (x, t) = e−ht

0D−1/2
t f (t)eht

A A

[
e−ht

√
πt

+ √
h erf

(√
ht

)]
A

1√
h

erf
(√

ht
)

Ae−2ht A

[
e−ht

√
πt

+ √
h e−hterf

(√
ht

)]
A

2e−ht

√
πh

daw
(√

ht
)

A erf
(√

ht
)

A
√

h A
1√
h

[
1 − e−ht

]

A erfc
(√

ht
)

A

[
e−ht

√
πt

− √
h erfc

(√
ht

)]
A

1√
h

[
e−ht − erfc

(√
ht

)]

A erfc
(
−√

ht
)

A

[
e−ht

√
πt

+ √
h erfc

(
−√

ht
)]

A
1√
h

[
erfc

(
−√

ht
)

− e−ht
]

A/
√

ht A
√

h

√
π

2
e−ht/2

[
I1

(
ht

2

)
+ I0

(
ht

2

)]
A

√
π√
h

e−ht/2I0

(
ht

2

)

Ae−2ht/
√

ht A
√

h
√

π

2 e−3ht/2

[
I1

(
ht

2

)
− I0

(
ht

2

)]
A

√
π√
h

e−3ht/2I0

(
ht

2

)

where erf(x) = (2/
√

π)
∫ x

0 e−u2
du is the error function, daw(x) is Dawson’s integral defined as

daw(x) = e−x2∫ x
0 et2dt, I0(x) and I1(x) are the hyperbolic Bessel functions, and erfc(x) is the comple-

mentary error function given as erfc(x) = (2/
√

π)
∫ x

0 e−t2dt = 1 − erf(x).
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For h = 0 this equation simplifies to

�(x, t) = K√
k

[
0D1/2

t T (x, t) − T0√
πt

]
, (10)

which was previously derived by Kulish and Lage [11]. Kulish and co-workers have recently applied
fractional-diffusion theory to thermoreflectance measurements of the thermal properties of thin films
under pulsed laser heating. The current bioheat model under conditions of volumetric as well as
surface heating extends Kulish’s results, equation (10) in ref. [12], to yield

�(x, t) = K√
k

{
e−ht

0D1/2
t

[
eht T̃ (x, t)

]}
− e−ht

0D1/2
t

[
ehtP̃(x, t)

]
− K

∂P

∂x
(x, t),

where P̃(x, t) = P(x, t) − P(x, 0), and P(x, t) represents the particular solution to the Laplace domain
inhomogeneous ordinary differential equation.

This fractional calculus approach provides a simple expression for either the temperature or flux
under experimental conditions often specified by laser-heating and cryogen-cooling procedures.Addi-
tional studies are needed to develop a connection between the fractional order of the operators and
the material structure and properties of the tissue or substrate under study. Recent work by West et al.
[24] and others [25, 26, 27] is directed toward establishing a stronger role for fractional calculus
in describing dynamic phenomena in complex materials. A simple application for cryogenic skin
cooling is considered in the next section.

3 CONSTRUCTAL OPTIMIZATION OF CRYOGENIC SPRAY COOLING
Cryogenic spray cooling is an effective technique to protect the epidermis during laser therapies.
Spraying a cryogen onto the skin surface creates a time varying heat flux, effectively cooling the skin
surface during and following the cryogen spurt [10, 21]. In this study, we use the constructal theory
developed by Bejan [28] to determine the optimal cryogenic spray cooling time. In doing so, we will
consider two heat flux expressions for optimization: (i) the fractional heat flux and (ii) the integer heat
flux. The objective is to compare and demonstrate the usefulness of the fractional calculus approach.

3.1 Constructal optimization of the fractional heat flux expression

Consider the heat flux expression for the case where the initial temperature of the skin is constant
and uniform, written in terms of a fractional derivative

�(x, t) = K√
k

[
0D1/2

t T (x, t) − T0√
πt

]
. (11)

Letting T (x, t) = a + bt, we have [1, 18]

0D1/2
t T (x, t) = a√

πt
+ 2b

√
t

π
. (12)

Substituting eqn (11) in eqn (10), we get

�(x, t) = 2Kb

√
t

πk
+ K(a − T0)√

πkt
. (13)
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Rewriting eqn (12) and further simplifying, we get

�(x, t) =
(

2Kb√
π

)
t

δ
+

[
K(a − T0)√

π

]
1

δ
, (14)

where δ = √
kt is the measure of the depth of thermal penetration due to cryogenic spray cooling or

laser heating [13]. The skin layer thickness or the depth of thermal penetration δ(t) is also a measure
of the effectiveness of cryogenic cooling or laser heating. In order to apply the constructal principles
[28], we need to establish a relationship between the depth of thermal penetration δ(t) and time t.
Consider the physical model from ref. [13].

The movement of the cooling front is governed by the conservation of energy in the plane x = δ(t).
Consider a very wide and thin control volume that contains the cooling front and moves downward
with exactly the same speed as the cooling front.

A ‘stream’ of cryogenic spray or liquid flow rate ρA(dδ/dt) enters the control volume from above,
while another ρA(dδ/dt) stream of solid penetrates the lower skin surface (Fig. 3). The density ρ

refers to that of the cryogen spray liquid that contributes to the development of the whole thickness δ.
Applying the first law of thermodynamics to the control volume in Fig. 3, we get

Net enthalpy flow rate out
of the control volume

= Net heat transfer rate received
by the same control volume

(
ρA

dδ

dt

)
hcryo −

(
ρA

dδ

dt

)
hskin = −KA

(
∂T

∂x

)
x=δ

, (15)

where A is the frontal area, hcryo is the specific enthalpy of the cryogen and hskin is the specific
enthalpy of the skin surface. The exact analysis of the cooling phenomena requires the computation
of right-hand side term of eqn (15).

From Tunnel et al. [21]

−K
∂T

∂x

∣∣∣∣
x=δ

= �(t) = h(t)[T∞(t) − T (0, t)]. (16)

But from eqn (14), we have

�(t) =
(

2Kb√
π

)
t

δ(t)
+ K(a − T0)√

π

1

δ(t)
.

Cryogenic Stream
A

dt

dδρ

A
dt

dδρSemi-infinite
Solid skin Surface

Control Volume attached to the cooling front

x δ=x

Figure 3: Cryogenic spray cooling of a semi-infinite skin surface.
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Furthermore,
hcryo,skin = hcryo − hskin. (17)

Substituting eqns (13), (16) and (17) into eqn (15), we obtain

(
ρ

dδ

dt

)
hcryo,skin =

(
2Kb√

π

)
t

δ(t)
+

[
K(a − T0)√

π

]
1

δ(t)
.

Simplifying,

δ
dδ

dt
=

(
2Kb

ρhcryo,skin
√

π

)
t + K(a − T0)

ρAhcryo,skin
√

π
(18)

for δ(0) = 0 (i.e. no formation of skin layer thickness).
Letting P = 2Kb/ρhcryo,skin

√
π and Q = K(a − T0)/ρhcryo,skin

√
π, eqn (18) becomes

δ
dδ

dt
= Pt + Q

δdδ = (Pt + Q)dt.

Integrating from 0 to t, we obtain
δ = (Pt2 + 2Qt)1/2. (19)

Let us examine δ(t) (Fig. 4), the depth of penetration of the cooling front as a result of cryogenic
spray cooling at the end of the freezing interval t1, using the constructal principles from ref. [28]

δ1 = (Pt1 + 2Q)1/2t1/2
1 . (20)

The objective is to maximize the rate of heat removal or cooling due to cryogenic spraying over the
entire duration of one cycle (i.e. cryogenic cooling interval t1 followed by the laser heating interval
t2; Fig. 5), namely

δ̄ = δ1

t1 + t2
= (Pt1 + 2Q)1/2t1/2

1

(t1 + t2)
.

Letting τ = t1/t2 (non-dimensionalizing the time) and simplifying, we get

δ̄ = (Pt2τ + 2Q)1/2

t1/2
2

τ1/2

(τ + 1)
. (21)

The only degree of freedom is the freezing time t1 or its dimensionless counterpart, τ = t1/t2.
By solving, dδ̄/dτ = 0, we get

τopt = 1

(1 − Pt2/Q)
. (22)

Evaluating P and Q and simplifying further, we get

t1,opt = 1

1 − [2bt2/(a − T0)]
t2. (23)

The optimal cryogen spray cooling time is {1/[1 − 2bt2/(a − T0)]} times the laser heating interval
t2. The optimal cooling could vary with the geometry and the properties of the coolant used.
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0T

δ

tΦ

∞T

Figure 4: The depth of thermal penetration δ(t).

1t 21 tt +

1δ

time t

Decrease in δ(t)

δ(t)

due to laser heating

δ(t) formation due to cryogenic spray cooling  (CSC)

Figure 5: The intermittent production of a cryogen layer: the cooling time t1 followed by the laser
heating time t2.

3.2 Constructal optimization of the integer heat flux expression

Consider the integer heat flux expression from heat transfer [13]

�(x, t) = −K√
3

(Ti − T0)

(kt)1/2

�(x, t) = +K√
3

(T0 − Ti)

(kt)1/2
,

where δ(t) ∼ (kt)1/2

�(x, t) = +K(T0 − Ti)√
3

1

δ(t)
. (24)
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Rewriting eqn (18), we have

ρh
dδ

dt
= �(x, t). (25)

From eqns (24) and (25), we get

ρh
dδ

dt
= K(T0 − Ti)√

3

1

δ(t)
. (26)

Let us consider the initial condition: δ(0) = 0 (i.e. no formation of skin layer thickness or cooling
front penetration).

Rewriting and solving eqn (25), we get

δ dδ = K(T0 − Ti)√
3ρh

dt

δ dδ = Bdt, where B = K(T0 − Ti)√
3ρh

δ2

2
= Bt + C

δ2 = 2Bt + 2C

δ2 = 2Bt + C ′

δ = (2Bt + C ′)1/2.

Applying the initial condition, we get

δ(0) = (2 × 0 + C ′)1/2 = 0

C ′ = 0

δ =
[

2K(T0 − Ti)√
3ρh

]1/2

t1/2,

where B′ =
[
2K(T0 − Ti)/

√
3ρh

]1/2

δ = B′t1/2. (27)

Referring to Fig. 4, let us examine δ(t), the depth of thermal penetration at the end of the freezing
time interval t1, using the constructal principles [10]

δ1 = B′t1/2. (28)

The objective is to maximize the rate of heat removal or cooling due to cryogenic spraying over the
entire duration of one cycle, namely

δ̄ = δ1

t1 + t2
= B′t1/2

1

(t1 + t2)
.

Letting τ = t1/t2, we get

δ̄ = B′τ1/2

t1/2
2 (τ + 1)

= B′

t1/2
2

· τ1/2

(τ + 1)
. (29)
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The only degree of freedom is the freezing time t1 on its dimensionless counterpart, τ = t1/t2. By
solving, dδ̄/dτ = 0, we get

τopt = 1

or
t1,opt = t2. (30)

This is an ideal condition that does not represent the actual pulsating heating and cooling of the
peripheral skin surface. In applications such as laser skin surgery, we will need to represent the early
regime heat transfer using fractional derivatives for heat flux, which in turn provides a more realistic
view of the process when optimized using the constructal theory.

4 RESULTS AND DISCUSSION
In order to calculate the actual optimal cooling time, we tabulated the data for temperature distributions
at three different skin depths from an experimental study conducted by Tunnel et al. [21]. The data
is provided in Table 2.

4.1 Constructal optimization of the fractional heat flux expression

Case (i): Depth = 20 µm
Performing regression analysis on the data set for depth = 20 µm, we get

T (t) = −22.59 + 11.06t,

where a = −22.59, b = 11.06 and T0 = 33◦C.

Table 2: Thermocouple measurements from Tunnel et al. [21] at three different depths from the
skin surface.

Measured temperature T (t) (◦C)

Time t (s) Depth = 20 µm Depth = 90 µm Depth = 200 µm

0.0 33.0 33.0 33.0
0.2 −50.2 −2 21
0.4 −27.0 −10 10
0.6 −25.0 −2 10
0.8 −27.0 3 9
1.0 −26.0 5 10
1.2 −10.0 8 10
1.4 −5.0 12 14
1.6 −1.0 13 14
1.8 0 15 15
2.0 2 17 17
2.2 5 18 18
2.4 7 18 18
2.6 9 19 19
2.8 9 19 19
3.0 10 20 20
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0 1 2 3 4 5 6 7 8 9

 1.67 sec  5 sec

δ(t)

δ

Case (i): Depth = 20 µm

0 1 2 3 4 5 6 7 8 9

δ

Case (ii): Depth = 90 µm

0 1 2 3 4 5 6 7 8 9

δ

Case (iii): Depth = 200 µm

time't' (sec)
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Figure 6: The optimal cooling profiles (fractional heat flux).

Thus, eqn (23) becomes

t1,opt = t2
1 + 0.4t2

. (31a)
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Case (ii): Depth = 90 µm
The regression equation is

T (t) = 3.20 + 5.62t,

where a = 3.20, b = 5.62 and T0 = 33◦C.
Thus, eqn (23) becomes

t1,opt = t2
1 + 0.38t2

. (31b)

Case (iii): Depth = 200 µm
The regression equation is

T (t) = 15.37 + 0.46t,

where a = 15.37, b = 0.46 and T0 = 33◦C.
Thus, eqn (23) becomes

t1,opt = t2
1 + 0.05t2

. (31c)

By plotting the optimal cooling time period profiles for the three different depths of penetration, we
get the graphs in Fig. 6.

Using eqn (31a–c), the optimal cooling time as a function of the laser heating time is tabulated in
Table 3 and graphically presented in Fig. 7.

Table 3: The distribution of optimal cryogenic spray cooling times.

t1,opt (s)
Laser heating
time t2 (s) Depth = 20 µm Depth = 90 µm Depth = 200 µm

0.0 0.00 0.00 0.00
0.2 0.19 0.19 0.20
0.4 0.34 0.35 0.39
0.6 0.48 0.49 0.58
0.8 0.61 0.61 0.77
1.0 0.71 0.72 0.95
1.2 0.81 0.82 1.13
1.4 0.89 0.91 1.31
1.6 0.98 1.00 1.48
1.8 1.05 1.07 1.65
2.0 1.11 1.14 1.82
2.2 1.17 1.20 1.98
2.4 1.22 1.26 2.14
2.6 1.27 1.31 2.30
2.8 1.32 1.36 2.46
3.0 1.36 1.40 2.61
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Figure 7: The variation of cryogenic spray cooling times (fractional heat flux).

Figure 8: The variation of cryogenic cooling (integer heat flux).

4.2 Constructal optimization of the integer heat flux expression

The optimization of the integer heat flux expression results in the following expression

t1,opt = t2. (32)

Comparing eqn (32) with eqn (23), eqn (32) expresses the linear relationship between optimal cooling
and the laser heating time periods. This is an ideal condition and not a realistic representation of the
dynamic process taking place at the peripheral surface of the skin.
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Similar to the cases in Section 4.1, for illustrative purposes, let us assume that the laser heating
time interval t2 = 5s. The qualitative graphical representation of the optimal cooling for all three
depths is the same and is shown in Fig. 8.

5 CONCLUSION
The dynamics of peripheral skin thermal response to pulsed cooling or heating has been modeled as
a semi-infinite heat diffusion process. As the time of pulsed cooling or heating is much shorter than
the rates of blood perfusion, the approximation of a one-dimensional bioheat transfer is sufficient to
investigate the pulsating nature of the cryogenic spray cooling during laser skin surgical applications.
The application of fractional calculus yields an analytical expression for the heat flux in terms of
fractional order derivatives. This expression is used to determine the depth of thermal penetration in
the early regimes of peripheral heat transfer. The resulting depth of thermal penetration as a function
of time is optimized using the constructal theory. The advantage of using the fractional heat flux
expression is demonstrated by comparing the results with that of optimization of the integer heat flux
expression, which yields an ideal unrealistic condition of equal time periods for optimal cooling and
heating. The combined approach of using fractional calculus and constructal optimal theory offers
a great potential to solve biomedical problems that involve pulsating behavior and rhythmicity. As
nature affords us with rhythmicity and fine-tuned frequencies, the approach used in this paper is
worthy of serious investigation by researchers interested in the field of bioengineering.
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