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 Due to its merits of good water quality, pollution-free, and wide range, groundwater has 

become an important source for the water supply of industry, agriculture and urban 

domestic living in China. The change trends and laws of groundwater level and flow are 

important basis for the scientific planning and reasonable management of groundwater. In 

order to obtain a more accurate 3D groundwater flow model, first, this paper constructed 

a Groundwater Flow Calculation (GFC) model based on the Groundwater Modeling 

System (GMS), and analyzed the periodic groundwater recharge, the tridimensional flow 

space, the complex streamline combination, and the concurrent flow direction; then, the 

paper gave the preprocessing process of the calculated parameter data of groundwater 

flow, and built a grayscale-embedded BP neural network to predict the groundwater flow. 

At last, the paper verified the effectiveness of the model with experimental results. This 

study provided a reference for the flow prediction of other similar fields and the research 

on groundwater evaluation. 
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1. INTRODUCTION 

 

Groundwater is an important part of water resources in 

China. Due to its many merits of good water quality, pollution-

free, wide range, stable water volume, and sustainable usage, 

it has now become one of the important sources for the water 

supply of industry, agriculture and urban domestic living [1, 

2]. Although groundwater is buried in the ground, it has 

catchment areas and water flow systems just like rivers and 

lakes on the ground surface [3-7]. The change trends and laws 

of groundwater level and flow are important basis for the 

scientific planning and reasonable management of 

groundwater; and by controlling its trends, we can avoid 

problems such as the appearance of regional depression cones 

caused by over-exploitation [8-11]. Therefore, extracting the 

basic characteristics of the groundwater flows and 

comprehensively considering the tridimensional flow space, 

the complex streamline combination, and the concurrent flow 

direction are especially important for constructing high-

precision and high-reliability groundwater model. 

With the rapid development of computer technology, 

generalized numerical simulation models based on 

groundwater flow systems have been widely applied in foreign 

studies [12, 13]. In 1935, the appearance of the Theis formula 

had laid a foundation for the construction of unsteady flow 

models of groundwater flow systems [14]. After the 1970s, 

Chinese scholars began to study groundwater flow systems. 

Hassane and Ackerer [15] built a model for the groundwater 

flow system in the North Plain based on the GIS groundwater 

simulation database, and gave the corresponding water 

resources evaluation, showing the advantages of the GIS 

groundwater simulation database in visualization and high-

density data processing. In terms of the groundwater 

simulation methods, compared with the finite volume method 

and characteristic finite element method, the finite element 

method and the finite difference method are more widely 

applied due to their merits of simple, more reliable, and better 

local approaching effects, etc. [16-18]. The finite difference 

method which is capable of simulating the water volume of 

glacial water sediment aquifers first appeared in 1968 and the 

finite element analysis method which can simulate the 

sediment aquifers was proposed in 1972 for the first time [19]. 

Bobet [20] constructed a groundwater flow system model 

based on multi-scale thinking and gave quantitative 

hydrogeological evaluation results; it analyzed and solved the 

problem of groundwater seepage. Matos and Alves [21] 

adopted the finite element method to simulate the 

heterogeneous groundwater system; it established a 

groundwater unsteady flow equation and obtained more 

accurate calculation results of groundwater flow. Stanko et al. 

[22] applied the irregular-grid finite difference method to 

solve the underground aquifer flow. Various water flow and 

solute transport simulation software has been gradually 

developed and applied since the 1980s. Farhadian et al. [23] 

applied Visual MODFLOW to water resources budget 

calculation and water volume management of the Balasu water 

source; combining with a 3D groundwater flow model, it 

analyzed the impact of groundwater exploitation volume on 

future water flow. GMS is a piece of software with graphical 

interface and comprehensive functions, it has the merits of fast 

speed, accurate calculation and seamless connection with GIS 

data. Pacheco [24] used GMS and GIS to simulate the 

groundwater flow in city suburbs to study the impact of 

agricultural activities on the regional groundwater; then, based 

on the quantified groundwater level recovery rate in the 

suburbs, it gave a comprehensive assessment of groundwater 

volume and quality, and proposed different water mining plans. 
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The complex structure of groundwater flow systems, plus 

the local rainfall and temperature meteorological conditions, 

has brought great difficulties for accurate and real-time 

groundwater flow simulation. From the perspective of system 

engineering, a neural network that can accurately fit the hidden 

laws of groundwater regime data is very suitable for 

groundwater flow system simulation, and water level and 

water flow prediction. In order to obtain a more accurate 3D 

groundwater flow model, this paper constructed a GMS-based 

GFC model and the corresponding neural network. The main 

contents of the paper are: Section 2 gave the groundwater flow 

measurement method based on GMS software; Section 3 

analyzed the periodic groundwater recharge, the 

tridimensional flow space, the complex streamline 

combination, and the concurrent flow direction; it also gave 

the preprocessing process of calculated parameter data of 

groundwater flow; Section 4 constructed a grayscale-nested 

BP neural network to predict groundwater flow, and verified 

the effectiveness of the proposed model with experimental 

results. 

 

 

2. CONSTRUCTION OF THE GMS-BASED GFC 

MODEL 

 

This paper drew on the conceptual modeling method of 

GMS software to model the groundwater flow system. First, 

according to hydrogeological maps and borehole data, a 

physical model of the study area had been built and converted 

into a grid model, then, generalized map data such as boundary 

conditions, hydrogeological parameters, and source sink term 

generated by the Map module were taken as the input of the 

model to generate the MODFLOW model and complete the 

calculation. 

The simulation range of the groundwater flow system was 

centered on the study area of an unnatural hydrological 

boundary, and it expanded about 4-5km outward. The study 

area was about 4.7km and 5km from the left and right 

boundaries of the simulation range, and about 4.5km and 

4.6km from the upper and lower boundaries; the simulation 

area was about 211.15km2. The grid model had 4 layers, 

including 100 rows and 100 columns. Figure 1 shows the 

simulation range of the groundwater flow system in the study 

area. 

 

 
 

Figure 1. Simulation range of the phreatic layer of the 

groundwater flow system in the study area 

Table 1. Hydrogeological parameters of the study area 

 

Loose rock mass 
Permeability coefficient 

μA 
Px Py Pz 

Gravel 0.335 0.335 0.0335 0.00220 

Coarse sand 0.0925 0.0925 0.00925 0.00120 

Medium sand 0.00784 0.00784 0.000784 0.00040 

Fine sand 0.00256 0.00256 0.00056 0.00021 

 

The groundwater flow form can be equivalently regarded as 

a three-dimensional unsteady flow movement in which the 

flow direction and movement parameters would change with 

time and space in real time. Suppose the groundwater phreatic 

level is h; the aquifer level is TH; the permeability coefficients 

of each aquifer along the x, y, and z directions are Px, Py, and 

Pz; the water storage rate is WS; and the intensity of the source 

sink term is ηS. The 3D unsteady flow model of groundwater 

in the study area can be expressed by Formula 1: 
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Assume the water yield of the phreatic aquifer is μA, it can 

be calculated by the water level recovery method. Then there 

is: 
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where, RE is the rainfall and evaporation of the phreatic 

aquifer. Table 1 shows the permeability coefficient and water 

yield of the study area. All the above-mentioned 

hydrogeological parameters were determined according to the 

collected borehole data and test data. Assume the length of the 

borehole filter is LF, DWL is the water level drop, the empirical 

formula for the aquifer permeability coefficient is: 

 

0 660 366
lg F

F WL H

. L. IF
P

L D R
=   (3) 

 

where, R and IF are respectively the borehole radius and water 

inflow. The water level recovery value R*
WL after water 

pumping, and the remaining water level drop R'
WL satisfy the 

relationship shown as Formula 4: 

 

WL S WLR R R = −   (4) 

 

where, RS is the water level drop by the end of water pumping. 

Assume the hydraulic conductivity of the aquifer is δ, R*
WL can 

be written in the form of Formula 5 according to the principle 

of groundwater dynamics: 
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Order the moment when R*
WL=0 be time t0, μA can be 

calculated by Formula 6: 

 

0

2

2 25. Tt
μ

r
=   (6) 

 

The calculated parameters need to be substituted into the 

groundwater flow system model for verification and 

adjustment. The model boundary conditions characterizing the 

relationship between groundwater and its surrounding 

environment can be divided into three types: constant 

waterhead boundary, given flow boundary and mixed 

boundary. Figure 2 shows the boundary conditions of the study 

area after verification and adjustment. Suppose the initial 

groundwater level is h0; the aquifer boundary water level is 

TH'; B0, B1, and B2 are the groundwater free surface, waterhead 

first-class boundary, and flow second-class boundary, 

respectively. The fixed waterhead boundary can be expressed 

by Formula 7: 

 

( ) ( )
1BTH x, y,z,t TH x, y,z,t=   (7) 

 

 
 

Figure 2. Boundary conditions of the artesian aquifer of the 

groundwater flow system in the study area (including 

catchment area) 

 

The given flow boundary can be expressed by Formula 8: 

 

( )
2

, , ,p

B

TH
f x y z t

d



=


  (8) 

 

where, fp and d are the flow per unit area and the normal 

direction on B2, respectively. Assume a and b are known 

functions, and the mixed boundary can be expressed by 

Formula 9: 

 

TH
aTH b

d


+ =


  (9) 

 

Based on the initial water-level flow field, the model 

boundaries were subject to the constant flow boundary 

generalization processing. The left and right boundaries 

parallel to the water level contour were generalized as flow 

recharge and discharge boundaries, and the upper and lower 

boundaries perpendicular to the contour were generalized as 

the zero-flow impervious boundaries. Drawing on Darcy's 

formula, lateral recharge and discharge flow SD could be 

calculated as shown in Formula 10: 

 

av av av SSD P T HG L=      (10) 

 

where, Pav is the average value of permeability coefficient; Tav 

and HGav are the average values of section thickness and 

hydraulic gradient, respectively; LS is the section length. The 

calculated SD can be imported into the boundary of the 

constructed groundwater flow system model. Table 2 gives the 

groundwater recharge and discharge parameters in the study 

area. 

 

Table 2. Table of groundwater recharge and discharge 

parameters 

 
Aquifer Boundary Pav LS Tav HGav SD 

Phreatic 

layer 

Lateral 

recharge 
3.75 5.8 27 0.045 26.42 

Lateral 

discharge 
3.75 5.2 24 0.037 17.31 

Artesian 

layer 

Lateral 

recharge 
0.14 5.8 43 0.046 1.606 

Lateral 

discharge 
0.14 5.2 33 0.034 0.817 

 

The groundwater recharge of the model was mainly 

supplied by rainfall, the stop time of rainfall recharge of the 

study area and the recharge speed were also imported into the 

model. The recharge speed can be calculated by Formula 11: 

 

RR DV RF=    (11) 

 

where, β is the rainfall infiltration coefficient determined by 

the surface conditions of the study area, and RFD is the average 

daily rainfall of the study area. Figure 3 shows the monthly 

rainfall in the study area in 2019. 

 

 
 

Figure 3. Monthly rainfall in the study area in 2019 

 

Table 3. Monthly groundwater evaporation 

 
Month Evaporation 

intensity 
Month Evaporation 

intensity 
January 0.00254 February 0.00110 
March 0.00089 April 0.00154 
May 0.00189 June 0.0247 
July 0.00452 August 0.00415 

September 0.00578 October 0.00359 
November 0.00268 December 0.00209 
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The groundwater evaporation of the model was mainly 

characterized by the groundwater free surface evaporation 

intensity obtained by multiplying the evaporation coefficient 

and the average groundwater evaporation. Table 3 summarizes 

the monthly groundwater evaporation intensity in the study 

area in 2019. 

 

 

3. CHARACTERISTIC ANALYSIS AND 

PREPROCESSING OF CALCULATED PARAMETER 

DATA OF GROUNDWATER FLOW  

 

3.1 Characteristics analysis of parameter data 

  

Because some variation characteristics of groundwater flow 

have a great influence on the calculation, it is necessary to 

analyze the periodic groundwater recharge, the tridimensional 

flow space, the complex streamline combination, and the 

concurrent flow direction of the groundwater recharge. 

Since groundwater recharge is mainly supplied by rainfall, 

the periodicity of groundwater recharge needs to be analyzed 

according to the similarity and periodic characteristics of the 

rainfall data in the study area. The monthly increase or 

decrease of groundwater recharge was basically consistent 

with the rainfall amount, and the recharge peaks and troughs 

had certain regularity. Compared with the recharge amount 

from November to March of the following year, the rainfall 

recharge of the rain season from July to September can still 

maintain the regular peak and trough changes, and the total 

recharge amount showed a significant increase. The peak and 

trough water flow changes also raised higher requirements for 

the calculation performance of the model. 

In a groundwater flow system, the flow space at any position 

is three-dimensional, and the cross-correlation of the flow 

space is equal to the value of the spatial distance function of 

the flow space. The spatial cross-correlation between two 

branch sections in a same flow path will increase with the 

increase in groundwater recharge. The structure of the water 

flow system is complex, and the characteristics of the water 

flow are particularly obvious at the water flow confluence. 

Assume the water flow in the directions of A, B, and C within 

the time period [(i-1)t,it] is a(i), b(i), and c(i), respectively; D(t) 

is the total water flow including a(i), b(i), and c(i); in terms of 

space, the groundwater flow at the confluence is related to the 

water flow in a(i), b(i), c(i) and other directions; this has also 

verified the complexity of the streamline combination of the 

groundwater flow system. 

The groundwater flow system has the characteristics of 

concurrent flow direction and time correlation. The time series 

of groundwater flow has the fractal features that are positively 

correlated with the future and historical change trends. It 

shows certain regularity within a same time period, and the 

differences between different time periods are quite obvious. 

To predict the groundwater flow D(i+1) within the next time 

period [it,(i+1)t] by analyzing the time characteristics of the 

groundwater flow parameters in the study area, it is necessary 

to comprehensively consider the water flow in the first j time 

periods of the water flow branches at the confluence 

a(i),b(i),c(i),…,a(i+1-j),b(i+1-j),c(i+1-j), and the water flow 

D(i+1), D(i),…,D(i+1-j) in the first j time periods related to 

D(i+1). 

 

3.2 Parameter data preprocessing 

 

 

 
 

Figure 4. Flow of parameter data preprocessing 

 

Figure 4 shows the preprocessing flow of measured 

groundwater flow parameters. The details are as follows: 

(1) Repair of abnormal parameter data 

The abnormal groundwater flow parameter data was mainly 

divided into error data and missing data. Data with obvious 

errors can be directly eliminated, and missing data can be 

repaired by the historical trend method shown as Formula 12: 

 

( ) ( ) ( ) ( )1 1D t D t D t = + − −   (12) 

 

According to the formula, the missing data was filled by the 

weighted sum of the water flow D(t-1) at time t-1 and the water 

flow D(t) at time t, where λ is the smoothing coefficient. 

(2) Normalization of parameter data 

When constructing the groundwater flow prediction model, 

in order to avoid the saturation of neural network neurons, it is 

necessary to normalize the measured parameter data. Since 

groundwater flows are all positive values, this paper limited 

the numerical value characterizing the magnitude of water 

flow to the interval [0, 1]. For the groundwater flow sequence 

f1, f2, ..., fn, the Min-Max method was adopted to perform the 

normalization shown as Formula 13: 

 

 
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f f

 
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−
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(3) Construction of the compressed matrix of parameter data 

 

 
 

Figure 5. Construction process of compressed matrix of 

measured parameters 

 

Figure 5 shows the construction process of the compressed 

matrix of the measured parameter data. First, the correlation 

coefficient C between two parameters is defined as: 

 

( )( )

( ) ( )

1

22

1 1

n

i i
i

n n

i i
i i

a a b b

C

a a b b

=

= =

− −
=

− − 

  (14) 

 

where, ai and bi are respectively the calculated value and the 

detected value of the measured parameters; �̅� and �̅�  are the 

average values obtained by multiple calculations or detections.  

Construct a network graph ND=(Nnode,Abranch) for the 

groundwater flow system in the research area shown in Figure 

2, where Nnode is the number of nodes in the groundwater flow 

system; Abranch is the collection of all water flow branches in 

the system. Correspondence can be established between the 

parameter data of all water flow branches in the groundwater 

flow system and the mathematical formulas. Suppose there are 

Q flow branches in the groundwater flow system, represented 

by Abranch={Ai,i=12,…,Q}, ε is the time lag of history water 

flow data. Then any branch Ai contains a continuous time 

series representing the water flow of the branch in the time 

period (t-ε+1,t), denoted as Di={D(Ai,t-ε+1), D(Ai,t-

ε+2),…,D(Ai,t)}. The water flow data of the entire 

groundwater flow system constitutes the two-dimensional 

space-time matrix shown in Formula 15: 
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 
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 
 
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 
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  (15) 

 

The correlation coefficient C(k,l) of any two flow branches 

in the groundwater flow system can be calculated by Formula 

16: 

 

( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1

2 2

1 1

t

k s k l s l
s t

t t
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D A ,t D A D A ,t D A
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  (16) 

 

where, �̅�(𝐴𝑘)  and �̅�(𝐴𝑙)  represent the cross-correlation 

coefficients of the water flow branches Ak and Al, and the size 

of C(k,l) represents the degree of correlation between the two 

branches. By comparing the cross-correlation coefficient C of 

HQ×ε and the size of preset threshold μ, the numbered branches 

can be grouped, and a representative branch can be selected 

from each group. With the number of groups as the matrix 

column number, the compressed matrix of the water flow 

system was constructed. Table 4 shows the correlation 

between threshold μ and compression ratio CR and the running 

time of the model. According to the table, threshold μ 

determines the number of water flow branches in the 

compressed matrix, and the setting of its size will directly 

affect the accuracy of groundwater flow calculation. The 

compression ratio in Formula 17 can be used to set an 

appropriate value for threshold μ: 

 

100%
group

Q
CR

N
=    (17) 

 

 

Table 4. The correlation between threshold μ and compression ratio CR and model running time 

 
μ 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1 

CR 32.3% 28.4% 17.7% 12.6% 9.74% 7.26% 5.7% 1 

Running time/Second 24.75 33.21 45.34 56.78 60.24 71.85 78.91 89.7 

 

 

4. CONSTRUCTION OF GRAYSCALE-EMBEDDED BP 

NEURAL NETWORK 

 

The actually measured parameter data of groundwater flow 

has the characteristics of the gray system, that is, it has a 

certain degree of randomness and periodicity. This paper 

selected the GM (1, 1) model as the embedded model for the 

BP neural network, the GM (1, 1) model is suitable for original 

parameter data sequence with positive values and low discrete 

levels, and it is suitable for short-term groundwater flow 

prediction. During the prediction process, the groundwater 

flow parameter data was added and updated in real time so as 

to ensure the validity and accuracy of the prediction results. 

The model can be solved through the following steps: 
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(1) A less-correlated non-negative original groundwater 

flow parameter time series fp0 is established as shown in 

Formula 18: 

 

 0 0 0 0

1 2, ,...,p nf f f f=   (18) 

 

The first-order accumulation result of fp
0 is: 

 

1 0

1

p

p i
i

f f
=

=    (19) 

 

which can be re-written in the data column form as follows: 

 

 1 1 1 1

1 2, ,..., nf f f f=   (20) 

 

(2) Suppose the development coefficient is τ, and the gray 

action is φ, a first-order linear differential equation can be 

constructed as shown in Formula 21: 

 
1

1df
f

dt
 + =   (21) 

 

In the formula, τ reflects the development trend of the time 

series f0 and f1 of groundwater flow parameters, its value range 

is -2~2. As long as the gray parameter matrix Φ=(τ, φ)T of the 

equation is determined, f1 can be solved and its future value 

could be predicted. 

(3) Construct the constant term vector of the parameters as 

shown in Formula 22: 
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3
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f

f
CT

f

 
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  (22) 

 

Calculate the average value of the time series elements to 

construct the matrix shown in Formula 23: 
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1 2
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2 3
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 −
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  (23) 

 

The number of established m-1 differential equations is 

greater than 2, and the approximate solution of Φ is solved 

using the least square method shown as Formula 24: 

 

( )
1

T TMC MC MC CT
−

 =   (24) 

 

(4) Under the initial condition of f1
0=f1

1=ḟ11, the solution of 

the differential equation is the response equation of the 

whitening differential equation of the GM (1,1) model. 

Substitute Φ into Formula 22 and solve it, then the prediction 

model of f1 is obtained as: 

 

( ) ( )01 0

1 1 1 p

pf f x e  

 

−

+

 
= − + 
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  (25) 

 

(5) The approximate reduction of the original measured 

parameter sequence ḟp+1
1 can be completed by Formula 26: 

 
0 1 1

1 1-p p pf f f+ +=
   

  (26) 

 

(6) Perform the test on the constructed GM (1,1) model, as 

shown in Formula 27: 

 

0 0 0

0 0 0/

p p p

p p p

RES f f

RE RES f

 = −


=

 

   (27) 

 

where, RESp
0 and REp

0 are respectively the residual and 

relative error of the model. 

(7) The generation of future groundwater flow prediction 

data was mainly completed by the basic formulas of the GM 

(1,1) model shown as Formulas 25 and 26, and the prediction 

result can be expressed by Formula 28: 

 

 0 0 0 0 0 0

1 2 1... ...m m m nf f , f , , f , f , , f+ +=
      

  (28) 

 

In the above formula, the first m terms are the fitted values 

of the time series of the original measured parameter data of 

the groundwater flow, and the last n terms are the prediction 

values of the short-term groundwater flow. 

For the constructed grayscale-embedded BP neural network, 

the input layer neuron nodes only considered some variation 

characteristics of groundwater flow contained in the original 

measured parameter data sequence, and did not consider the 

impact of external environment on the water flow. In the actual 

application of groundwater flow prediction in the study area, 

it is found that the prediction results of the constructed model 

had not reached the expected error level. For this reason, an 

anti-interference correction coefficient was proposed for the 

model, and the verification of the value of the correction 

coefficient can be completed based on the Markov model as 

shown in Formula 29: 

 
1

1

1 0

t

t  
+

+
 =     (29) 

 

where, σt+1 is the probability distribution of the model's water 

flow prediction results at time t+1, and σ0 is the unconditional 

probability distribution of the prediction results at the initial 

time moment. The one-step transition probability matrix σ1 of 

the Markov model can be calculated by Formula 30: 

 

11 12 1

21 21 21

1 1

...

...

... ... ... ...

...

n

n

n n nn

  

  


  

 
 
 =
 
 
 

  (30) 

 

The elements in the matrix represent the probability of 

changes in the prediction values of water flow in a unit time 

period. 
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5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

When stimulating the groundwater flow system using the 

constructed model, the core reference standard is the 

reasonably estimated initial water levels of the phreatic layer 

and the artesian layer. Combining with the drilling data of 

January 2019 and the dynamic data of groundwater flow 

parameter measurement, the initial water level of the study 

area can be obtained and imported into the constructed model 

for groundwater flow calculation and prediction. Figures 6 and 

7 respectively show the initial water levels of the phreatic layer 

and artesian layer of the groundwater system in the study area. 

 

 
 

Figure 6. Initial water level of phreatic layer in the study 

area 

 

 
 

Figure 7. Initial water level of artesian layer in the study area 

(including catchment area) 

In order to verify the accuracy of the proposed neural 

network for the prediction of groundwater flow in the study 

area, the water flow results of a same groundwater branch 

calculated by GMS software were respectively trained and 

simulated by the traditional BP neural network and the 

proposed neural network. 45 groups of measured parameter 

data of groundwater flow were taken as training samples, and 

the other 15 groups were taken as test samples. Table 5 shows 

the measurement and prediction data of 8 sample points. 

Figure 8 intuitively fits the predicted data of the two models 

and compares them with the measured values. In the figure, 

the ordinate is the groundwater flow value, the abscissa is the 

number of sample points. According to the figure and table, 

compared with the traditional BP neural network, the proposed 

neural network had smaller relative error and higher accuracy. 

 

Table 5. Some measured values and predicted values under 

different model conditions 

 

No. 
Measured 

value 

Traditional BP 

neural network 

Proposed neural 

network 

Predicted 

value 

Relative 

error 

Predicted 

value 

Relative 

error 

1 26.45 24.66 -6.76% 27.19 2.79% 

2 32.71 35.27 7.82% 31.54 -3.57% 

3 44.97 46.98 4.46% 45.21 0.53% 

4 59.80 60.67 1.45% 58.97 -1.38% 

5 67.94 74.98 10.36% 66.22 -2.53% 

6 72.56 79.29 9.27% 74.32 2.42% 

7 88.67 92.94 4.81% 88.10 -0.64% 

8 95.98 98.09 2.19% 96.89 0.94% 

MSE 5.74*10-3 3.25*10-3 

 

 
 

Figure 8. Comparison results of measured values and 

predicted values of two models 

 

Figure 9 shows the groundwater flow prediction results of a 

same sample point in different time periods. It can be seen 

from the figure that the proposed model had a good fitting 

effect on the groundwater flow prediction values in different 

time periods, and the accuracy can reach the prediction 

requirement. The proposed model was highly reliable and can 

be applied to the study area. 
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(a) 

  
(b) 

  
(c) 

  
(d) 

 

Figure 9. Prediction results of groundwater flow different time periods 

 

 

6. CONCLUSION 

 

This paper constructed a GMS-based GFC model and a 

grayscale-embedded BP neural network. First, the GFC model 

was constructed based on GMS, and the characteristics of 

parameter data were analyzed from four aspects: the periodic 

groundwater recharge, the tridimensional flow space, the 

complex streamline combination, and the concurrent flow 

direction; and the preprocessing process of the measured 

parameter data of groundwater flow was given. Then, the 

paper constructed a neural network model to predict 

groundwater flow, and experiment gave the initial water levels 

of the phreatic layer and the artesian layer of the groundwater 

flow system in the study area. Through comparative 
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experiments, the paper verified that the proposed neural 

network achieved smaller relative error and higher accuracy in 

water flow prediction due to the embedded GM (1,1) gray 

scale model. It had better groundwater flow prediction effects 

in different time periods and it had higher reliability in 

applications. 

 

 

ACKNOWLEDGMENT 

 

This paper was supported by the Open Fund project of State 

Key Laboratory of Hydroscience and Engineering of Tsinghua 

University (Grant No.: sklhse-2020-A-01). 

 

 

REFERENCES 

 

[1] Al-Muqdadi, S.W., Abo, R., Khattab, M.O., 

Abdulhussein, F.M. (2020). Groundwater flow-modeling 

and sensitivity analysis in a hyper arid region. Water, 

12(8): 2131. https://doi.org/10.3390/w12082131 

[2] Ji, X., Luo, M., Wang, X.S. (2020). Accelerating 

streamline tracking in groundwater flow modeling on 

GPUs. Groundwater, 58(4): 638-644. 

https://doi.org/10.1111/gwat.12959 

[3] Kamath, R.P., Unnikrishnan, N. (2020). Investigations 

on the impact of sub-structures on groundwater flow. In 

Construction in Geotechnical Engineering, pp. 557-564. 

https://doi.org/10.1007/978-981-15-6090-3_40 

[4] Banks, A.T., Phetheet, J., Hill, M.C. (2020). An 

interactive computer module for understanding 

groundwater flow and transport. Groundwater, 6(58): 

868-871. https://doi.org/10.1111/gwat.13040 

[5] Morgan, F.D., Al Nasser, S., Jerry, R., Verneuil, A. 

(2019). Investigations into groundwater flow towards a 

spring in the Saphire Area, Soufriere, St Lucia, West 

Indies. SEG Technical Program Expanded Abstracts, 

2772-2776. https://doi.org/10.1190/segam2019-

3215507.1 

[6] Langford, J.E., Schincariol, R.A., Nagare, R.M., Quinton, 

W.L., Mohammed, A.A. (2020). Transient and transition 

factors in modeling permafrost thaw and groundwater 

flow. Groundwater, 58(2): 258-268. 

https://doi.org/10.1111/gwat.12903 

[7] Warix, S.R., Rademacher, L.K., Meyers, Z.P., Frisbee, 

M.D. (2020). Groundwater geochemistry and flow in the 

Spring Mountains, NV: Implications for the Death 

Valley regional flow system. Journal of Hydrology, 580: 

124313. https://doi.org/10.1016/j.jhydrol.2019.124313 

[8] Bailey, R.T., Park, S., Bieger, K., Arnold, J.G., Allen, 

P.M. (2020). Enhancing SWAT+ simulation of 

groundwater flow and groundwater-surface water 

interactions using MODFLOW routines. Environmental 

Modelling & Software, 126: 104660. 

https://doi.org/10.1016/j.envsoft.2020.104660 

[9] Litvinenko, A., Logashenko, D., Tempone, R., Wittum, 

G., Keyes, D. (2020). Solution of the 3D density-driven 

groundwater flow problem with uncertain porosity and 

permeability. GEM-International Journal on 

Geomathematics, 11(1): 1-29. 

https://doi.org/10.1007/s13137-020-0147-1 

[10] Barna, J.M., Fryar, A.E., Cao, L., Currens, B.J., Peng, T., 

Zhu, C. (2020). Variability in groundwater flow and 

chemistry in the Houzhai Karst Basin, Guizhou Province, 

China. Environmental & Engineering Geoscience, 26(3): 

273-289. https://doi.org/10.2113/EEG-2306 

[11] Bense, V.F., Kurylyk, B.L., de Bruin, J.G.H., Visser, P. 

(2020). Repeated subsurface thermal profiling to reveal 

temporal variability in deep groundwater flow conditions. 

Water Resources Research, 56(6): e2019WR026913. 

https://doi.org/10.1029/2019WR026913 

[12] Kavvas, M.L., Tu, T., Ercan, A., Polsinelli, J. (2020). 

Fractional governing equations of transient groundwater 

flow in unconfined aquifers with multi-fractional 

dimensions in fractional time. Earth System Dynamics, 

11(1): 1-12. https://doi.org/10.5194/esd-11-1-2020 

[13] Park, Y.J., Hwang, H.T., Suzuki, S., Saegusa, H., Nojiri, 

K., Tanaka, T., Bruines, P., Abumic, K., Moritad, Y., 

Illmane, W.A. (2020). Improving precision in regional 

scale numerical simulations of groundwater flow into 

underground openings. Engineering Geology, 274: 

105727. https://doi.org/10.1016/j.enggeo.2020.105727 

[14] Dong, G., Tian, J., Zhan, H., Liu, R. (2017). 

Groundwater flow determination using an interval 

parameter perturbation method. Water, 9(12): 978. 

https://doi.org/10.3390/w9120978 

[15] Hassane, M.M.F., Ackerer, P. (2017). Groundwater flow 

parameter estimation using refinement and coarsening 

indicators for adaptive downscaling parameterization. 

Advances in Water Resources, 100: 139-152. 

https://doi.org/10.1016/j.advwatres.2016.12.013 

[16] Erdal, D., Cirpka, O.A. (2017). Preconditioning an 

ensemble Kalman filter for groundwater flow using 

environmental-tracer observations. Journal of Hydrology, 

545: 42-54. 

https://doi.org/10.1016/j.jhydrol.2016.11.064 

[17] Comte, J.C., Wilson, C., Ofterdinger, U., González-

Quirós, A. (2017). Effect of volcanic dykes on coastal 

groundwater flow and saltwater intrusion: A field-scale 

multiphysics approach and parameter evaluation. Water 

Resources Research, 53(3): 2171-2198. 

https://doi.org/10.1002/2016WR019480 

[18] Atangana, A.,Ünlü, C. (2016). New groundwater flow 

equation with its exact solution. Scientia Iranica, 23(4): 

1837-1843. https://doi.org/10.24200/SCI.2016.3930 

[19] Salama, S.M., Bekhit, H.M., Hassan, A.E. (2016). 

Solving variable density groundwater flow using random 

walk particle tracking method. Journal of Engineering 

and Applied Science, 63(2): 79-99.  

[20] Bobet, A. (2016). Deep tunnel in transversely anisotropic 

rock with groundwater flow. Rock Mechanics and Rock 

Engineering, 49(12): 4817-4832. 

https://doi.org/10.1007/s00603-016-1118-6 

[21] Matos, A.P., Alves, C. (2016). Multivariate statistical 

analysis of hydrogeochemical data towards 

understanding groundwater flow systems in granites. 

Quarterly Journal of Engineering Geology and 

Hydrogeology, 49(2): 132-137. 

https://doi.org/10.1144/qjegh2016-006 

[22] Stanko, Z.P., Boyce, S.E., Yeh, W.W.G. (2016). 

Nonlinear model reduction of unconfined groundwater 

flow using POD and DEIM. Advances in Water 

Resources, 97: 130-143. 

https://doi.org/10.1016/j.advwatres.2016.09.005 

[23] Farhadian, H., Katibeh, H., Huggenberger, P. (2016). 

Empirical model for estimating groundwater flow into 

tunnel in discontinuous rock masses. Environmental 

Earth Sciences, 75(6): 471. 

469



https://doi.org/10.1007/s12665-016-5332-z 

[24] Pacheco, F.A. (2015). Regional groundwater flow in

hard rocks. Science of the Total Environment, 506: 182-

195. https://doi.org/10.1016/j.scitotenv.2014.11.008 

470




