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ABSTRACT
This paper presents an experimental study of constructal tree shaped networks, to optimize the fl uid networks 
based on minimization of pumping power. We take a fresh look at the generation of architectures for fl uid 
fl ow and instead of minimizing the global fl ow resistance we focus on minimization of pumping power. Non-
symmetric (9 outlets) and dendritic (24 outlets) architectures were investigated for both laminar and turbulent 
fl ow regimes. A signifi cant reduction in pumping power and volume is observed, compared to conventional 
fl ow. These results emphasize the robustness of tree networks for fl uid fl ow.
Keywords: constructal design, Gilbert–Steiner points, pumping power, tree networks.

INTRODUCTION1 
Recent theoretical developments on constructal theory directs toward predicting macroscopic 
organization (the occurrence of shape and structure) in natural fl ow systems, animate and inanimate. The 
starting point is the question of how to optimize the access between one point and a fi nite volume 
(i.e., an infi nite number of points). If the volume is an electronic device that generates heat uniformly, 
access optimization means minimum thermal resistance between the volume and a point-size heat sink. 
Similarly, if the volume must be bathed at every point by a fl ow (e.g., air fl ow in the lung, or blood 
fl ow in a capillary bed), optimal access means minimum fl ow resistance between the volume and a 
source or sink. The main discovery is purely geometric: any fi nite-size portion of this composite can 
have its shape optimized such that its overall resistance to fl ow is minimal. Consequently, the optimal 
access solution for the total volume is obtained by optimizing volume shape at every length scale, in 
a sequence that begins with the smallest building block (elemental system), and proceeds toward 
larger building blocks (assemblies, constructs). The solution is constructed, hence the “constructal” 
name of the associated theory. The paths form a tree network in which every single geometric detail 
is determined theoretically. The tree network cannot be determined theoretically when the time 
direction is reversed, from large elements toward smaller elements. The constructal principle is 
further illustrated for fl uid fl ow between a volume and one point, for minimum-time travel between 
an area and one point and for minimum-cost economic structures [1–6].

Constructal theory proves that the global performance of fl ow system is maximized. It does not 
depend on what fl ows (fl uid, heat, electricity, goods, people) but “how” it fl ows and how it derives its 
architecture from the competition between objectives and constraints. Constructal theory proclaims 
the oneness of natural and engineered fl ow confi guration generation phenomena.

A fl ow system (e.g., tree) has properties that distinguish it from a non-fl ow system. The properties 
of the fl ow system are (1) global external size, e.g., the length scale of the body bathed by the 
tree fl ow L; (2) global internal size, e.g., the total volume of the ducts V; (3) at least one global 
objective, or performance, e.g., the global fl ow resistance of the tree R; (4) confi guration, drawing, 
architecture; and (5) freedom to morph, i.e., freedom to change the confi guration [1].
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Constructal theory strikes the balance between the determinism of chance. In a constructal 
tree, for example the position of branches can be predicted, but nobody knows exactly how the 
individual or molecule moves the interstices. Chances and additional constraints will defi nitely 
play a role.

Objective1.1 

The driving force behind all these developments is the need for “better” performance from our point 
of view, at our scale, for our benefi t. Needed are improvements in the global performance of the 
macroscopic system. Packing the system with smaller, more powerful and more numerous elemental 
systems is a necessary fi rst step. The challenge is not only to fi nd geometric arrangements to connect 
the currents that must access the elemental systems, but to optimize each connection such that, 
ultimately, each design choice is refl ected in an increase in performance at the global level. To 
construct more and more elements into complex structures and to optimize (with global objective 
and space constraints) each connection means to construct.

There is continuous striving for the systems to make optimum and so we have designed the 
architecture from the constructal theory by Bejan and his co-workers. In the fi rst section, we 
have developed the architecture for conventional fl ow and compared with non-symmetric tree shaped 
network (75° and 56°) for both laminar and turbulent regime. In the second section, we have 
discussed about the dendritic architecture point-circle fl ow for both fl ows for 24 outlets and 
compared with conventional system.

NON-OPTIMAL NETWORK2 
In recent research works on fl uid networks, pressure drop has been used extensively as a 
network of operation cost. Optimal networks were generated by minimizing the pressure 
drop between the highest and lowest pressures. The very idea of system optimization (in engineering 
as well as in nature) implies that the system in question is not purposeless: the system has 
an objective, a duty to fulfi ll. This task is accomplished at a certain cost, and under global constraints. 
Identifying these constraints and objectives is the fi rst conceptual step in the process of designing 
a system. It is a crucial step that calls for adequate modeling. A fl awed cost function may lead to 
“an optimal” design (optimal in the sense that it minimizes the fl awed cost function), but there is no 
guarantee that this design provides a satisfactory performance in view of the “real” cost function. 
Neither the pressure drop nor the friction resistance are real cost functions, but it is the pumping 
power.

To begin with, consider the simplest situation: a fully developed laminar fl ow in a pipe with 
constant circular cross section. Given the mass fl ow rate of the pipe, m, the pressure drop in the pipe 
and required pumping power are given by
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where a and L are the cross-sectional area and the length of the pipe, respectively. The effect of pipe 
geometry (a, L) on the pressure drop and pumping power is the same as in the particular case: 
according to eqns. (1) and (2), ∆P and W are proportional to L/a2. The situation is different when 
several pipes are connected together to form a network. In that case the total pumping power and 
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pressure drop can be written as
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The summation in eqn. (3) is over the pipes e of a path G (i.e., over only some of the pipes of the 
network) from the point of largest pressure to the point of smallest pressure. The summation in eqn. (4) 
is over all the pipes of the network. It can be shown that the summations in eqns. (3) and (4) are 
equivalent if: (i) all the pipes of the network (with a given mass fl ow rate) have the same length and 
cross-sectional area; (ii) the quantity mW(m) is a constant independent of m, where W(m) is the 
number of pipes with a mass fl ow rate m. When conditions (i) and (ii) described above are 
not respected, pumping power and pressure drop minimization will lead to different network 
confi gurations and levels of performance. Therefore, in general, one cannot deduce that a minimum 
pressure drop network will look or perform as a minimum pumping power network.

A set of nine outlets and one inlet, as shown in Fig. 1, is connected to the source to transport the 
fl uid. Pressure head is maintained constant for all experiments. As we know, there are two constraints, 
the fi rst is the total volume of pipe network
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The second type of constraint is law of mass conservation at each vertex. The fl uid consumption 
at a given point equals the difference between the inlet and outlet mass fl ow rates at that point. 

Figure 1: A conventional model for nine outlets.
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There are thus N constraints of this type, one for each vertex
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The term si accounts for the fl uid consumption of the point i. This can be positive or negative 
depending on whether the vertex i consumes or produces fl uid. If si = 0, then the vertex i neither uses nor 
delivers fl uid. The optimal network is the one that minimizes the cost function (the pumping power, 
eqn. (4)) subject to constraints (5) and (6). The non-dimensionalized version of these equations is
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In summary, the objective is to minimize W in eqn. (7), subject to N + 1 constraint, eqns. (8) and (9). 
The parameters that can vary are the cross-sectional area of each pipe, and the mass fl ow rate that 
each pipe carries. This means two parameters per pipe. Because there are N (N + 1)/ 2 possible pipes 
and the N + 1 constraints, the number of degrees of freedom to minimize pumping power requirement 
is (N2 – 2N – 1).

Network for laminar fl ow2.1 

Natural tree-shaped networks are the best fl owing routes between one point and an area (or volume) 
because they bathe the available space with channels of multiple scales, which are allocated optimally 
to interstitial areas (or volumes). Many scales are organized hierarchically – few are large and many 
are small and are distributed non-uniformly, but they are positioned in right places. Trees that do not 
look like the best perform practically as well as the best.

A key result of constructal theory is fl ow architecture, optimal spacing, global maximization of 
fl ow, overall minimum (fl uid and thermal) resistance [1, 2, 4, 5]. This becomes an attractive feature 
of tree-shaped networks in engineering. To understand the properties of tree-shaped fl ow structures, 
it is necessary to determine what properties make them better and what strategies designers should 
employ to arrive at optimal or near-optimal tree constructs faster and more economically.

We conducted experiments for laminar fl ow with 75° branches, as shown in Fig. 2, at fi xed vertices 
(i.e., the location of outlets is exactly the same as in a conventional network). A tree network for nine 
outlets constructed using a 75° PVC joint is shown in Figs. 3 and 4. The angle obtained is purely 
empirical as shown in Fig. 2. The angle varies depending upon the fl ow, as the tree’s height is increased 
the fl ow regime shifts from turbulent to laminar. This optimized shape not only reduces the discharge 
time, or in other words increases the mass fl ow rate for the fi xed time, but also minimizes the volume; 
that is, it reduces 8.5% of pumping power and 12% of volume compared to the non-bifurcating model.

Network for turbulent fl ow2.2 

The results presented above for laminar regime can be extended to the turbulent regime. The 
following empirical relation for the friction factor is commonly used for turbulent fully developed 
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Figure 2: Non-symmetric tree (Royal poinciana) branch which makes an angle of 75°.

Figure 3: A tree network model for laminar fl ow with nine outlets.

fl ow in a smooth pipe:
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Therefore, the dimensionless pumping power required for driving the fl ow through the pipe e is
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The total pumping power for a network where all the pipes are smooth and carry turbulent fl ow is 
the sum of the pumping power carried in each pipe. In conclusion, one can state the optimization 
problem more generally as follows: given set of N points, minimize e e em La∑  where a changes when 
the fl ow regime changes. The values of a and e for different fl ow regimes are shown in the Table 1. 
The exponent a is smaller for laminar fl ow (2/3) and larger for turbulent fl ow (6/7 for rough pipes; 
14/17 for smooth pipes). In all cases, we have 0 < a < 1. where e also depends upon fl ow regime: 
e = 3 for laminar fl ow, 17/3 for turbulent fl ow in smooth pipes and 7/2 for turbulent fl ow in rough 
pipes. Note that the value of e does not infl uence the optimal confi guration of the network. The value 
of a infl uences only the relative performance of the network.

The minimum pumping power requirement is
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After keen observation of various trees, we have observed that a bifurcation occurs at the base of the 
trunk, which forms an angle of 56° (Fig. 5). With the aid of this angle, the optimal network (Fig. 6) 
is constructed as shown in Fig. 7. Similarly, the results obtained are reduced pumping power of 12% 
and volume reduction of 20% compared to the conventional system.

Figure 4: The minimum pumping power tree network (75°) for laminar fl ow.

Table 1: Values of a and e for several fl ow regimes (reprinted with permission from [11]).

Flow regime a e
Fully developed laminar fl ow 2/3 3
Fully developed turbulent fl ow in smooth pipes 14/17 17/5
Fully developed turbulent fl ow in rough pipes 6/7 7/2
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A possibility of increase in reduction of pumping power, when the bifurcated diameter is reduced 
form the main stem diameter. More effort is required to determine the ratio between two diameters 
of non-symmetric bifurcated Y-shaped structures (in nature).

DENDRITIC FLUID NETWORKS3 
The subject of this section is to design a point-volume dendritic network in which new points called 
Gilbert–Steiner points (GSPs) are added. These points are non-consuming; it greatly increases the 
number of possible topologies, that is, the number of ways in which one can connect all the points. 
As the number of consumers (N) increases, the opportunities for adding GSPs also increase.

A new fl ow structure with minimal resistance is designed, the fl ow connects the center f disc with 
the disc perimeter and it proceeds from center to perimeter. The main feature of this structure is 

Figure 5: Non-symmetric tree (Royal poinciana) branch which makes an angle of 56°.

Figure 6: A tree network model for turbulent fl ow with nine outlets.
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bifurcation at each mode in the network. The ducts are round tubes of several diameters (D0, …, Dn) 
and lengths (L0, …, Ln). The optimal sizes and lengths of pipes at each pairing level are taken from 
Murray’s study on blood vessels. There is a stepwise change in diameter and length based on this ratio.
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The optimized fl ow architecture has three central tubes (n0 = 3; Fig. 8), which are considered to be 
the best [7, 8]; a similar architecture is observed in a tree with three bifurcations from the center 
branch as shown in Fig. 9. The pressure drop for three pairing level is proportional to overall fl ow 
resistance.
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where f is the dimensionless fl ow resistance
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Bejan et al. prove that the pressure drop factor increases monotonically with n0 and indicate that the 
simplest structure (n0 = 3) offers the least global resistance. The adjacent angle between the central 
tubes is 120°. Figure 9 shows three bifurcations from the stem at an angle of 120°.

To determine the angle between the two adjacent ducts, more elaboration is required. A block as 
shown in Fig. 8 is transferred into Fig. 10. The degree of an optimal GSP has to be at least three, 
which means that a GSP must connect at least three pipes. If only one pipe were connected to a GSP, 
it would be possible to remove the GSP and its corresponding pipe to reduce the pumping power. If 
a GSP were in contact with only two pipes, then the GSP can be removed with its corresponding 
pipes, and a new single pipe can be installed between the points that were previously connected to 
the GSP to reduce the pumping power. Only one of the pipes connected to a GSP can bring fl uid to 
the GSP. In other words, there is only one infl ow to an optimal GSP [9]. Otherwise, there would be 

  

Figure 7: The minimum pumping power tree network for turbulent (56°) fl ow.
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Figure 8:  The optimized fl ow structure with three levels of pairing and n0 = 3 (reprinted with 
permission from [7]).

Figure 9: A tree has three bifurcations from the central stem with adjacent angle of 120°.

a loop in the network, the loops are robust in micro scales [10], but it is proven to be ineffi cient in 
fl uid networks [11].

Next, we examined in greater detail the GSP of degree three: one infl ow split into two outfl ows. 
Even though this is not the most general case, it is by far the most common GSP encountered in 
both engineering and nature. Consider Fig. 10. The points a, b and c are given, and the mass fl ows 
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from a to b and a to c are mb and mc, respectively. We want to introduce a GSP, named g, in order 
to reduce the cost function. It can be shown that the optimal angles between the pipes are given 
by eqns. (17–19)
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Figure 10:  The optimal angles around a GSP of degree three, enqs. (17)–(19) (reprinted with 
permission from [11]).
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Figure 11: A symmetric tree (Royal poinciana) branch which makes an angle of 75°.

where the parameter a is same as in the Section 2.2 and varies with the fl ow regime. Figures 11–13 
and 14–16 show tree branches that form an angle of 75° and 56°, respectively, are proved numerically 
too based on eqns. (17–19).

The angles in eqns. (17)–(19) are reported graphically in Fig. 10. The optimal angle (bgc)opt 
is almost constant for all ratios of mb/mc, namely (bgc)opt ~ 75° for the laminar regime, 56° for 
the turbulent regime, smooth pipes, and 50° for the turbulent regime, rough pipes.

Experiments are conducted for dendritic architectures for both laminar and turbulent regimes with 
three pairing levels (i.e., N = 24) and with three central tubes (n0 = 3). The diameter and lengths are 
D0 = 1.5 in., D1 = 1.25 in., D2 = 1 in., D3 = 0.75 in and L0 = 0.6 m, L1 = 0.476 m, L2 = 0.377 m, 
L3 = 0.3 m, respectively.

A conventional network as shown in Fig. 17 was constructed at fi xed vertices with the same 
24 outlets. The results are surprising in that a signifi cant reduction in pumping power and volume 
was observed. The pumping power required for laminar and turbulent fl ows are 44.5% and 48.5% 

Figure 12:  A dendritic model for laminar fl ow (75°) with three pairing level (N = 24) and 
three central tubes (n0 = 3).
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Figure 13: Dendritic architecture for laminar fl ow (75°) with 24 outlets.

Figure 14: A symmetric tree (Royal poinciana) branch which makes an angle 56°.

Figure 15:  A dendritic model for laminar fl ow (56°) with three pairing level (N = 24) and three 
central tubes (n0 = 3).
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Figure 16: Dendritic architecture for turbulent fl ow (56°) for 24 outlets.

less compared to the conventional system shown in Fig. 17, and the material required is 62% less 
compared to the non-optimal network.

CONCLUSION4 
Constructal tree networks, introduced by Bejan and his co-workers in recent years, were investigated. 
It is found that tree networks provide a signifi cant reduction in pumping power and global resistance 
compared to traditional non-bifurcating systems. The main results presented in this paper can be 
summarized as follows:

1. With a set of nine vertices for fully developed laminar fl ow, the network gives the optimal 
pumping power and volume, reducing the former by 8.5% and the latter by 12% compared to 
a non-bifurcating model.

2. With the same set of nine vertices, which is extended for turbulent fl ow, the network gives 
the optimal pumping power and volume, reducing the former by 12% and the latter by 20% 
compared to a conventional system.

Figure 17: Conventional network with fi xed vertices for 24 outlets.
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3. Dendritic architectures were investigated for both laminar and turbulent fl ows based on 
Murray’s optimal diameter and length ratios.

4. Dendritic architectures result in a 44.5% and 48.5% reduction of the pumping power for 
laminar and turbulent fl ows, respectively, and the total volume of material required is 62% less 
compared to a conventional network.
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NOMENCLATURE
a cross-sectional area (m2)
e, k pipe vertices
f friction factor
g gravity acceleration (m/s2)
i, j vertex indices
L length (m)
M mass conservation equation
m mass fl ow rate (kg/s)
N number of vertices
P pressure (N/m2)
∆P pressure drop (N/m2)
s vertex fl uid consumption (kg/s)
V total pipe volume (m3)
W pumping power (W)

Greek symbols

a, b, g angles (rad)
e exponent to obtain pumping power
n kinematic viscosity (m2/s)
r density (kg/m3)
G path from larger to lower pressures

REFERENCES
Bejan, A. & Lorente, S., Constructal theory of generation of confi guration in nature and  [1] 
engineering. Journal of Applied Physics, 100, 041301, August 2006.
Bejan, A., The constructal law of organization in nature: tree shaped fl ows and body size.  [2] 
Journal of Experimental Biology, 208, pp. 1677–1686, 2005.
Reis, A.H., Constructal theory: from engineering to physics, and how fl ow systems develop  [3] 
shape and structure. Applied Mechanics Reviews, 59(5), pp. 269–282, 2006.
Bejan, A., Constructal theory: from thermodynamic and geometric optimization to predicting  [4] 
shape in nature. Energy Conservation and Management, 39(16–18), pp. 1705–1718, 1998.
Bejan, A., From heat transfer principles to shape and structure in nature: constructal theory.  [5] 
Journal of Heat Transfer, 122, pp. 430–449, 2000.
Bejan, A. & Marden, J.H., Unifying constructal theory for scale effects in running, swimming  [6] 
and fl ying. Journal of Experimental Biology, 209, pp. 238–248, 2006.
Wechsatol, W., Lorente, S. & Bejan, A., Optimal tree shaped networks for fl uid fl ow in a disc  [7] 
shaped body. International Journal of Heat and Mass transfer, 45(25), pp. 4911–4924, 2002.



 M.S. Sayeed et al., Int. J. of Design & Nature and Ecodynamics. Vol. 3, No. 2 (2008) 149

Wechsatol, W., Lorente, S. & Bejan, A., Dendritic heat convection on a disc.  [8] International 
Journal of Heat and Mass transfer, 46(23), pp. 4381–4391, 2003.
Deo, N.,  [9] Graph Theory with Applications to Engineering and Computer Science, Prentice Hall: 
India, 2000.
Wechsatol, W., Lorente, S. & Bejan, A., Tree networks with loops. [10] International Journal of 
Heat and Mass Transfer, 48, pp. 573–583, 2005.
Bejan, A. & Gosselin, L., Tree networks for minimal pumping power. [11] International Journal of 
Thermal Sciences, 44(1), pp. 53–63, 2005.


