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ABSTRACT
The petiole is a plant organ that connects the stem to the blade of a leaf. The petiole is made up of a fi brous 
biomaterial that consists of three integrated tissues. Each of these specializes in different functions, but 
they work together to provide basic needs, such as nutrient transport, food storage and plant support. From 
a structural viewpoint, the petiole resembles a cantilever that should resist wind torsion and gravity bending 
forces acting on the leaf blade. It has a solid cross-section with a grooved fl attened asymmetric shape with size 
decreasing lengthwise. As all plant organs, the petiole morphology is developed by adaptive growth, which 
is the plant response to environmental stimuli. Thus, the petiole grows a shape that best optimizes the use 
of vital resources. This paper focuses on the structural effi ciency of the shape petiole and it examines the 
capability of the petiole in reducing the wind drag without sagging under gravity forces. Continuum mechanics 
and dimensionless factors are used to model the twist-to-bend ratio. Twenty specimens of Polygonaceae 
Rheum rhabarbarum plants were investigated. The results are visualized on maps that contrast the petiole shape 
properties to those of ideal cross-sections.
Keywords: bending stiffness, leaf petiole, optimized shape, structural effi ciency, torsional compliance, 
twist-to-bend ratio.

INTRODUCTION1 
During growth, a plant develops roots, stems, branches and leaves. These organs work in synergy to 
satisfy the basic needs for survival, such as support, transport and storage of food. The leaf is the 
crucial organ for photosynthesis. It allows the plant to process the sun’s energy and produce sugar 
for its own life [1].

From a structural point of view, the leaf has a noteworthy structure consisting of a blade upheld 
by a stalk, or petiole. The morphology of the petiole is designed to minimize the use of resources for 
load support. In the absence of wind, for example, the petiole resembles a cantilever beam that 
is equipped with suffi cient resistance to keep the blade from being exposed to the sun without 
collapsing under gravity loads. In the moving wind, on the other hand, the petiole functions as a bar, 
where the aerodynamic forces acting on the frontal area of the blade exert twisting actions. Against 
these, the petiole offers little resistance to ease the cluster of the leaves and reduce the area of the 
leaf exposed to wind. As a result, the wind drag on the leaf is dropped and the material required 
to withstand external forces is reduced.

The capabilities to keep the blade exposure from sunlight, as well as to allow leaf reconfi guration 
in high wind, are governed by the biomechanical properties of the petiole [2–6]. The material and 
the geometric properties of the petiole play a crucial role in the fl exural stiffness and in the torsional 
fl exibility. The former describes the bending resistance against gravity forces, whereas the latter 
governs the petiole compliance to wind action. Their ratio is the twist-to-bend index that has been 
used to examine the ability of living organisms to twist without bend [2–14].

Simplifi ed models and testing apparatus have been proposed to predict and measure respectively 
the elastic and viscoelastic properties of stems for different plant species [2–19]. Plotting the 
bending stiffness against the torsional rigidity eases the visual characterization of the specimen 
properties. More recently, graphical approaches have also been adopted to contrast biological beams 
to engineering beams of ideal shapes [14, 20]. Such a visual comparison of nature to engineering 
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design has been suggested to be conducive to capture novel material and geometry design. 
This rationale applies also to this work that aims at gaining insight into why the shape of the 
Polygonaceae Rheum rhabarbarum petiole grows as they do.

This study examines the structural effi ciency of the petiole cross-section at the internode with the 
stem. The focus is placed on the relationship between the morphological design of the leaf petiole 
and its structural performance in carrying multiple loading. This paper starts off with an overview 
of the plant functions and a general description of the factors that trigger morphological changes. 
Then the zoom is onto the petiole organ, especially on its structural mechanics. A scheme for 
characterizing the structural contribution of the petiole cross-sections is presented in terms of shape 
parameters. These have been introduced to model shape performance at different length scales for 
alternative shape cross-sections [21–24]. In this work, the method is extended by using the concept 
of superellipse [25–29] to describe natural shapes [30–33]. Lamé curves are used to fi t the profi les 
of a range of asymmetric shapes and to formulate shape transformers for the twist-to-bend 
ratio. These concepts are then contrasted to the Rheum rhabarbarum specimen and visualized 
on performance maps to gain insight into the shape effi ciency of the petiole cross-sections.

PLANT ORGANS AND FUNCTIONS2 
Angiosperms are fl owering plants whose reproductive organs are within fl owers, and seeds 
(i.e., cotyledons) are in the fruits. The number of seeds is used to sort angiosperms into two classes: the 
monocots, which have a single cotyledon, and the dicots with two seeds. The Rheum rhabarbarum 
falls into the latter.

Moncots and dicots have morphological differences. Unlike dicots, monocots have parallel veins 
in the leaf, a fi brous root system and vascular bundles complexly arranged. Dicots, on the other 
hand, present netlike leaf veins, a taproot system, which consists of a major root growing vertically, 
vascular bundles usually arranged in a ring and fl oral parts in multiples of four or fi ve [1].

Despite the differences, there are also features common to all angiosperms: the root and the shoot 
system. The main vital functions of roots are the absorption of water and minerals, their conduction 
from the roots to the stem and vice versa, and lastly, the storage of food. The structural function of 
the roots is to provide anchor in the soil. On the other hand, the shoot system consists of the stem, 
which supports the leaves and the photosynthetic organs (Fig. 1).

TRIGGERS FOR MORPHOLOGICAL CHANGES3 
Like most living organisms [2, 34, 35], a plant is a complex system with highly integrated organs and 
tissues. Each of these has multiple vital functions that are optimized to meet basic vital needs, such 
as mineral absorption, water supply, photosynthesis, food storage and structural support.

The morphology of plants is governed by a process of adaptive growth. As they grow, plant organs 
shape their bodies in response to environmental stimuli. They can detect changes of light, loading, 
soil salinity and stress concentration and, in response, they adapt their morphology at the macro 
as well as micro level. Some changes are governed by reversible movements and are described 
in Section 3.1. Others that usually impose permanent traits are reported in Section 3.2.

Morphological changes due to tropisms and turgor movements3.1 

Tropism is a response of the plant curvature to stimuli. If the plant curves toward the stimuli, 
the tropism is positive, whereas it is negative when the plant curves away from it. The turgor 
movements are usually rapid and reversible, often due to pressure changes within the cells subject 
to stimuli.
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For example, phototropism is the bending of a plant either towards or away from a light source and 
it allows photosynthesis to take place. Sleep movements are also responses to changes of light during 
the course of the day. Legumes and bean plants, for instance, raise their leaves horizontally in the 
morning, and lower them vertically at sunset. Gravitropism, on the other hand, is the plant response 
to gravity. When it is positive, the roots grow deep into the soil to secure water and other nutrients. 
If it is negative, the shoots develop up towards the sunlight. Thigmotropism is a directional growth 
in reaction to touch. Unlike stems that grow straight, vines, for example, have tendrils that coil at 
touch with an object.

Morphological changes in response to environmental stresses3.2 

Variations in temperature, stress and water content are factors that induce morphological adaptations 
at different length scale, from the cellular to the meso-scale. These may have a strong impact on the 
plant morphogenesis.

Oxygen deprivation and cold temperature are examples of such triggers. As a result of the former, 
the growth of air tube cells in certain roots is accelerated to allow oxygen supply. Due to the latter, 
the plant is called to increase its amount of unsaturated fatty acids. Excess of sodium also threatens 
plant growth. Salt can cause the root to lose water, even when the soil is submerged in water. 
This phenomenon occurs when the osmotic pressure of the surrounding water is not as high as 
that of the root tissue. Another trigger is the water defi cit that stimulates the synthesis of a hormone 
(i.e., abscisic acid). This substance induces the pore closure and reduces evaporation. Cells lose 
turgidity and expose less surface to the sun. As a result, when the level of environmental factors, such 
as water retention and insulation, is severe, shape adaptation occurs at the tissue level as well as at 
the macro-level of each plant organ.

Figure 1:  The triangular blade and the grooved stalk of a Polygonacee Rheum rhabarbarum plant. 
(Adapted image by Jan De Laet, © 2006.)
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Another factor causing modifi cations of the micro and macroscopic structure is the critical stress 
regime induced by physical forces. The plant builds tissues under adaptive growth, mainly 
by responding to compressive stresses [36–38]. This phenomenon that starts at the cellular level 
is crucial in determining the morphology of a plant organ. Within the tissues, fi bers grow aligned 
to the orientation of the internal forces and in regions of critical compressive stresses. The additional 
fi bers work like reinforcements that lower the stress regime below the compressive strength to 
prevent the buckling failure of cell walls.

THE PROFILE OF THE POLYGONACEAE 4 RHEUM RHABARBARUM
The rhabarbarum species falls into the Rheum genus of the Polygonaceae family of dicotyledons. It 
is a perennial plant often cultivated in Europe and North America, in Western and North-western 
provinces of China, and in Tibet. The Rheum rhabarbarum grows from short rhizomes, forms thick 
and long stalks, and develops large leaves, as shown in Fig. 1. Its fl owers are small, greenish-white, 
and borne in large compound leafy infl orescences.

The typical size of rhubarbs varies from 3 to 5 feet height, or even more, with 3–4 feet width. The 
structure of a leaf resembles a fl at blade, which is connected to the stem by a petiole at an angle with 
the horizontal. The blade has a large size with width and length that grow up to 1 foot or more. 
Its form is roughly triangular (Fig. 1). The blade is the part of the leaf that is poisonous because 
it contains high concentrations of inedible oxalic acid crystals. The petiole is fl eshy and slender 
with a length of up to 18 inches long and 1–2 inches in diameter. The cross-section is solid with 
roughly semi-elliptical shape, as shown in Fig. 2.

Cross-sections with similar semielliptical shapes can be found in different petioles that twist 
easily before sagging under gravity load. For example, top groove and U-shapes are distinctive 
of banana and green bean plants [6]. These geometries, however, are not the only one found 
in plants. Elliptical shapes, for instance, are quite common in horizontal branches of trees. Here, 
an important factor determining specifi c morphology adaptations is the scaling effect. During growth, 
cross-sections evolve with respect to the scaling rule of the acting forces. In horizontal branches, 
the own weight increases with the size cubed and is dominant at large scale, whereas the wind 
loading is governed by the size square. Thus, it is not surprising small branches exhibit circular 
cross-sections. On the other hand, large-scale branches grow superelliptical shapes, which are often 
elongated along the downward direction to maximize the resistance to bending stresses [6, 12, 13]. 
Besides environmental factors, magnitude and direction of loads, as well as scaling effects, another 
factor to consider is the joint between the stem and the petiole. As the petiole grows from the stem, 

Figure 2: Sketch of a rhubarb petiole cross-section.
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the size of the latter constrains the maximum size that the petiole cross-section can develop along 
its width [12].

The histology of the bio-material4.1 

In contrast to homogeneous, elastic and isotropic materials, the rhubarb is made up of a composite 
microstructured material, whose anisotropy is governed by three living tissues. Each of these is 
made of similar cells clustered into units that grow continuously throughout the plant. Each cell has 
a cellulose wall that contains a large sap fi lled vacuole.

To better understand the anatomy of the tissues, botanists group plant tissues into three main 
systems: the dermal, the vascular, and the ground system. As described below, each of them 
performs multiple vital functions, but not all of them provide structural support.

Vital functions of the tissues4.1.1 
The dermal system•  is the outer epidermis and is analogous to our skin (Fig. 2). It consists 
of a layer of tightly packed cells that protect plant organs. The cells line internal cavities 
and exposed surfaces. The dermal tissue, covered by a waxy coating, called cuticle, has the 
function of reducing water loss through evaporation. The pores, stomata, control the exchange 
of gases between the plant and its surroundings. Thus, the cuticle is a crucial protection, 
especially in dry summers.
The vascular system•  consists of vascular bundles grouped into two tissues: the Xylem and the 
phloem (Fig. 2). The former conveys water and minerals from roots into the shoots. The latter 
is in charge of transporting food from mature leaves to the roots, as well as to parts of the shoot 
system (e.g., developing leaves and fruits).
The ground system • is the parenchyma that governs the metabolic processes, beyond photosynthesis 
and food storage. Its cells are mainly made up of thin walled cells with large vacuoles.

Structural functions of the tissues4.1.2 
The parenchyma and the vascular bundles make up the bulk of the plant and are the tissues providing 
support. The former has cellulose cells and fi lls the space between the dermal and the vascular 
systems. When soaked with water, the cells are turgid, and this turgor allows the plant to keep 
upright. The latter, in particular the xylem tissue, has structural reinforcements along the Tracheary 
vessels. These fi bers are shaped in thick hollow tubes that provide higher stiffness and strength 
compared to a solid cylinder of the same mass. Reinforcement is obtained by constraining the 
vessels with spiral hoops of lignin arranged at a certain angle with the tube axis. The coils work as 
reinforcing belts that impede the radial deformation induced by water pressure on the tube walls.

In the shooting system, there are other structural tissues beyond parenchyma and vascular 
bundles. One is the collenchyma, which has thick, relatively fl exible cell walls, which are rich in 
pectic substances. Pectic confers ductility to the stalks and allows it to deform without failure. The 
other is the sclerenchyma that provides cells the elasticity, which allows the petiole to return to its 
original confi guration upon deformation.

THE STRUCTURAL FUNCTIONS OF THE PETIOLE5 
From a structural point of view, the petiole of the rhubarb (Fig. 1) resembles a cantilever beam 
subjected to bending and torsion. The former is induced by gravity loads, such as the blade weight, 
as well as other loads, like rain, snow, moisture, or the weight of an insect. The latter results from 
twisting triggered either by the aerodynamic wind action on the blade or by phototropism.



44 D. Pasini, Int. J. of Design & Nature and Ecodynamics. Vol. 3, No. 1 (2008)

The petiole morphological design is different than that of the stem. The structure is tapered 
lengthwise and has an asymmetric fl attened cross-section, often grooved at its top. Its mechanical 
properties are governed by factors involving its material and geometry. However, in contrast to 
engineering technology, nature does not make a clear distinction between them. The biomaterial 
is not homogeneous and its structural response is determined by several factors including cell’s 
material, the arrangement of the tissues, the way in which the fi bers are assembled, and the degree 
of interaction between them. The analysis of this paper examines the role of the geometry. A more 
comprehensive model that takes into account material anisotropy is left to future work.

The model is based on classic mechanics, although limitations exist for its application to the bio-
logical world. The material is assumed to be isotropic and homogeneous, and the geometry is 
assumed to satisfy Euler–Bernoulli beam theory. Shear deformations are not considered. The ideal 
case is a slender element of length L with Young’s modulus E and shear modulus G. The beam carries 
a uniform torsion T and bending M at one end and their corresponding equilibrium moments at the 
other free end. The bending and torsion stiffness for a cantilever beam of length L are respectively:
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where I and JT are the second moment of area and a torsional constant depending on the cross-
sectional shape. JT is the polar moment for circular shape shafts that do not experience warping; 
for non-cylindrical bars, whose cross-sectional planes do not remain plane after twisting, JT is a 
function of warping [39, 40].

Flexibility is a recurrent feature in plants enabling the impact of the loading and of the induced 
stress regime to be reduced. For the petiole, torsional compliancy is more important than fl exural 
fl exibility. A high torsional fl exibility is benefi cial because it can reduce the wind-drag up to 30%, 
as in the case of daffodils [3, 5]. Banana leaves and sedges are also easy to twist which allow them 
to swing around in wind rather than bending over [11, 12]. To measure the resistance to bending 
relative to twisting, we resort to the twist-to-bend ratio kb/kt, which from (1) and (2) is given by:
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For a given length, the geometry in (3) is described by I/JT and it is strongly dependent on the shape 
and size of a cross-section. The following section describes a scheme to characterize the shape 
properties of a cross-section for given structural requirements.

MODELING THE TWIST-TO-BEND RATIO OF THE PETIOLE6 
A method has been recently introduced to gain insight into the shape performance of engineering 
structures [21–23]. This scheme is reviewed in Section 6.1; it is extended in Section 6.2 and applied 
in Section 6.3 to the petiole analysis.

The methodology6.1 

The scheme is based on the idea that the geometry of a cross-section can be described by two distinct 
contributions. The fi rst is related to the size of the cross-section, the second to its shape. The size is 
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described by a rectangle with the main dimensions of the cross-section and it is referred to as the 
envelope D, as shown in Fig. 3. S represents the shape of the fi gure enclosed in D and its properties 
are dimensionless.

The idea of decoupling D from S leads to the defi nition of scalar operators that deal with the 
scaling and the shaping of a cross-section. The former is described by the envelope multiplicators, 
u and v, and the latter by the shape transformer yg.

Envelope multiplicators. If Bo and Ho are the width and height of a reference rectangle, the scaling 
relations of a generic envelope (B, H) relative to the reference are respectively ou B B b B= = and 

o ,v H H h H= = where b and h are the internal dimensions of a hollow cross-section (Table 1a).
Shape properties. The shape transformers are formulated by normalizing a geometric quantity, 

g, of a cross-section with the same geometric quantity, gD, of its envelope such that:
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For example, area, second moment of area about the x axis, and the torsional constant are 
geometric quantities that can be respectively expressed through relation (4) in terms of shape 
properties as:
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JT for circular shapes is exactly the polar moment of area J. For other shapes, this is not the case and 
replacing JT with J may involve an approximation of up to 15% [24]. In this work, the torsional 
constant JT is simplifi ed to the polar moment of area.

As shown in Fig. 2, the cross-section of the petiole rhubarb possesses one axis of symmetry. 
Table 1a summarizes the shape transformer expressions for three shapes that have a vertical axis of 
symmetry and that may evolve in shape with double symmetry. Here, we consider shapes that have 

Figure 3: Shape, S, and envelope, D, of different cross-sections.
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Table 1a: Shape transformers for shape families.
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Table 1a: (Continued)

The rectangle family The ellipse family The diamond family
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at least one axis of symmetry to avoid asymmetric bending. yA, yIxx and yJ have values that vary 
with respect to the area fi lling the envelope. When the material saturates the shape completely, yg for 
the resulting solid shape assumes an upper bound of the range, as shown in Table 1a and b; whereas 
for hollow shapes, it may decrease to zero, which corresponds to an empty shape.

The underlying principle of the shape transformers is that the scheme allows the decoupling of 
S from D. When an equation of mechanics is expressed by a product F × M × g, where F describes 
the problem specifi cations, M the material properties, and g an aspect of the geometry, then applying 
(5) enables its reformulation in terms of four factors as F × M × yg × gD. The advantages of this 
rationale have been illustrated in material and shape selection [21–23]. In the next section, 
shape transformers are formulated for super-elliptical shapes and are then applied to the structural 
analysis of the petiole in Section 6.3.

A shape classifi cation6.2 

Shape transformers have been used to defi ne families and classes of shapes, in a way similar to material 
classifi cation [22]. Here, we use the Lamé curves to defi ne families of shapes and to formulate the 
shape transformers. Lamé curves, also known as super-ellipses, have been used as a design tool for 
a variety of applications ranging from engineering to architecture and urban design [41].
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Table 1b: Range of shape transformers for shape classes.
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Lamé curves were named in 1818 by the French mathematician Gabriel Lamé (1795–1870) [25–32]. 
In their implicit form, these curves are given by

 
1

n n
x y
a b

+ =
 

(6)

where n can be any rational number, and a and b are positive real numbers describing the radii of 
the oval shape.

As shown in Fig. 4, Lamé curves are smooth curves whose profi le is determined by the exponent n. 
Nine types of Lamé curves can be defi ned with respect to the value of the exponent n. Two categories 
are defi ned for: n > 0, n < 0. Here, we resort to the subset of Lamé curves, where n is a 
positive integer. The case n = 2 yields an ordinary ellipse. As n increases beyond 2, the curve 
becomes a superellipse, fl atter and fl atter at the intersection with the x and y axes; it is a rectangle 
for n → ∞. A decrease of n below 2 yields hypoellipses, which increasingly resemble crosses 
with sharp corners at the x and y axes.

Table 1 illustrates three shape families that are obtained for n = 1, n = 2, and n → ∞, with 
a = B/2 and b = H/2. Each of these describes a shape concept and represents a family. Within 
a family, there are solid and hollow cross-sections independent of their size. Hollow shapes 
fall into a family if both the internal holes and external contours have the same exponent n of 
the Lamé curves. The classifi cation of family members into classes is determined by the scaling 
relation between the internal hole and the envelope. Three scaling modes applied to the internal 
contour are considered here: vertical (c = 1), proportional (c = d), and horizontal (d = 1).

Similar to materials, shapes of a family exhibit properties that fall into a particular range, 
as shown in Table 1b. For example, the ratio lI = yI/yA measures the lightweight effi ciency of 
a uniform and isotropic material distribution in design for bending stiffness. The higher the value of 
lI, the stiffer to bending as well lighter is the shape. The ratio lJ = yI/yA is another measure of the 

Figure 4: Superellipses within the envelope B × H. n governs the shape profi les.
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lightweight potential of a shape in torsional stiffness design (Table 1a and b). Table 1b shows that 
each class is governed by a specifi c range of lI and lJ. Although these ranges are theoretical, since 
they do not account for manufacturing constraints, shear and buckling failure requirements, they are 
helpful to compare shape concepts for preliminary shape optimization.

Shape transformers applied to the twist-to-bend ratio6.3 

To assess the impact of the shape transformers on the twist-to-bend ratio of a unit length petiole, we 
substitute yI and yJ, relations (5), in (3) such that:

 
∝ =

y
y

b D I

t T D J

k EIEI

k GJ GJ  

(7)

Expressions of yI, yJ and their ratio are given in Table 1a. For the class of proportionally scaled 
layers with double symmetry, yI and yJ are constant regardless of their scaling and volume fraction, 
as shown in Table 1b.

For this work, 20 petiole specimens of the Rheum rhabarbarum were collected in Montreal 
(Canada) and analyzed. They are similar in shape and their geometric properties are reported 
in Table 2. The lower curved part roughly resembles a semielliptical profi le, whereas the upper 
part is fl at or grooved.

To formulate the shape transformers of the petiole cross-sections, we consider half of the 
symmetric shapes modeled in Table 1a, as illustrated in Table 3a. There, in addition to the families 

Table 2: Geometry and shape transformers of specimen cross-sections.

Petiole 
cross-section

B (mm) Area 
(mm2) yA I (mm4) yI J (mm4) yJ lI lJ

I

J

y
yH (mm)

1 39 681 0.70 23444 0.47 76841 0.44 0.67 0.63 1.05

25

2 28 242 0.67 2247 0.46 12354 0.44 0.68 0.65 1.05

13

3 29 309 0.71 4112 0.50 17496 0.45 0.71 0.64 1.11

15

4 35 551 0.67 16777 0.45 47899 0.40 0.67 0.59 1.13

23

5 25 303 0.76 4484 0.53 13417 0.46 0.69 0.60 1.15

16

6 23 297 0.74 4976 0.48 11614 0.41 0.66 0.56 1.17

18

7 32 469 0.71 11526 0.49 33338 0.42 0.70 0.59 1.18

21
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Table 2: (Continued)

Petiole 
cross-section

B (mm) Area 
(mm2) yA I (mm4) yI J (mm4) yJ lI lJ

I

J

y
yH (mm)

8 30 365 0.74 5860 0.53 21425 0.45 0.72 0.60 1.19
16

9 27 326 0.77 4923 0.58 16444 0.48 0.75 0.62 1.20

16

10 29 443 0.75 10687 0.51 26578 0.43 0.69 0.57 1.21

21

11 33 628 0.75 24205 0.53 52478 0.43 0.71 0.58 1.23

26

12 30 523.1 0.78 16122 0.57 34685 0.44 0.74 0.57 1.30

22

13 31 603 0.72 23680 0.47 41106 0.35 0.65 0.49 1.34

27

14 30 498 0.77 14161 0.58 31047 0.43 0.75 0.56 1.35

21

15 27 301 0.71 4628 0.53 13436 0.39 0.75 0.55 1.36

16

16 26 343 0.70 7216 0.51 15425 0.37 0.72 0.53 1.37

19

17 26 295 0.75 4403 0.59 12746 0.43 0.79 0.57 1.37

15

18 26 361 0.79 7143 0.60 16348 0.43 0.77 0.55 1.39

18

19 21 272 0.81 4551 0.63 8708 0.45 0.79 0.55 1.42

16

20 24 321 0.77 6483 0.62 11737 0.38 0.80 0.50 1.60

17

obtained with n = 1, n = 2, and n → ∞, we chose n = 2.5 to match better the contours of the average 
petiole. Similar to Table 1b, Table 3b illustrates the ranges of the shape transformer ratios for 
bending resistance, torsional resistance and their ratio.

In the next section, the results are used to develop design maps that compare the petiole performance 
to that of common engineering cross-sections.
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Table 3b: Range of shape transformers for semi-superelliptical concepts.

yI

yA

lI =

0

0.25

0.50

0.75

1.00

1.25

0.84

1.14

0.35

2/3

0.87

1.16

0.26

0

0.25

0.50

0.75

1.50

2.00

0.84

1.14

2/3
0.81

1.62

1.00

1.25

1.75

α = 0°, α = 90° α = 0°, α = 90° α = 0°, α = 90° α = 0°, α = 90° 

0.87

1.16yJ

yA

lJ =

0

0.25

0.50

0.75

1.50 4/3

0.72

1.08
1.00

1.25

α = 0°, α = 90° α = 0°, α = 90° α = 0°, α = 90° α = 0°, α = 90° 

1.12

0.76
5/8

yI

yA



56 D. Pasini, Int. J. of Design & Nature and Ecodynamics. Vol. 3, No. 1 (2008)

EFFICIENCY MAPS7 
Shape effi ciency maps are presented here for pure bending stiffness, for torsion stiffness, and for 
the twist-to-bend ratio. As an example, the effi ciency of symmetric engineering cross-sections 
(Table 1a and b) is illustrated in Section 7.1. Then, in Section 7.2., we map the properties of 
asymmetric shapes derived from half Lamé curves (Table 3a and b) and compare them with those 
of the petiole specimen (Table 2).

Engineering design maps7.1 

Figure 5 illustrates an example of a shape effi ciency map. The fl exural and torsional stiffness, yI and 
yJT, are plotted versus yA using the expressions of Table 1a for shapes with symmetry along both 
horizontal and vertical directions. The continuous lines describe yI and yJT for hollow shapes where 

Figure 5:  Flexural and torsional stiffness map for engineering cross-sections with double 
symmetry.
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the hole is proportionally scaled to the envelope. Hidden lines represent yI for the vertically scaled 
layers class of the rectangle family.

The chart is based on the rationale explained in Section 6.1. The position of a cross-section 
is specifi ed by the coordinates [yA = m/(rlAD); yg = F/(MGD)] where in this case yg = yI, yJ 
and the parameters at the right hand side of yA and yg are constant for a given envelope. The slopes, 
lI and lJ, from the origin to a point on the segments are the shape effi ciency for bending 
and torsion stiffness respectively. Stiff and lightweight shapes, for example, lie on the top left of 
the chart.

When yI is considered in Fig. 5, then the fl exural stiffness of all cross-sectional shapes that 
partially fi ll the envelope, B × H, falls in the region bounded by the limit curves 1v and 2v. 
These boundaries (i.e., dashed curves) characterize the class of the vertically scaled layers for 
the rectangles family, when the material fraction varies within an envelope of any size. Outside 
this area, no cross-sectional shape of the rectangles or any other family exists. The limit curve 1v 
represents idealized I cross-sections, whereas the limit curve 2v describes idealized H cross-sections. 
The former describes conditions where the material layer is vertically scaled and effi ciently 
placed on the upper and lower surfaces of the cross-section. The latter refers to the scenario where 
the material layer is vertically scaled and placed closed to the neutral axis.

Whereas the dashed curves describe only bending stiffness, the continuous curves (i.e., curves 1p) 
characterize both the fl exural and torsional stiffness for hollow cross-sections of the proportionally 
scaled layers class. The thin curves describe the rectangles (n → ∞), the thicker ones represent 
the Lamé curve cross-sections for n = 1 (the diamonds), n = 2 (the ellipses), and n = 2.5 (the 
superellipses). As expected, the graph shows that for a given envelope, the higher the exponent n, 
the stiffer the cross-section (Table 1b). It is noted that whereas curves for the proportionally scaled 
layers of symmetric cross-section (continuous lines in Fig. 5) do not change with envelope scaling, 
those for other classes are dependent on the envelope size [24].

In the next section, such maps are used to contrast the performance of biological to ideal engineering 
shapes.

Nature design maps7.2 

In contrast to the cross-sections shown in Table 1a, the petiole shapes of the Rheum rhabarbarum 
specimen do not possess horizontal symmetry. For this reason, semi-super-elliptical shape have been 
modeled for n = 1, 2, 2.5, as shown in Table 3a. Their properties have been plotted in Figs 6–8 and 
compared with those of the petiole specimens (Table 2).

Flexural stiffness7.2.1 
Figure 6 illustrates the fl exural stiffness of both symmetric (Table 1a) and asymmetric (Table 3a) 
superellipses with respect to fraction and location of material within the envelope. For pure bending 
stiffness, the curves yI are invariant to any envelope scaling. This indicates that cross-section size 
changes have no impact on the fl exural stiffness shape properties.

Figure 6 shows that asymmetric semi-superelliptic shapes are stiffer than the corresponding 
symmetric concepts for a given envelope and material volume. For example, the hollow shapes with 
double symmetry obtained for n = 2 and n = 2.5 are stiffer than their respective half-Lamé curves 
concepts for yA < (yA)C and yA < (yA)D. But for yA > (yA)C and yA > (yA)D, the half-Lamé curves 
make a more economical use of material when they are almost solid. The diamonds (n = 1), however, 
can never be as stiff as the triangle (n = 1) for any value of yA. Here, the stiffness gain (FG) 
is maximum for yA = 0.5 (i.e., when the shapes are solid).



58 D. Pasini, Int. J. of Design & Nature and Ecodynamics. Vol. 3, No. 1 (2008)

Figure 6: Flexural stiffness curves for cross-sections with vertical axis symmetry and fl exural 
stiffness coordinates for petiole specimens (Table 2).
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Table 2 shows that lI ranges from 0.65 to 0.79 for petiole specimens. Their shapes are 
almost solid with a top profi le that is slightly grooved or fl attened with rounded corners. Compared 
to hollow ideal cross-sections, the solid shapes of the petiole perform relatively well, as shown by 
the plot of their properties in Fig. 6.

Torsional stiffness7.2.2 
Unlike yI, yJ for asymmetric shapes depends on the ratio of the envelope size. The plot of yJ vs. yA 
(Table 3a) in Fig. 6 shows that heightwise scaling makes asymmetric shapes stiffer in torsion. The 
deeper the envelopes, the stiffer the half-superellipses. For example, the semi-ellipses class stretched 
widthwise to the limit a → 0 and the ellipses regardless of a are equally stiff and described by the 
same curves. But if the former is scaled heightwise with a > 0, then their torsional stiffness increases 
and shifts upward until the upper bound (i.e., curve asy, a → 90). This effect does not occur for 
double symmetric shapes of the proportionally scaled layers class.

The shaded regions describe the effect of scaling on the shape properties for torsional stiffness. 
Within them, lies the torsional stiffness of each asymmetric shape concept for any envelope scaling 
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0 < a < 90. Thus, widthwise stretching increases torsional compliance until the low bound (a → 0) 
of each concept.

Plotting the shape transformers of the specimens in Fig. 6 (Table 2) allows gaining an insight 
into the torsional compliancy of the petiole cross-section shape. The petiole cross-sections are 
asymmetric and stretched widthwise. Their effi ciency in torsion resistance is very low. Their 
range of lJ between 0.49 and 0.64 (Table 3b) shows that the petiole design can ease the leave 
sway in wind.

Flexural vs. torsional stiffness7.2.3 
The aim of this section is to develop a map of yI versus yJ to gain insight into the shape properties 
that make a cross-section more capable to twist than bend under given forces.

In Fig. 8, expressions given in Tables 1a and 2a are used to illustrate the relation yI = f(yJ). On 
this map, the index yI/yJ is the slope of the line between the origin and a point on the curve. For a 
given envelope, the steeper the slope, the easier it is to twist the shape. In the shaded region above 
the quadrant bisector, there are shapes that twist before bending and thus have yI/yJ greater than 
one. Below, lie shapes that are more fl exible under bending load.

Figure 7: Torsional stiffness described by curves for cross-sections with vertical symmetry and by 
points for petiole specimens (Table 2).
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The bisector describes different shape concepts that are equally rigid in torsion and bending. The 
bisector represents not only the three shape families with double symmetry obtained for n = 1, 2, 2.5 
(Table 1b) for proportionally scaled layers, but also the corresponding asymmetric shape concepts. These 
are half superellipses for the ideal case where the cross-section width is stretched to its limit (a → 90).

For a prescribed yI, it is possible to lower the torsional stiffness without losing resistance to 
bending. This effect is shown in Fig. 8 by scaling the semi-super-ellipses. If scaling is applied to a 
solid shape with a → 90 (e.g., points A, D, G) (Fig. 8), then fl attening the cross-section widthwise 
until a → 0 (e.g., B, E, H) increases the twist-to-bend ratio. For 0 < a < 90, the shape properties 
will fall respectively between A and B, D and E, G and H.

Figure 8: Twist-to-bend ratio curves and points for cross-sections with vertical symmetry and for 
petiole specimens respectively.
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Among the semi-superellipses with prescribed envelopes, the triangle has the best potential 
to maximize yI/yJ, as shown by the ranges indicated in Table 3b. This trend is also evident in 
Fig. 8 by comparing the shaded areas ABC, DEF and GHO. The size of these regions decreases with 
the increase of the power, n, of the Lamé curves. This shows that widthwise stretching is always 
benefi cial to maximize yI/yJ for solid and hollow triangles. On the contrary, stretching superellipses 
with n = 2.5 and n = 2 widthwise is benefi cial only when yJ > (yJ)C and yJ > (yJ)F (i.e., when the 
cross-section is almost solid).

Table 2 reports the twist-to-bend ratio of the petiole specimens ranked in ascending order in terms 
of yI/yJ. For all specimens, yI/yJ > 1 and their range is between 1.05 and 1.60. Such cross-sections 
are stretched widthwise, their heights are smaller than widths, and they have asymmetric shapes with 
a grooved or fl at top that resemble superellipses with n = 2.5. The plot of their shape transformers in 
Fig. 8 shows that the specimens have high yI/yJ that lower the torsional stiffness of the structure 
without compromising their defl ection resistance to gravity loading. This fl exibility allows the leaves 
to bunch, orient themselves towards downwind, and reduce wind drag.

As described in previous sections, the structural performance of the petiole is governed by 
material and geometry. In this preliminary analysis, the former has been considered uniform and the 
latter has been modeled only at the meso-scale. The maps presented here help to gain insight into 
geometric features, such as cross-section shapes, symmetry, and scaling. A similar approach can 
be applied to model the microstructure at the tissue level and to develop maps that illustrate how 
Nature tailors Young’s modulus and Shear modulus at the micro-scale. This will be the focus of 
future investigations.

The study of biological structures is crucial to the development of novel biomimetic technology. 
Unlocking the mechanisms used by plants to grow their fl exible and resistant structures is a pathway 
to discover new advanced engineering materials. Current engineering technology fails to fully exploit 
the structural and functional integration found in plants at each length scale, from cell formation to 
tissue specialization. Further progress in bio-inspired material design requires biology, engineering 
modeling and structural optimization with the ultimate goal of developing compliant materials and 
structures based on natural principles of self-assembly, anisotropic growth, cell division, and shape 
optimization.

CONCLUSIONS8 
This paper has examined the shape performance of the leaf petiole of Rheum rhabarbarum plants. 
The twist-to-bend ratio has been used to assess the effi ciency of the cross-section shape in minimizing 
wind drag as well as in preventing the sag under gravity loads. The shape properties of 20 specimens 
have been contrasted to those of ideal engineering cross-sections. To best fi t the petiole specimen, the 
ideal shapes have been chosen with double and single axes symmetry and with different superellipse 
profi les.

Effi ciency maps have been developed to gain a visual insight into shape and size effi ciency 
of cross-sections. The charts have shown that the characteristic grooved non-circular fl attened 
cross-section eases the twist of the petiole without lowering its fl exural stiffness. On the contrary, 
circular and elliptical shapes, which are commonly found in other plant organs (e.g., the stem), 
offer an equal resistance to bending and torsion, and thus are not the best to meet the structural 
requirements of the petioles.

The modeling approach and the effi ciency maps developed in this paper can be extended to examine 
the material microstructure and illustrate the impact that material anisotropy has on the twist-to-
bend ratio. This work is a fi rst step to the development of biomimetic compliant materials and 
structures.



62 D. Pasini, Int. J. of Design & Nature and Ecodynamics. Vol. 3, No. 1 (2008)

ACKNOWLEDGMENTS
The author thanks Mr. Andrew Laughton and Mr. Adenariwo Adepoju, third year undergraduates 
of Mechanical Engineering at McGill University, for their generous help in fi nalizing the tables 
and pictures.

NOMENCLATURE
A cross sectional area (m2)
B width (m)
b internal width (m)
D cross-section envelope dimensions (b, h)
E Young’s modulus (GPa)
F functional requirements
g geometric quantity, such as the second moment of area
G Shear Modulus (GPa)
h internal height (m)
H height (m)
Ixx second moment of area about cross-section horizontal axis (m4)
kb, kt linear (N/m) and torsional (N m/rad) stiffness requirement
JT Torsional constant (m4)
lI, lJ shape lightweight effi ciency parameters for bending and torsion stiffness design
L length (m)
m mass (mg)
M bending moment (N m)
n integer of Lamé curves
S shape of the cross-section
T twisting moment (N m)
r material density (mg/m3)
yg shape transformer of a given geometric quantity g
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