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“SMALLER SPECIMENS OF THE SAME PROPERTIES ARE 
LESS VULNERABLE THAN LARGER ONES”: A GENERAL 

RULE THAT EMERGES FROM “TAIL STATISTICS”

G. ROSENHOUSE
Faculty of Civil Engineering, Technion, Haifa, Israel.

ABSTRACT
In reality, values of a specimen (its strength, etc.) have certain probability distributions. Deterministic values in 
reality are also uncertain and have error margins. Thus, averages and standard deviations are used for estimates 
in engineering and nature, and major factors in estimations are based on the nominal value and the upper and 
lower allowed (survival, design, standards) limits. Observations beyond those limits indicate mostly a failure. 
However, probability distributions in nature and engineering show a relatively long “tail” beyond the limits of 
several standard deviations. The values of deviations from the mean (or target) can be very large, which can 
endanger the whole specimen. The phenomena at the “tail” domain (and not in the domain up to the limits) 
are the main reason for the fact that larger specimens are generally more vulnerable than smaller ones, having 
the same mean and probability distribution. The present paper extends this concept to relevant phenomena 
in nature and in technology.
Keywords: distribution tails, probability distributions, size effect, statistics, strength of specimen, upper 
standard limit.

INTRODUCTION1 
Stephen Jay Gould [1] has used a-symmetrical probability distributions to show that most of 
the durable living creatures in the cosmos are relatively simple and robust microorganisms. 
Evolution of those small entities leads into complex forms (such as the appearance of Homo sapiens) 
as a result of accidental (random) conditions that do not allow the almost everlasting durability 
that characterizes germs. One reason, as explained in Rosenhouse [2], is that larger bodies include 
statistically larger faults than smaller ones, no matter what kind of distribution is involved in 
each case, but, provided the distribution has a “tail” (or “tails”) behind the mean which is (are) not 
truncated.

This principle is in accordance with the observation of Leonardo da Vinci (1452 – 1519) [3] who 
described in his notebook (in the Codex Atlanticus) measurements of the strength of wires of various 
lengths. He found that the shorter the wire, the stronger it will be, since wires are one-dimensional 
(and since wires of his time were of low quality and due to larger fl aws in the longer wire). This 
result has led to the weakest link concept, where a wire in a discrete presentation by N chain 
elements has a smallest strength distribution like that of a sample of size N (see the note at the end 
of the paper). When the weakest link of the chain is overloaded by the ultimate stress σcr, and breaks, 
the whole chain fails.

If p1(σcr) is the probability distribution of the ultimate strength of a unit length wire (up to σcr,max) 
and p(D) is probability of distribution of the diameter D (up to Dmax), then the probability that the 
unit length wire would resist a certain axial force F0, is:
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The relation of the result of eqn. (1) with that of a wire of 10 units of length is:

 
k

k 1ˆ ˆp p .=  
(2)

If k = 10, then for 1p̂ 0.9= , 10
10p̂ 0.9 0.35.= = It means that 1p̂ 0.9= is about 2.5 times stronger 

than 10p̂ 0.35= [4]. The Leonardo size effect was validated by other researchers, such as Lloyd 
(1830 – see [5, 6]), Le Blank (1839) and Parsons [7].

The statistical theory of extreme value helps in formulating the problem for a given failure prob-
ability density distribution function p(σ) for each element, with a cumulative distribution P(σ) – basic 
distribution. Then, respectively, the distribution and the cumulative distribution of failure probability 
of the Leonardo chain (wire) are:
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(3)

Now, in three dimensions if, for example, a stone is hit during a comminution process, it will be 
cut at its weakest surfaces. As an illustration, we consider the case that two parts are obtained out of 
the whole stone then each should be stronger than the whole stone (because the weakest weakness 
surface disappeared). If we go on and break each of the remaining two stones, each into two parts, 
following the same reasoning, the resulting four smaller stones will be stronger than the original two 
stones of the former stage and so on (see Fig. 1). Each stage of comminution reduces surfaces of 
weakest weaknesses, and thus leads to new smaller parts that are growing in strength at each stage. 
This process can go down even to the atomic scale. Research results have led to many specifi c 
theoretical and experimental results about comminution, some of which are detailed by Beke [8]. 
This mechanism is due to statistical reasons, assuming that specimens have lower minimal local 
strength with increase of volume. In this context, Fisher and Tippett [9] developed a mathematical 
distribution, which followed research by Tippett about the length effect on the strength of long 
fi bers. It is known as Weibull distribution after Weibull [10] who developed independently an extreme 
value distribution of the same shape to describe the size effect on fatigue fracture of metals. Since 
then and up to now, many modifi cations appeared in the literature. In fact, the theory of size effect 
in quasi-brittle materials has led to only one possible distribution. Frécht [11] presented the stability 
postulate of extreme value statistics to verify that large size asymptotic behavior conforms to strength 
distribution of quasi-brittle materials, which was solved mathematically.

Frécht has shown that the survival probability fN(σ) for a structure of a very large N must satisfy 
asymptotically the functional equation, which depends on the strength σ:

 { }N
N N N Nf( ) f(a b ), a ,b functions of the size N.σ = σ + −

 
(4)

Fisher and Tippett [9] in their extreme value statistics paper about textile fi bers have proven that only 
three distributions can satisfy the recursive functional relation for f(σ): Frécht, Gumbel and Weibull distri-
butions. Since Frécht and Gumbel distributions allow for negative values of the argument and have no 
threshold, which prevents their use for strength of materials – the only remaining one is that of Weibull.

This last argument is important, for example, in numerical analysis by the stochastic fi nite element 
method [12]. So, for this specifi c problem, only one type of distribution could be used. For other cases, 
other distributions are suitable. Yet, for the argument of the present paper, which presents a general 
approach and suits many kinds of phenomena, the choice of distributions is practically unlimited.
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In this context, one should not miss the achievement of Galileo Galilei (1564–1642) who 
introduced to the size effect the scaling approach [13]. It followed his observation that larger boats 
are more vulnerable than the small ones. “The reason why they employed stocks, scaffolding 
and bracing of larger dimensions for launching a big vessel than they do for a small one; and he 
answered that they did this in order to avoid the danger of the ship parting under its own heavy 
weight [vasta mole], a danger to which small boats are not subject.”

Galileo Galilei assumed a similar size effect on strength to structures and living organisms – the 
larger is weaker if the other properties of the bodies, but size are kept, since the smaller are more 
robust. They are stronger in proportion to the size (see the “fi rst day” dialogue in the book).

Another point that should be noticed in scaling is the strength of structures built of thin elements. 
In this case, the stress is proportional also to its two dimensional cross sections. Now, if we increase 
each dimension of a body by factor ten, then its volume will increase by factor 1000 and so its 
weight, since it is three dimensional, but its cross sections by 100. Hence, the weight/stress factor 
will increase by 10, which makes the larger structure more vulnerable.

One conclusion up to now is that it is wrong to use small specimen strength results for larger 
specimens [14].

THE THEORY FOR NARTURAL POLYNOMIAL DISTRIBUTIONS2 
Ollendorff et al. [15] have used for wake-up analysis a distribution of sensitivity (wake up) data 
to events x (noise levels) of different strengths that exist naturally in common population of sample 

Figure 1: Illustration of a gradual comminution of a stone at its surfaces of weakness.
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size N (total number of noise events (see the note at the end of the paper). Such data appear currently 
in many publications [16]. The differential change of a distribution of a discrete form is:
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Np(x) ,

x
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∆  
(5a)

and for a continuous distribution,
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with p(x) as the probability density and N as the sample size. The probability density can be defi ned 
generally in mathematical terms of the series:
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A and B are constants to be solved by curve fi tting based on measured data.
Yet, this natural pattern can be biased to some extent by external effects, and truncated by upper 

and lower limits. To prove the argument of the paper, the following Gaussian distribution is applied, 
but other distributions such as exponential, lognormal, Poisson, Rayleigh as well as extreme value 
theory distributions that deal with very low probability of size and frequency (Frécht, Gombel and 
Weibull for heavy, medium and short tails, respectively) can be used to show the argument of the 
paper, which is general in its consequences.

The discrete Gaussian distribution is:
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xi is a certain chosen value i of x, m is the mean or nominal value and σ is the standard deviation. 
It means dependence on two parameters, m and σ only and being symmetrical. This kind of curve 
usually leads to a better curve fi tting at the average, and stronger deviation from measured values 
at the “tails” of the curve (see Fig. 2). However, since we deal with a comparison between a large 
and a small specimen of a similar distribution, this fact does not affect our proof, which suits 
any “tail.”

The correlation between the series form (eqn. (6)) and the Gaussian distribution (eqn. (7)) is 
obtained by the following expansion:
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(8)

An important point is that the averages of the size of the faults in the small and the large speci-
mens should be the same as well as the shape of the distribution, to avoid different conditions 
that may cause a shift and distortion of the whole distribution of the specimen and prevent an 
objective test.

The percentage of a population that falls within a given standard deviation can be calculated. 
Representative results are given in the second row in the following Table 1.
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Figure 2:  A continuous Gaussian probability density distribution, p(x), and distributions in the small (1) 
and the large specimens (2).
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Table 1:  The relations between standard deviation, population percentage and defective parts per 
million in a sample.

Standard 
deviation

±0.01σ ±1σ ±2σ ±3σ ±4σ ±4.5σ 
(long term)

±6σ 
(short term)

Population 
percentage

0.8 68.27 95.45 99.73 99.9937 99.99966 99.9999998

DPMO 317300 45500 2700 63 3.4 0.002

DPMO – defects per million opportunities.

A COMPARISON BETWEEN THE STRENGTH OF SMALL AND LARGE SPECIMENS 3 
OF THE SAME PROPERTIES

If we move from the probability distribution curve to the distribution of the faults in the specimen, 
the probability density of the ith specimen is pi(x), with i = 1 for the smaller specimen and i = 2 for 
the larger specimen. The number of events in each specimen is Ni, i = 1, 2 for the smaller and larger 
specimens, respectively, and the distributions in the specimens become:

 i i i 1 2y N p (x)dx, i 1, 2, N N .= = �  (9)

For the two specimens: m1 = m2 = m and p1(x) = p2(x).
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Let x1 be the strength of events of the smaller specimen, and x2 be the strength of events of the 
larger specimen with the same number of events in the plot of yi. Assuming a Gaussian distribution 
of yi yields the expression that links between x1 and x2. The condition for that is:

 2 2 1 1N p(x )dx N p(x )dx.=  
(10)

Hence,
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Some more algebra leads to the solution:
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It is deduced from eqn. (11) that x2 � x1 for N2 � N1 for the same number of events on the distri-
bution curves of yi. At the far end of the distribution “tail” (Fig. 2), where the distribution of the 
small specimen practically vanishes, events in the larger specimen still exist. Those additional faults 
are extremely defective and dangerous. They are the reason for the larger specimen being weaker 
than the smaller one.

The “size effect” has been connected to strength of materials theory. Marriotte (1620–1684) [17] 
investigated pressurized vessels to fi nd the critical strain (stress), in parallel to Hooke [18]. What is 
more relevant here is the Griffi th [19] fracture theory about the critical stress required for crack 
propagation in a brittle material. Kim et al. [14] have shown that larger specimens involve on the 
extreme, statistically larger faults in the right tail (where the left tail practically did not exist). On 
the other hand, Griffi th has shown that for an elliptical crack of half length (radius), a, and specifi c 
energy, γ, the critical stress becomes:
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(12)

Since the critical stress is inversely proportional to “a,” the larger specimen is weaker.
This rule can carry a more abstract and general form. Since our statement is useful for a variety of 

distribution “tails”, the distribution in Fig. 2 has both left and right tails and usually one is the “good 
guy” (the “positive tail”) and the second is the “bad guy” (the “negative tail”). By investigating 
how many medals each participating country is expected to win in the Olympic Summer Games, 
Beranrd and Busse [20] developed after other researchers such as Ball [21] and Johnson and Ali [22] 
a prediction theory. They determined two parameters that infl uence mostly the results, namely popu-
lation size, which gives a better pool, and gross national product per capita (GNP) or gross domestic 
product (GDP). It should be noted that beyond a certain optimal value, an increase in GDP yields 
a negative infl uence [23]. Organizational ability is another parameter and so on. However, most 
important is the fact that larger populations have chances to win under the same conditions more 
medals than smaller populations. On the other hand, following Tolstoy, Turchin’s [24] controversial 
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concept claims that imperial nations are doomed to collapse because as size increases, they lose their 
united social corporation. He borrows from the 14th century Ibn Khaldun the concept of “asabiya” 
(group feeling) that weakens as the empire grows. Turchin adds to his model a statis tical theory 
that leads to life cycles of imperial nations. Hence, these last illustrations show “size effects” at the 
opposite distribution “tails” of populations.

A THEORY FOR IMPROVED PRODUCTS4 
The quality of items produced in industry can be changed by what we call total quality control, as 
Feigenbaum [25] defi ned: “Total quality control is an effective system for integrating the quality 
development, quality maintenance and quality improvement for integrating quality development, 
quality maintenance, and quality improvement efforts of the various groups in an organization so as 
to enable production and service at most economical levels which allow full customer satisfaction.” 
This statement leads directly to the approach of “design for six sigma,” including its many versions [26]. 
Originally, the method was formulated by Bill Smith from Motorola in the 1980s, following the 1920s 
methodologies (e.g., Shewhart, Deming, Juran) Generally, design for six sigma means a short 
process that leads to six standard deviations between the mean (target) and the nearest specifi cation 
limit (USL – upper specifi cation limit, and LSL – lower specifi cation limit). For long processes, it is 
taken as 4.5σ + an expected 1.5σ drift (see Table 1). It means 0.002 defects per million (practically 
no failure) in a short process and 3.4 defects per million in the long process.

The following abstract example shows how the effect of increase of specimen size can be used 
to fi nd strength of materials (by acoustic emission), agricultural products testing, comminution 
of stones, environmental state evaluation (as by increasing the size of an airport, size of nations, 
and so on).

Given the following data: m = 100 units, σ = 20 units, x1 = 115 units, N2/N1 = 4, with the question: 
What is the value of x2 for the same number of events per dx or ∆x?

Using eqn. (11) for x1 – m = 15 units results in:

 

2
2

2

x m 2 20 ln(4) 225,

x 100 36.52 136.52 units.

− = × +
= + =  

This is a remarkable increase in the severity of events or defects as compared with x1. Now, if x2 has 
to satisfy the six-sigma criterion, σ should be restricted to the maximum:

 

36.52ˆ 6.08 units.
6

σ = =
 

This can be achieved in industry by improving production procedures. In nature, evolution does it at 
a relatively low rate.

Let us return now to the sample size effect (see the note at the end of the paper). As the sample 
size increases, the standard deviation error estimate has much slower convergence than that of the 
mean. It means that defects rate estimation is strongly infl uenced by the uncertainty in standard 
deviation, which means that the analysis of the number of defects per million opportunities leads to 
an additional error.

It is possible to include in our argument another category of distributions, which involves “long 
tails.” It means observations of high amplitudes followed by a long tail of observations of low amplitude. 
Those include the power law, Zipf law, Pareto and general Levy distributions, etc. [27]. A great 
part of the total number of events is included in the long tail distributions. In such distributions, 
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“the winner takes all” and the 80/20 rule (20% of the population holds 80% of the total wealth) 
govern. This means that more diversity and freedom in choice make inequality more extreme. This 
is not the whole story, since, the internet and the on line marketing deal with the importance of the 
tail of the distribution, which can constitute in such cases a major share of the given volume of 
objects (see Fig. 3). Consequently, the term “long tail” refers mostly to distributions that have thicker 
tails compared with that of the exponential distribution.

This modern view about statistics can be useful commercially, as, for example, online bookstores, 
know very well that the “long tail” of less popular or rare books is quantitatively not less important 
than the small number of best sellers [28], which makes the strategies of on line sales different from 
those of the classical shops.

Some people claim the long tail philosophy emerged at the late 1700s. Dave Free [29] introduced 
Eli Whitney as the original entrepreneur of the “long tail” due to the development of interchangeable 
parts invention. This invention had an important infl uence on the American production and 
marketing. At that time, also Honoré Blanc (1778) and others promoted the use interchangeable 
parts. The long tail approach (in fact, Zipf’s law [30] with indication of the base and the rest of 
the tail as separate entities) was introduced by Anderson [31, 32].

Kilkki [33] formulated a model for such long tail, with parameters that can be obtained by curve 
fi tting of real data. The variables and parameters of this specifi c mathematical model are the rank – x 
(the location of the item in the best sellers list, which includes a certain amount of copies; the best 
seller is ranked as x = 1); the number of objects that cover half of the whole volume – N50; the factor 
that defi nes the form of the function – α (has to be less than 1); the total volume – β. Finally, the 
mathematical form of the model is:

 

50

F(x) .
N

1x

α
β

=
  +    

(13)

Figure 3: The “long tail” split into three parts.
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As an example to the Amazon sales Kilkki assumes: N50 = 400,000, α = 0.48, β = 1.2. The form of 
the real tail can be determined by the difference between two consecutive values of the cumulative 
distribution, which is: F(x) – F(x – 1).

The “tail statistics” that is presented here differs from the popular “long tail statistics” since in the 
long tail statistics is interested in the volume of the tail or parts of it, while the tail statistics, as it 
appears here is interested in the severity of events at the distant parts of the “negative tail,” since 
the horizontal scale in the tail statistics measures the severity of single events (and in some cases 
even one event can do the difference). However, in both kinds of statistics, a careful study of the 
distribution tail statistics becomes a major issue.

As in the “long tail statistics,” also the regular tail shown in Fig. 2, for example, can be split into 
several parts. See Fig. 3 for the long tail statistics, where Kilkki recommends splitting the tail 
domains for the “long tail statistics” at:

 
2 /3 2 4 /3

bm 50 me bm 50x N ; x x N .= = =  
(14)

The “tail statistics” can be split in a different way. Then, after division, events at the end of the tail 
can be considered most dangerous, while those at the base of the “negative tail” can be considered 
not too risky (depends on the case) and between these extremes exist the cases of a certain risk, but 
not the maximum. This argument is also true for the “positive tail,” where we fi nd the “gold medal 
winners.”

For certain reasons, the tail can drop at relatively high rank numbers – a situation that does not 
appear theoretically. However, in the long tail practice, there is no sales potential beyond a certain 
high level rank. Nielsen [34] has shown this effect by using a log–log scale.

In the classical tail statistics, this situation occurs at the upper limit of the effect of the individual 
event.

CONCLUSION5 
In spite of the fact that the average and the distribution of properties can be the same for large and 
small specimens of the same material and conditions, it is shown in this paper that specimens of 
larger size include more defects that are more dangerous than those in smaller specimens. It means 
that the larger specimen will be at higher risk. This is the main reason why larger specimens are more 
vulnerable, even if we do not add to it the scaling effect.

The explanation provided here can be used in a large variety of statistical problems, where 
the distributions include a mean band that includes most of the observations and decaying distribution 
tails.

It has to be noted here that in contrast to the “long tail statistics,” the “tail statistics” involves 
usually a distribution of two tails (see Figs. 2 and 3) and the effect of the lower tail (at low 
x numbers), which is opposite to the effect the upper tail (compared to the average) depends on 
the kind of problem.

In contrast to defects, if we try to select, for example, medal winners for two populations 
under the same conditions, it is most probable that larger population will provide them, with 
some statistical exceptions that depend on other factors.

NOTE
Sample size is the number of observations in a sample ([35], p. 16). If we test, for example, a metal 
specimen by acoustic emission the sample size of a larger specimen will be larger than the sample 
size of a smaller one under the same conditions. The same will happen if we sample populations 
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using a sample size proportional to their magnitude. One possibility is to consider the whole popu-
lation in each case. Otherwise, the sampling should obey relevant statistical rules. As an example, 
an incidental simple sampling of a certain population is defi ned as a collection of observations which 
is independent of that population.
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