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Some models of the artificial neural network (ANN) are introduced in the control system 

of a Nanofiltration / Reverse Osmosis desalination in order to manage the operation and 

to improve the overall efficiency. This study is carried out on a small-scale prototype of 

NF/RO seawater desalinate++on plant installed in Saudi Arabia and allowing it to operate 

with input power. The ANN models are developed to generate the permeate flow rate and 

recovery after taking into account the temperature, conductivity and pressure of the feed 

water and the available electrical power. The utilized ANN models after training proved 

their ability to control the operating of the unit with success. In addition, the statistical 

tests revealed minimum values of RMSE and MAE. A dimensioning of a photovoltaic 

system to power the plant is also carried out. 

Keywords: 

semiconductors, solar materials, PV cells, 

artificial neural network, nano-filtration, 

NF/SWRO, seawater 

1. INTRODUCTION

By 2050, the global emissions from desalination plants 

using fossil fuels are expected to increase until reaching 400 

million tons of carbon equivalent per year. So, the renewable 

energy is relatively inexpensive, as a promising solution to the 

conventional energy by fossil fuel; it has no negative 

environmental impact [1]. Among the different sources of 

renewable energies, the solar energy is the lowest exploited 

around the world. The Middle East region and North Africa 

receive important solar irradiation every day. On the other 

hand, most of these regions are rich in brackish or seawater, 

but suffer from a lack of sufficient fresh water, which makes 

them ideal for desalination by solar energy [2]. The 

photovoltaic energy system is widely used in the SWRO plant. 

This association is probably because the photovoltaic energy 

is the first to have conquered the market. Due to its simplicity, 

the combination of solar photovoltaic (PV) with reverse 

osmosis has received recently a considerable interest. 

Numerous PV-RO plants have been installed around the world, 

in developing countries especially in remote areas suffering 

from fresh water shortage [3-5]. The mathematical modelling 

of photovoltaic systems is necessary to characterize their 

behaviour, to establish a direct relationship between the 

different components of the system, and to define a 

relationship between the energy produced by the photovoltaic 

system and the power requirement of the desalination plant. 

Many researchers focused in the last decades on the 

optimization of the energy consumption of desalination 

systems [6]. The desalination RO process performance is often 

limited due to the fouling. However, further complexity may 

be obtained by including NF with the RO desalination system. 

Currently, the investigation and application of nanofiltration 

NF in the pre-treatment stage has considered a breakthrough 

for the desalination process. Many advantages may be offered 

by NF such as the low costs of operation and its maintenance, 

considerable flux, etc. [7, 8]. In addition, the combined NF 

with RO may ensure similar advantages as the two types kinds 

of membranes [9, 10]. Ghermandi et al. [11] discussed the 

benefits of using NF membranes to produce the irrigation 

water, based on the simulated performance of a solar-assisted 

RO installation in the Valley of Arava. They argued that the 

system would reduce the Specific Energy Consumption (SEC) 

by 40% compared to the OI plant, reduce groundwater supply 

by 34% and increase the total biomass production from 

irrigated crops by 18%. Ben Meriem et al. [12] studied the 

possibilities of integrating photovoltaic panels in the brackish 

water desalination configuration with RO/NF process for the 

production of drinking water. The integrated system (RO / NF 

/ PV) replaces the conventional RO / PV system. This is an 

experimental installation for a pilot-scale desalination plant 

comprising RO and NF modules operating with photovoltaic 

panels. The results obtained were discussed and compared 

with the performance of each system of RO and the NF 

modules separately. Shen et al. [13] assessed the performance 

of an NF / RO system powered by solar energy for the 

treatment of brackish water. Although it gives good results, the 

use of nanofiltration in seawater desalination processes 

remains limited. Today, the application of ANN for modelling 

has been greatly increased in various fields of engineering 

sciences. Among the methods of linear regression and 

correlation multivariable widely studied in the 70th, the neural 
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approach allowed the establishment of a model from non-

linear relations between the inputs and outputs of the process 

[14-19].  

Unfortunately, there are fewer works mentioned in the 

literature related to the modelling of ANNs and the efficiency 

of NF/RO desalination plants (Figure 1). 

In the current work, the increasing needs for the water 

quality and energy consumption pushed us to investigate the 

potential of artificial neural network (ANN) model to estimate 

the efficiency of a NF/RO-PV seawater desalination system 

and to optimize the consumption energy of the system through 

the schema shown in Figure 2.  

The schematic diagram of the main pillars of modelling 

dimensions was considered as an ideal structure for this work. 

 

 
 

Figure 1. Number of published works on ‘NF/SWRO’ and 

‘ANN’, from 1996 to 2020 [20] 

 

 
 

Figure 2. Schematic diagram of NF/SWRO-PV modelling dimensions 

 

 

2. MATERIALS AND METHODS 

 

2.1 Experimental data 

 

The Saline Water Desalination Research Institute (SWRI) 

[21] provided the experimental NF/SWRO desalination plant 

data was utilized for building the ANN model. A pilot plant 

testing in which the nano-filtration membrane NF product is 

sent to the RO unit and its brine reject is utilized as a make-up 

for the MSF plant. The NF unit received pre-treated seawater 

with a temperature feed varying in 24 - 34℃ and was operated 

at a pressure about 23.54 bar and at a recovery of 53-57%.  
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In the SWRO unit receiving the NF product as feed, the 

pressure was fixed at 58.86 bar and the temperature varied in 

the range 23 – 34℃, where the average permeates recovery of 

the 1st and 2nd vessels were 30 and 21%, respectively. But, the 

overall recovery the SWRO system was about 45%.  

Figure 3 shows the diagram of the hybrid NF/RO 

desalination pilot system. The variation of the operating 

parameters of nanofiltration membrane (the pressure, 

temperature, conductivity, and the flow) as a function of time 

will be considered as inputs of the ANN model. However, the 

permeate conductivity, flow rate and recovery of the SWRO 

will be the outputs (Figure 4). 

The values of the standard deviations (STD), mean (Mean), 

minimum (Min), and maximum (Max) of the used database are 

shown in Table 1. 

 
 

 
 

Figure 3. Hybrid NF/RO seawater desalination pilot plant system [21] 
 

 
(a)                                                                                 (b) 

 
(c)                                                                                  (d) 

 

Figure 4. Experimental data of performance parameters of hybrid system NF/RO 
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2.2 Neural network modelling 
 

Artificial Neural Networks (ANNs) provides an appropriate 

control strategy for the controlled process [22, 23]. The feed 

forward neural network (FFNN) is one of the most used neural 

network paradigms in modelling a wide range of nonlinear 

systems, such as the biological and chemical engineering 

processes [24, 25]. It has been utilized here with forecasting 

horizon and supervised learning. The artificial neural network 

(ANN) algorithm is used to simulate the permeate flow rate 

and overall recovery (i.e., target variables). Sixty experiments 

were conducted for different values of the following 

parameters (Table 1): the time (h), temperature (℃), pressure 

(bar), feed conductivity, feed flow rate and power (kW). 

Figure 5 presents the schematic diagram of an artificial 

neural network (ANN) where six input neurons were set at the 

input layer. The permeate recovery, permeate conductivity, 

and permeate flow were determined for the two output neurons 

taken at the output layer. 

A neural network with eight hidden layers selected 

experimentally has given satisfactory results for solving the 

present problem. While training data of very small size may 

prevent learning. Each node within a given layer is connected 

to all the nodes of the previous layer. A formal neuron is 

characterized by Eqns. (1) and (2): 

 

𝑥𝑖 = 𝑓(𝑍𝑗) (1) 

 

𝑍𝑗 = 𝑓ℎ(∑ 𝑤𝐿
𝑗𝑖𝑥𝑖 + 𝑏ℎ𝑗

𝑛
𝑖=1 ) (2) 

 

j = 1, 2,.., m.  

As highlighted by Eq. (3), the obtained value is propagated 

through outgoing connections to the neurons of the succeeding 

layer, where it undergoes the same process. For example, the 

outputs Zi of the hidden layer fed to neuron k of the output 

layer gives the output Sk: 

 

𝑆𝑘 = 𝑓0(∑𝑤ℎ
𝑗𝑘𝑧𝑖 + 𝑏0𝑘

𝑚

𝑖=1

) (3) 

 

k = 1, 2,.., l. l is the number of neurons in output layer. 

 

Table 1. Description of the desalination pilot data 

 
Variable category Parameters Symbol Unit STD Mean Min Max 

Inputs 

Time t h 385.92 680.317 25.197 1343.830 

pressure p Bar 2.821 27.079 23.315 31.233 

temperature T °C 2.7422 29.063 23.968 33.789 

Power P kW 0.2661 8.992 8.239 9.487 

Feed flow rate Jf m3/h 0.088 7.748 7.586 8.014 

Feed conductivity δf μS/cm 535.010 60519.500 59851.060 61872.340 

Outputs 
Permeate flow rate Jp m3/h 0.042 1.406 1.288 1.483 

Recovery y % 1.018 44.308 41.093 45.951 

 

 
 

Figure 5. Schematic diagram of an artificial neural network model 
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By combining Eqns. (3) and (2), the relation between the 

output Sk and the inputs xi of the ANN is obtained: 

 

𝑆𝑘 = 𝑓0(∑ 𝑤ℎ
𝑗𝑘𝑓ℎ(∑ 𝑤𝑙

𝑗𝑖𝑥𝑖 + 𝑏ℎ𝑗
𝑛
𝑖=1 ) + 𝑏0𝑘

𝑚
𝑖=1 ) (4) 

 

In this investigation, the log sigmoid (logsig) was utilized 

as transfer functions in the hidden layer (Eq. (5)) and the 

tangent sigmoid transfer function (Tansig) was used in the 

output layer (Eq. (6)). However, the (logsig) function, 

produces output in the range of -1 to +1 and the tansig transfer 

function produces outputs in the range of -∞ to +∞ [26]. 

 

𝑍(𝑥) =
1

1 + 𝑒−𝑥
 (5) 

 

𝑍(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (6) 

 

The normalization is needed if the ranges of the input data 

are different. All the training data were normalized in this 

research between -1 and 1, by using Eq. (7): 

 

𝑥𝑛𝑜𝑟𝑚 =
2(𝑥𝑖 −min⁡(𝑥i⁡))

𝑚𝑎𝑥⁡(𝑥𝑖) − min⁡(𝑥𝑖)
− 1 (7) 

 

here xi in the input or output variable x, xmax and xmin are equal 

to the maximum and minimum values noted for each variable 

of x. In order to determine the ANN system’s model, a 

program of the neural network is performed using Matlab 

(R2016b version). 

 

2.3 Statistical analysis 

 

The statistical parameters of the optimal NN model and 

performance prediction are the correlation coefficient R, the 

root mean square error RMSE (square root of the average sum 

of squares) and mean absolute error (MAE) [27] calculated for 

the predicted permeate flow rate and recovery. The equations 

are expressed as:  

 

𝑅 =
∑ (𝑦𝑒𝑥𝑝𝑖 − 𝑦𝑒𝑥𝑝̅̅ ̅̅ ̅)(𝑦𝑐𝑎𝑙 − 𝑦𝑐𝑎𝑙̅̅ ̅̅ ̅)

√∑ (𝑦𝑒𝑥𝑝 − 𝑦𝑒𝑥𝑝̅̅ ̅̅ ̅)2𝑖 √∑ (𝑦𝑐𝑎𝑙 − 𝑦𝑐𝑎𝑙̅̅ ̅̅ ̅)2𝑖

 (8) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑒𝑥𝑝 − 𝑦𝑐𝑎𝑙)

𝑁

𝑖=1

2

 (9) 

 

𝑀𝐴𝐸 =
1

𝑁
∑|(𝑌𝑒𝑥𝑝 − 𝑌𝑐𝑎𝑙)|

𝑁

𝑖=1

 (10) 

 

Here N is the number of experiments, yexp is the 

experimental value for each parameter, ycal is the predicted 

value of the ith experiment calculate by the model for each 

parameter. 
exp

y  and
cal

y  are the arithmetic mean of 

experimental and calculated values, respectively. Several 

techniques are available today, some of them may be used with 

minor modifications, while others are not suitable for this 

specific type of data set.  

 

3. RESULTS AND DISCUSSION 

 
3.1 Model performance 

 

The network was trained in this study using all 60 data 

points. The number of iterations for finding an adequate ANN 

model is 504 and the MSE is 2.9503×10-10.  

 

 
 

Figure 6. Diagram of MSE as function the number of 

iteration (epochs) 

 

 
(a) 

 
(b) 

 

Figure 7. Experimental and predicted values from ANN 

model of (a) recovery and (b) permeate flow rate, 

respectively 
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Table 2. Linear regression vectors [linear equation]: 

𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑎𝑦𝑒𝑥𝑝 + ⁡𝑏, 𝑅, 𝑅𝑀𝑆𝐸,𝑀𝐴𝐸. 

 

 Permeate Flow rate (𝒎𝟑/𝒉) Recovery (%) 

𝒂 0.9999 1.0005 

𝒃 1.7125 10-4 -0.0225 

𝑹 0.9992 0.9999 

𝑹𝑴𝑺𝑬 0.0409 0.00048 

𝑴𝑨𝑬 0.0213 3.7 10-4 

 

 
(a) 

 
(b) 

 

Figure 8. Simulation of experimental and predicted values of 

(a) recovery and (b) permeate flow rate, respectively 

 

Figure 6 shows the performance of the trained ANN model 

where it is observed in first that the error decreases in few 

iterations (fast training) after it is stabilized until the 

convergence to the maximum number of epochs. The trained 

network was then simulated by feeding it with all of the data 

used for training. Figure 7 shows the predictive values of the 

network versus experimental values. An attempt is conducted 

to predict the recovery and permeate flow rate of the hybrid 

NF/RO process for seawater desalination treatment, aiming to 

enhance the water quality and reduce the production costs. 

Through the analysis, Table 2 summarizes the model 

statistical parameters obtained by using the MATLAB 

function “postreg”, [a, b, R] = [1.0005, -0.0225, 0.9992] for 

the overall recovery; [a, b, R] = [0.999, -1.7125 10-4, 0.9999] 

for the permeate flow rate. 

The results given by the ANN code are similar to the 

experimental data. The optimal structure corresponds to the 

correlation coefficient for NN 6-24-2 are 0.999935 and 

0.99921, respectively for the permeate flow fate and overall 

recovery. A small means absolute error (MAE) and root mean 

square (RMSE) for the permeate flow fate and overall 

recovery. 

The comparison between the experimental values and those 

calculated by ANN is presented in Figure 8, where an 

acceptable agreement is observed. 

 

3.2 Mathematical equations of ANN developed model 

 

The weights and bias of the optimized ANN models are 

given in Table 3, where WI is the input and hidden layer 

connection weight matrix, WH is the hidden and output layer 

connection weight matrix, bH is the hidden neurons bias and b° 

is the output neuron bias. 

From the optimized ANN, we can express recovery (y) and 

permeate flow rate (Jp) by a mathematical model that 

incorporates all inputs 𝑥𝑖 (time, temperature, pressure, 

conductivity feed, flow rate feed and power is given by Eq. 

(11). Knowing that fh is the Logsig sigmoid transfer function 

used in hidden layer: 

 

𝑍𝑗 = 𝑓ℎ [∑𝑤𝑗𝑖𝑥𝑖 + 𝑏1
ℎ

6

𝑖=1

]

=
1

1 + exp(−∑ 𝑤𝑗𝑖𝑥𝑖 + 𝑏1
ℎ6

𝑖=1 )
 

(11) 

 

j = 1, 2, …, 24. The instance outputs Zj of the hidden layer are 

the output y and Jp (Eq. (12)). The combination of equations 

(12) and (13) leads to the mathematical formula for recovery 

and permeate flow rate taking into account all the inputs xi (Eq. 

(13)). 

These mathematical formulas were used for the calculation 

of the recovery and permeate flow rate, and to predict the 

performance of the NF-SWRO hybrid seawater treatment. The 

prediction was achieved by including important relevant 

features that may be easily applied in controlling the 

desalination systems. 

 

 

4. MODELLING DIMENSIONS AND OPTIMIZATION 

OF PHOTOVOLTAIC/DESALINATION SYSTEM 

 

Combining the desalination with renewable energies is a 

way to reduce the energy consumption in seawater 

desalination processes [28]. The energy expenditure can 

exceed the half of the cost of operation for each process [29, 

30]. The overall cost including the production of water and the 

energy consumption of these systems strongly depends on the 

specific parameters of each technology. The energy 

requirements of the NF-SWRO hybrid membrane process are 

significantly lower than those of the conventional SWRO 

process. 

 

𝑦⁡, 𝐽𝑝 = 𝑓0[∑ 𝑤𝑗𝑖
𝐻𝑍𝑖 + 𝑏2

024
𝑖=1 ]==

exp(∑ 𝑤𝑗𝑖
𝐻𝑍𝑖+𝑏2

024
𝑖=1 )−exp⁡(−∑ 𝑤𝑗𝑖

𝐻𝑍𝑖+𝑏2
024

𝑖=1 )

exp(∑ 𝑤𝑗𝑖
𝐻𝑍𝑖+𝑏2

024
𝑖=1 )+exp⁡(−∑ 𝑤𝑗𝑖

𝐻𝑍𝑖+𝑏2
024

𝑖=1 )
 (12) 
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𝑦⁡, 𝐽𝑝

=

exp (∑ 𝑤𝑗𝑖
𝐻(

1

1 + exp(−∑ 𝑤𝑗𝑖𝑥𝑖 + 𝑏1
ℎ6

𝑖=1 )
) + 𝑏2

024
𝑖=1 ) − exp⁡(−∑ 𝑤𝑗𝑖

𝐻(
1

1 + exp(−∑ 𝑤𝑗𝑖𝑥𝑖 + 𝑏1
ℎ6

𝑖=1 )
) + 𝑏2

024
𝑖=1 )

exp (∑ 𝑤𝑗𝑖
𝐻(

1

1 + exp(−∑ 𝑤𝑗𝑖𝑥𝑖 + 𝑏1
ℎ6

𝑖=1 )
) + 𝑏2

024
𝑖=1 ) + exp⁡(−∑ 𝑤𝑗𝑖

𝐻(
1

1 + exp(−∑ 𝑤𝑗𝑖𝑥𝑖 + 𝑏1
ℎ6

𝑖=1 )
) + 𝑏2

024
𝑖=1 )

 
(13) 

 

Table 3. Weights and bias of the optimized NN model 

 
Input and hidden layer connections Hidden layer and output connections 

𝑾𝑰 
𝒃𝟏
𝑯 

𝑾𝑯 
𝒃𝟐
𝟎 

𝒕⁡(𝒉) 𝑷(𝒃𝒂𝒓) 𝑻(°𝑪) 𝑱𝒇(𝒎𝟑/𝒉) 𝜹𝒇(𝝁𝒔/𝒄𝒎) 𝑷(𝒌𝑾) 𝒚 𝑱𝒑(𝒎
𝟑/𝒉) 

-0.00022 -0.00049 -0.24238 -0.24452 -0.18530 0.00134 3.18595 -0.00493 4.93906  

-0.00013 0.00007 -0.43411 1.49330 -0.44865 -0.00066 -2.99437 -0.00130 4.11969  

0.00002 0.00029 1.16235 1.64378 -0.25506 -0.00104 -0.60247 0.00008 -0.00312  

0.00034 -0.00005 2.55987 0.20847 0.23936 -0.00107 -0.54756 0.00391 -0.00037  

0.00016 0.00033 -1.03864 1.37116 0.22075 0.00010 1.18852 4.83447 -3.43846  

0.00009 0.00053 2.91488 1.89925 -0.99727 -0.00086 1.87594 -0.00513 -0.00680  

1.98547 -0.00046 -0.69812 0.00063 -1.15051 0.00323 -1.44032 -3.57866 0.00834  

2.33267 -0.00026 -0.10148 0.00179 0.01060 -0.00093 0.63800 0.22776 -4.93655  

1.54040 -0.00003 1.19866 0.00085 2.13683 -0.00169 -1.87212 -0.42809 4.16520  

-0.77783 0.00037 1.60591 -0.00297 0.14919 -0.00089 -1.43780 -0.00063 0.17560  

0.70447 0.00021 -0.23998 -0.00009 2.20851 -0.00033 2.04408 0.00291 0.00278  

-0.50803 -0.00001 -0.52796 0.00438 -2.66601 -0.00298 -0.37095 -5.33116 5.37838  

0.00181 0.00150 -0.00034 0.01512 -0.00001 -2.84990 -2.79447 0.00262 0.05018 -1.92521 

-0.00124 -0.00011 -0.00001 -0.06365 -0.00095 -0.82540 -0.27675 -0.00823 -0.04616 1.88754 

-0.00094 -0.00013 0.00018 0.41999 -0.00018 -0.98313 -4.56674 0.00171 0.00062  

0.00020 -0.00150 0.00038 -0.24045 0.00026 0.72625 -5.17365 -0.00397 -0.00377  

-0.00022 0.00000 -0.00013 -0.06758 0.00015 0.59016 -0.84911 -0.02195 -0.33057  

-0.00291 -0.00013 0.00012 3.53384 -0.00127 -0.64655 1.34461 0.00150 -0.01339  

1.91034 0.00049 0.00181 6.22952 0.38450 -0.82229 -2.00470 -0.05718 0.00758  

-0.83535 -0.00061 -0.00120 1.37660 0.32993 -1.05713 1.25119 4.12923 0.04144  

-1.76895 -0.00051 -0.00064 1.05375 0.09944 0.88303 0.16639 -1.59597 -0.10482  

0.91538 0.00021 0.00192 -2.52199 -0.41873 -2.88922 0.07895 -0.00673 -1.70748  

1.72058 -0.00006 -0.00083 0.93180 -0.20638 -1.59650 4.59911 -0.00325 -0.01000  

0.18731 -0.00145 -0.00564 -0.42074 -0.91719 1.12731 0.04285 0.17993 -0.19405  

 

4.1 Dimensioning of the photovoltaic system for a 

desalination plant 

 

The photovoltaic systems are used today in small-scale 

desalination plants. The photovoltaic is needed for the system 

power input. The PV module is expected to operate directly 

with the NF/SWRO during eight hours per day (Figure 9). The 

elements of the PV system are: a PV module, an electric 

inverter unit (convert DC to AC), a distribution cabinet, cables, 

and an array power 150 Watt/array with 24V. 

 

 
 

Figure 9. NF/RO/PV seawater desalination pilot plant 

system 

4.1.1 Meteorological data and location of the operation 

A seawater desalination pilot without an energy recovery 

system installed in Saudi Arabia was composed of NF 

membrane for pre-treatment and RO in post-treatment. The 

plant location is suitable to inspect the model. The average 

ambient temperature is around 11-35℃ along the year and a 

maximum of solar irradiation is recorded in June with a value 

close to 7 kWh/m2/day and a min in December. The 

meteorological operating conditions of the plant location are 

provided in Figure 10 [31]. 

 

 
 

Figure 10. Monthly average of solar radiation [31] 

 

4.1.2 Estimated energy requirement of the desalination plant  

The values of NF and SWRO operating parameters utilized 

in the operation of the dual NF-SWRO unit are given in Table 

4. 
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Table 4. NF/SWRO unit parameters 

 

Parameters NF/SWRO 

Recovery 45% 

Feed pressure (bar) 58.89 

Feed flow rate (m3/h) 8.014 

Permeate flow rate (m3/h) 1.406 

 

The energy requirements during the seawater desalination 

by NF-SWRO membrane processes were calculated for the 

part desalination only from the general equation [32]:  

 

𝑆𝐸𝐶 =
𝑄𝑓 ∗ 𝐻𝑓 ∗ 𝑔

366 ∗ 𝑄𝑃 ∗ 𝑒
 (14) 

 

The specific energy consumption equation of the NF-

SWRO process is presented as: 

 

𝑆𝐸𝐶𝑑𝑒𝑠,(𝑁𝐹−𝑆𝑊𝑅𝑂) = 

(𝑄𝑓(𝑁𝐹) ∗ 𝐻𝑓(𝑁𝐹) ∗ 𝑔) + (𝑄𝑓(𝑆𝑊𝑅𝑂)
∗ 𝐻𝑓(𝑆𝑊𝑅𝑂)

∗ 𝑔)

(366 ∗ 𝑄𝑃(𝐹𝑖𝑛𝑎𝑙) ∗ 𝑒)
 

(15) 

 

where, the sec in kWh/m3, Qf and Qp are the feed and permeate 

flow rate (m3/h), respectively. Hf is the pressure head (m), g is 

the specific gravity of seawater (1.03), and e is the pump 

efficiency (≈0.85). The SEC of the dual NF-SWRO, process 

was calculated from Eq. (17) and the power of the plant is 

calculated for a pumping time per day (5 hours) as follow: 

 

𝑃𝐷𝐸𝑆 = 𝑠𝑒𝑐 × 𝑄𝑝 × 5ℎ/𝑑𝑎𝑦 (16) 

 

4.1.3 Modelling of the PV modules 

The energy consumption of the desalination unit, which is 

determined based on the values of the flow rate and feed 

pressure, is used to model the photovoltaic PV. In this 

configuration, the PV system is connected to a battery unit to 

drive the NF-SWRO desalination unit. 

 

▪ Battery Storage: 

In this configuration, PV is coupled to batteries whose state 

of charge and discharge control the operation of the desalting 

system. The nominal capacity calculation of the battery takes 

into account the needs and the days of autonomy, as well as 

the depth of discharge. The batteries capacity is determined as: 

 

C =
NaEC
UPd

 (17) 

 

where, Pd is the discharge depth (0.7 to 0.8), EG is the 

consumption energy, U is the DC system voltage (volt), and Na 

is the battery autonomy days (5 days). 

A suitable charge regulator was used in the PV-NF/SWRO 

system with the specification of 12 V/24 V. 

 

▪ PV panels: 

The power generated by the PV system is expressed as [33]: 

 

𝑃𝑝𝑣,𝑚𝑜𝑑 = 0.001 × 𝑃𝑝𝑣,𝑡𝑜𝑡 × 𝑡ℎ𝑑 (18) 

 

𝑃𝑃𝑉,𝑡𝑜𝑡 =
𝑃𝐷𝐸𝑆

𝑡ℎ𝑑 24⁄ + (1 − 𝑡ℎ𝑑 24)⁄ 𝛼𝐵𝐶𝐻𝛼𝐵𝐷𝐶𝐻
 (19) 

where, Ppv,arr is the module photovoltaic power (kW/h/m2/day), 

Ppv,tot is the power energy of photovoltaic system, thd is the 

hourly solar insolation (about 7 h/j). αBCH and αBDCH are the 

battery efficiency charge and discharge, respectively. The 

number of modules necessary to power the NF-SWRO unit is 

calculated for a module of 150 Wc capacity by the following 

equation [33]: 

 

𝑁𝑚𝑜𝑑 =
1

𝑡ℎ𝑑 24⁄ + (1 − 𝑡ℎ𝑑 24)⁄ 𝛼𝐵𝐶𝐻𝛼𝐵𝐷𝐶𝐻

𝑃𝐷𝐸𝑆
𝑃𝑃𝑉𝑎𝑟𝑟

 (20) 

 

Following the design method, Table 5 presents the 

performance parameters of the photovoltaic system 

desalination plant. 

 

Table 5. Summary of design NF/RO/PV system parameters 

 
 Parameters Values 

NF/RO unit 
SEC 6.397 kWh/m3  

Pdes 44.97 kWh 

PV system 

Cbatt 58.32 kWh 

Ppv,tot 111.98 kWh/day 

Ppv,mod 0.77 kWh/day 

Nmod 148 modules 

 

4.2 Optimization of the specific energy consumption  

 

A program on Matlab has been established to minimize the 

specific consumption energy of desalination plant, based on 

the projected gradient decent (PGD) method under constraint 

algorithms (Figure 11). 

The principle of the method is based on the gradient 

calculation of the objective function based on various 

parameters and recalculates, under constraints in order to 

assess the specific energy consumption. The PGD method is 

based on the usual gradient methods. 

Supposing that we want to solve the constrained 

optimization problem, where f is a convex function [34]. 

( ) nRxjxf


min ; If we wish to use gradient descent update to a 

point Rxt  , it is possible that the iterate ( )ttt xfxx −=+ 1
 

may not belong to the constraint setR. In the projected gradient 

descent, we simply choose the point nearest to ( )tt xfx −  

in the set R as xt+1. 

Given a starting point Rx 0
 and step-size 0 , PGD 

works as follows until a certain stopping criterion is satisfied: 

  

∥ ⁡ 𝑥𝑡+1 − 𝑥𝑡 ⁡ ∥> 𝜀, 𝜀 > ⁡0 (21) 

 

In this configuration, the unit of desalination is without a 

recovery system. However, the high-pressure pump is 

considered as a recovery system. The energy required to 

produce 1.406 m3/h is of the order of 6.397 kWh/m3. 

According to the literature, the specific energy for the 

production of one cubic meter of treated water without energy 

recovery is between 6 and 7.5 kWh/m3. This value depends on 

the Physico-chemical characteristics of seawater.  

The program recalculates the values and gives the optimum 

values of the operational parameters. The initial value of the 

specific energy consumption (SEC) is of the order 6.397 

kWh/m3 after the execution of the program. The optimal value 

is 4.36 kWh/m3 with an error of 31.8% (Figure 12). 
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Finally, the performance of the electricity cell may be 

improved based on the heat exchangers [35-46] in order to 

reduce its temperature and increase its efficiency as a future 

study. 

 

 
 

Figure 11. Flowchart of projected method 

 

 
 

Figure 12. Results of the program using the projected 

gradient method 

 

 

5. CONCLUSION 

 

Aiming to control the operation of a hybrid NF/RO seawater 

desalination unit, a feed-forward artificial neural network was 

used for the development of a model able to predict the 

permeate flow rate and recovery. The analyses of the results 

showed that the ANN models were good for the prediction of 

flow rate and recovery with high R2, and low RMSE and MAE 

values. 

An ANN model used as control system tools for a small-

scale prototype NF/SWRO desalination plant was tested. The 

design and sizing of the PV-NF/SWRO unit components was 

presented. 

The energy needs of seawater desalination are such that they 

constitute the largest share of operating desalination costs. In 

this paper, an optimization of the specific consumption energy 

(SEC) of the unit was achieved. The projected gradient method 

under MATLAB Environment software was utilized to solve 

the corresponding equation. The program minimized the SEC 

of the desalination unit up to 38%. 
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