
 
 
 

 
 

 
 

 

1. INTRODUCTION 

It is a widespread practice and recommended in a large 

part of the literature on the subject to perform the calculation 

of the average heat transfer coefficients in single phase media 

using the expressions of Dittus-Boelter [13] Or the improved 

version of Sieder - Tate [11], provided that it is in the 

presence of a turbulent flow and that it circulates through the 

interior of straight ducts. This procedure is a necessity for 

many project calculations or evaluation of industrial facilities. 

However, these expressions have a high dispersion value of 

the obtained results to the real values of the systems analyzed, 

being in the literature consulted errors of the order of 

%25 .  

In the 1960s, [1], at the Moscow Institute of Energy, an 

equation was obtained, which was derived basically from 

experimental point adjustments, which were later 

implemented at the Analogy of Prandtl. The equation 

obtained is known in the specialized literature as Petukhov 

equation, in recognition of the leader of the research group 

that developed this important research for the science of the 

term convective transference. This equation reduces the 

absolute mean error as a function of the number of Prandtl, so 

that: 
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The Petukhov equation is described by the following 

expression: 

 

 Pr101

63,0

Re

900
07,1

1Pr
8

7,12

PrRe
8

3

2



























































C

f
C

f

Nu

N

F

P





                                       

(1) 

 

where N is a constant that depends on the thermal process 

being evaluated, it will be equal to -0.11 for heating and -0.25 

for cooling. 

The Darcy’s friction factor in equation (1) is determined 

by the correlation of Filonenko, which is given by: 
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Expression (1) is just to: 
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ABSTRACT  

 
This paper presents the results of the continuity of the research process carried out in the center of environmental and 

energy studies that belonged to the Technical Sciences Faculty of the University of Matanzas related to obtaining non - 

dimensional models for the determination of the average coefficient of heat transfer in turbulent flows inside smooth 

and straight tubes. The research consists of a regression analysis performed between the Reynolds number, the Prandtl 

number and the friction factor, using for this purpose experimental data reported by different authors, establishing a 

comparison with the equations of Petukhov and Gnielinsky, exact and referenced in the known literature, obtaining 

that there are no significant differences, due to the high similarity between the results obtained from these models in 

the studied range of the work parameters, although the divergence between the experimental values and those obtained 

by the proposed model is slightly smaller. 
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The results obtained using the expression (1), although the 

application is more laborious, have a lower dispersion, and, 

therefore, a smaller safety margin in the design calculations. 

A major drawback of expression (1) is its applicability range, 

since this is only valid for a fully developed turbulent flow 

regime, 104Re, so that the facilities that the flow operate in 

the transition zone, that is, in the interval 2,3⸱103Re 104, 

non- applicable. This problem was later solved by Gnielinsky 

[15], who modified equation (1) by adjusting it to 

experimental data that do take into account the transition 

flow zone. This expression is represented as: 
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The notations used in equation (3) are identical to those 

used in expression (1).  

Expression (3) is just to: 
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Another expression that provides a good approximation is 

Sandall’s equation [4], which provides very good results in 

the calculation of the average coefficient of convection heat 

transfer in confined turbulent flows, provided that the 

evaluated flow is a liquid of medium viscosity (water) with 

an average error of the order of 8%. In the specialized 

literature a more numerous group of expressions of empirical 

or semi empirical character can be found, this is caused 

mainly by the stochastic nature of the turbulent flow, what 

makes impossible the development of expressions of 

analytical character and it becomes necessary to resort to the 

Experiments and to the theory of dimensional analysis to 

later formulate by means of statistical methods calculus 

expressions that allow to obtain of approximated form the 

value of the average coefficient of heat transfer. 

2. MATERIALS AND EMPLOYED METHODS 

2.1 Methods of dimensional analysis and procedures. 

 

The heat transfer film coefficient in a turbulent flow 

regime is associated to a series of variables independent of 

the flow to be analyzed, which are: 

1- The density 

2- Dynamic viscosity 

3- Specific heat at constant pressure 

4- The thermal conductivity 

In addition, it will depend on the conditions of the 

environment in which the fluid flow moves, they are: 

1- The diameter of the conduit 

2- The velocity of the fluid mass inside the duct 

3- The length of the conduit 

4- The grain size of equivalent sand of the duct wall, (if you 

want to take into account the roughness of the pipe) 

In the turbulent flow, unlike the laminar regime, there is no 

ordered pattern of flow lines, therefore the effect of viscous 

forces is greater than the gravitational forces, which 

generates that the effect of the latter is Normally neglected in 

the analyzes. 

From the above explained and through the implementation 

of the techniques of the theory of dimensional analysis can 

obtain the relationship between these variables to find out 

how to group the experimental data that are arranged for its 

subsequent correlation in an empirical relationship that 

Allows predicting the value of the heat transfer film 

coefficient. This dependency will then be a function of 

several dependent variables, as shown in the following 

expression: 
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Applying the inter national system of units the following 

system of notations is obtained: 
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Substituting the notations shown in (5) into the functional 

dependence given in (4) above is a summary of units 

involved in the dimensional analysis. This summary will be 

shown in Table 1 

 

Table 1. Summaries of units involved in dimensional 

analysis 

 
Physical 

property 

Measurement 

Unit 

Dimensional 

Unit 

  
CS

kg

Cm

W
0302

  13  MT  

V  sm  1LT  

d  m  L  

  3mkg  3ML  

  smkgsPa 
 

11  LMT  

Cp  
CS

m

Ckg

J
02

2

0
  122  TL  

  
CS

kgm

Cm

W
030

  13  MLT  

l  m  L  

e  m  L  

 

By using the techniques of dimensional analysis [2], we 

conclude that the average coefficient of heat transfer in 

turbulent regime can be obtained by the appropriate 

combination of dimensionless groups, as well As constants 

and exponents that affect these dimensionless groups. 

2.2 Application of the Prandtl analogy to the formulation of 

the new model 

Prandtl, [13] in his analysis to deduce his analogy, 

assumed that the flow is divided into two zones, a viscous 

zone and a turbulent zone. In his analysis he makes the 

additional assumption that turbulent diffusivities predominate 
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in the turbulent zone. Without showing here the original 

deductions provided by Prandtl, the conclusive expression of 

his analogy will be given directly, which is described by the 

following formula: 
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Von Karman [14] showed that equation (6) is the reference 

or starting point for the formulation of an expression to 

determine the coefficient of heat transfer in confined 

turbulent flows. In order to do this, he extended the work of 

his predecessors even further by extending the analogy of 

Prandlt, dividing the field of flow into three different 

sublayers, which are: 

1- The viscous sublayer 

2- The transition sublayer 

3- The turbulent sub-layer 

 

Table 1. Comparison among equation (6) and some experimental data for horizontal, vertical and inclined tubes 

 

Source 
Number  

of Data 
Fluid l/d Re. 103 Pr μP/μF 

 

Deviation  

Percentage 

(%) 

I’lin (1951) 48 Air 
41 

62 

7 

60 
0.7 

- 

 

5.3 

4.5 

Volkov (1966) 120 Air 
48 

370 

12.5 

370 
0.7 

 

 

6,2 

1,5 

Petukhov (1963) 140 Air 39 
15 

280 
0.7 

 

 

4,4 

2,1 

Sukomiel (1962) 

44 Helium 
20 

50 

9 

40 
0,67 

 

 

7,1 

-2,3 

67 Air 
2 

60 

320 

720 
0.7 

 

 

4,7 

-3,7 

148 Water 
6 

64 

12 

540 

0,9 

9,4 

0.19 

0.77 

8,2 

-7,9 

Eckert (1964) 93 Water 
10 

30 

13 

110 

1,5 

8 

  0.19 

0.72 

11,6 

-6,7 

Sabersky (1963) 

33 Water 
48 

61 

120 

160 

1.2 

5.9 

0.24 

0.86 

9,7 

-3.5 

52 Water 46.2 150 
1.2 

5.7 

0.35 

0.98 

10,2 

1,1 

Yakolev  (1960) 39 Water 
70 

90 

19 

140 

2 

12 

0.21 

1.15 

11,1 

-9,6 

Sterman-Petukhov (1970) 

41 
Transformer  

Oil 

89 

125 

3,4 

160 

34.9 

5200 

1.2 

42.2 

12,6 

-3,9 

29 glycerine 
89 

125 

10 

100 

430 

12500 

0,025 

16 

13,1 

9,9 

49 MC Oil 
66 

88 

5 

44 

34 

140 

1.6 

38 

12,5 

-6,3 

27 
Transformer  

Oil 
88 

5.4 

14 

39 

61 

1.2 

8.6 

9,2 

-5,4 

Kreith (1947) 20 Butyl Alcohol  38 
42 

78 

23 

30 

0.08 

0.45 

11,8 

9,1 

Ykolev et al. (1965) 50 Water 
60 

80 

19 

123 

2 

12 

0.19 

0.78 

6.1 

-4.8 

Humbble (1993) 

113 Air 
30 

120 

7 

6900 
0.7 

 

 

5,3 

2,2 

181 Hydrogen 
43 

67 

6 

8200 

0,66 

0,71 

 

 

8,8 

-4,8 

Kirilov (1967) 25 Nitrogen  
100 

138 

6 

160 

0,74 

0,69 

 

 

7,4 

-2,1 

Efimok (1969) 19 
Carbon 

Dioxide 

77 

206 

14 

660 

2.4 

16.8 
 

-2.4 

-8.8 

Yan-Lin (1999) 91 Water 
2 

420 

4 

250 

0,94 

11 

0.19 

0.96 

9,8 

1,9 

Tarashmova (2001) 23 Water 
20 

410 

400 

2500 

0,94 

11 

0.19 

0.96 

7,4 

0,7 

Karkalala (2012) 44 Water 
18 

51 

1200 

2800 

1.2 

5.9 

0.24 

0.96 

9,9 

-1.5 

Jung et al. (2008) 71 
Transformer  

Oil 

19 

150 

2.8 

110 

34.9 

4800 

1.2 

28 

13,6 

-8,9 

For all sources above 1567  
2,0 

420 

2.8 

8200 

0,67 

12500 

0.025 

42.2 
 

 

Von Karman made suppositions similar to those of his mentor Prandtl on the relative magnitudes of the molecular 
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and turbulent diffusivity of the heat and the variations in the 

amount of movement in the viscous sublayer and in the 

turbulent zone, also incorporating the effects of the sublayer 

Of transition, considering that the molecular and turbulent 

diffusivity of this sublayer, were of the same order of 

magnitude. This last deduction was used by Petukhov [2] 

when deducing the exponent of the present term in the 

denominator that takes into account the variations of the 

molecular diffusivity, that is, the number of Pr, finding that 

this exponent is equal to 2/3. A disadvantage that presents the 

equations of Petukhov and Gnielisky is the range of 

applicability, since for high Reynolds numbers, is for, these 

models are not valid. 

A great number of experimental papers on heat transfer in 

turbulent pipe flow have been published. Unfortunately, in 

many cases measurement accuracy was not high; therefore, 

heat transfer coefficients obtained experimentally often 

contain substantial errors which are difficult to estimate. 

Little experimental data of rather high accuracy have been 

reported in many works. Mainly heat transfer for air and 

water flow has been measured, i.e., approximately over a 

range of 0.7-10 for Prandtl numbers. 

This was the cause that encouraged the author of the 

present to try to obtain a model that was as accurate as the 

previous equations, while having a greater range of 

applicability. 

After the generalization of many experimental data 

generated by various authors, [13], among others, a total of 

17468 experimental points Which have a total of 1567 points 

that are included in the non-validated zone of the models 

already mentioned above. The experimental values used in 

this work are summarized in table A.1. 

A convenient adjustment to expression (6) facilitates that 

these experimental points not contemplated in the validity 

zone of the model can be considered now, extending the 

applicability range of the same. 

The new proposed equation responds to the following 

formulation: 
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The notations used in equation (7) are already known, as 

well as the values of the exponents N, for cases of heating or 

cooling, which were given prior to exposing the relation (1). 

In equation (7) constants A, B C and D will depend on the 

dimensionless number of Reynolds, establishing two 

intervals of dependencies, the first interval for the transition 

zone, 2,3⸱103  Re  104

 
and the second intervals to
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To the first intervals 43 10Re103,2   It is true that: 

 

 Re,6322,22006,00272,0

104,
196,3

Re
;44,75

2

56,0

LogYYYD

CLogBA













 
 

While for the second interval
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Equation (7) is just to: 
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It can already be verified a priori that the new expression is 

an equation that encompasses a greater range of validity, only 

need to be as precise as expressions (1) and (2). To do this, a 

correlation of values obtained from the use of (7) and 

available experimental data was performed, fragmenting the 

applicability domain into 10 validity subdomains, and then 

determining the mean error%, as well as that part of the total 

values in the analyzed subinterval correlates below the mean 

error. The results obtained are summarized in Tables 2 and 3 

for the first and second interval respectively. 

 

Table 2. Correlation adjustments with the experimental data 

for the first range of values available for equation (7) 
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Table 3. Correlations with experimental data for the second 

range of values available for equation (7) 
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As can be seen in Table 2 for the first validity range, 

2300<Re<104, The expression correlates with an average 

error of 10.74%, in 86.42% of the available experimental data, 

so that the obtained adjustment is considered excellent, very 

similar to those obtained by using equation (2), Which should 

be clarified that it cannot be used for Pr> 2000. It is also 

observed that for values of Pr <200, the mean error obtained 
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is 6.96% for 91.42% of the available data, which brings it 

numerically to the 5% reported by Petukhov and Gnielinsky. 

In Table 3 for the second range of validity 104≤Re<8,2⸱106, 

the expression correlates with an average error of 11.23%, in 

84.02% of the available experimental data, so the adjustment 

obtained is considered to be excellent, very similar to those 

obtained by using equation (2), which should be clarified that 

it cannot be used for Pr> 2000. It is also observed that for 

values of Pr <200, the mean error obtained is 6.24% for 

89.36% of the available data, which brings it numerically to 

the 5% reported by Petukhov and Gnielinsky 

As shown in Tables 2 and 3, it has just been shown that 

equation (7) obtained in the present work is as accurate as the 

most accurate dimensionless models, the Petukhov equation 

(1) and the Gnielisky equation (2), allowing the former a 

wider range of application since it encompasses a larger 

region of validity, while the results obtained, despite slightly 

sacrificing the accuracy of the results by approximately 1%. 

However, the latter is justified considering that no known 

model has such a wide range of validity. 

Figures 1 and 2 showed a graphical representation of the 

dependence between the hundredth part of the absolute mean 

error and the decimal logarithm of the product of the 

dimensionless numbers of Reynolds and Prandtl with the 

friction factor. In figure 1 it is provided for the interval
 

  5,6PrRe5  fLog  , while in the figure Are provided for 

the interval 3,5≤Log (Re Pr f)<5. 

 

 
 

Figure 1. Graphical representation of absolute mean errors of 

the new model 

 

 
 

Figure 2. Graphical representations of absolute mean errors 

of the new model 

 

 

4. CONCLUSIONS 

A model has been obtained for the determination of the 

mean heat transfer coefficient in the turbulent regime through 

the interior of straight tubes, which has a slightly lower 

adjustment than the most precise dimensionless models, the 

Petukhov and Gnielinsky equations, However the model 

obtained has a wider range of application, covering almost 

double the values that the models that were taken as reference 

patterns, and that are also not covered by any known relation 

of calculation, reason why the use is recommended of the 

new expression in obtaining the values of the average 

coefficients of heat transfer by convection inside straight 

tubes through which turbulent flow circulates, either in 

transition state or total turbulence 

This equation is given by expression (7) and responds to 

the following formulation: 
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NOMENCLATURE 

 

G Mass flux, kg. m-2.s-1 

Cp Specific heat, J. kg-1.K-1 

d Inner equivalent tube diameter, m 

g gravitational acceleration, m.s-2 

Re Reynolds number 

Nu Nusselt number for single-phase 

Pr Prandtl number  

P Fluid pressure, kg. m-1.s-2 

TP Wall temperature, 0C 

N Numbers of experimental points. 

V Fluid Velocity, m.s-1 
e     Equivalent grain size of rough 

 

Greek symbols 

 

 

 Single-phase heat transfer coefficient, kg.m-2.s-3.K-1 

µ Dynamic viscosity, kg. m-1.s-1 

µP Dynamic viscosity at the wall mean temperature , kg. 

m-1.s-1 

µF Dynamic viscosity at the fluid mean temperature, kg. 

m-1.s-1 

λ Fluid thermal conductivity, W.m-1. K-1 

f  Darcy’s friction factor 

l
 

Duct’s length, m 

Subscripts 

 

Eq. Equation 
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