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Some models of the artificial neural network (ANN) are introduced in the control system
of a Nanofiltration / Reverse Osmosis desalination in order to manage the operation and
to improve the overall efficiency. This study is carried out on a small-scale prototype of
NF/RO seawater desalinate++on plant installed in Saudi Arabia and allowing it to operate
with input power. The ANN models are developed to generate the permeate flow rate and
recovery after taking into account the temperature, conductivity and pressure of the feed
water and the available electrical power. The utilized ANN models after training proved

their ability to control the operating of the unit with success. In addition, the statistical
tests revealed minimum values of RMSE and MAE. A dimensioning of a photovoltaic
system to power the plant is also carried out.

1. INTRODUCTION

By 2050, the global emissions from desalination plants
using fossil fuels are expected to increase until reaching 400
million tons of carbon equivalent per year. So, the renewable
energy is relatively inexpensive, as a promising solution to the
conventional energy by fossil fuel; it has no negative
environmental impact [1]. Among the different sources of
renewable energies, the solar energy is the lowest exploited
around the world. The Middle East region and North Africa
receive important solar irradiation every day. On the other
hand, most of these regions are rich in brackish or seawater,
but suffer from a lack of sufficient fresh water, which makes
them ideal for desalination by solar energy [2]. The
photovoltaic energy system is widely used in the SWRO plant.
This association is probably because the photovoltaic energy
is the first to have conquered the market. Due to its simplicity,
the combination of solar photovoltaic (PV) with reverse
osmosis has received recently a considerable interest.
Numerous PV-RO plants have been installed around the world,
in developing countries especially in remote areas suffering
from fresh water shortage [3-5]. The mathematical modelling
of photovoltaic systems is necessary to characterize their
behaviour, to establish a direct relationship between the
different components of the system, and to define a
relationship between the energy produced by the photovoltaic
system and the power requirement of the desalination plant.
Many researchers focused in the last decades on the
optimization of the energy consumption of desalination
systems [6]. The desalination RO process performance is often
limited due to the fouling. However, further complexity may
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be obtained by including NF with the RO desalination system.
Currently, the investigation and application of nanofiltration
NF in the pre-treatment stage has considered a breakthrough
for the desalination process. Many advantages may be offered
by NF such as the low costs of operation and its maintenance,
considerable flux, etc. [7, 8]. In addition, the combined NF
with RO may ensure similar advantages as the two types kinds
of membranes [9, 10]. Ghermandi et al. [11] discussed the
benefits of using NF membranes to produce the irrigation
water, based on the simulated performance of a solar-assisted
RO installation in the Valley of Arava. They argued that the
system would reduce the Specific Energy Consumption (SEC)
by 40% compared to the Ol plant, reduce groundwater supply
by 34% and increase the total biomass production from
irrigated crops by 18%. Ben Meriem et al. [12] studied the
possibilities of integrating photovoltaic panels in the brackish
water desalination configuration with RO/NF process for the
production of drinking water. The integrated system (RO / NF
/ PV) replaces the conventional RO / PV system. This is an
experimental installation for a pilot-scale desalination plant
comprising RO and NF modules operating with photovoltaic
panels. The results obtained were discussed and compared
with the performance of each system of RO and the NF
modules separately. Shen et al. [13] assessed the performance
of an NF / RO system powered by solar energy for the
treatment of brackish water. Although it gives good results, the
use of nanofiltration in seawater desalination processes
remains limited. Today, the application of ANN for modelling
has been greatly increased in various fields of engineering
sciences. Among the methods of linear regression and
correlation multivariable widely studied in the 70th, the neural
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approach allowed the establishment of a model from non-
linear relations between the inputs and outputs of the process
[14-19].

Unfortunately, there are fewer works mentioned in the
literature related to the modelling of ANNSs and the efficiency
of NF/RO desalination plants (Figure 1).

In the current work, the increasing needs for the water
quality and energy consumption pushed us to investigate the
potential of artificial neural network (ANN) model to estimate
the efficiency of a NF/RO-PV seawater desalination system
and to optimize the consumption energy of the system through
the schema shown in Figure 2.

The schematic diagram of the main pillars of modelling
dimensions was considered as an ideal structure for this work.
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Figure 1. Number of published works on ‘NF/SWRO’ and
‘ANN’, from 1996 to 2020 [20]
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Figure 2. Schematic diagram of NF/SWRO-PV modelling dimensions

2. MATERIALS AND METHODS
2.1 Experimental data

The Saline Water Desalination Research Institute (SWRI)
[21] provided the experimental NF/SWRO desalination plant
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data was utilized for building the ANN model. A pilot plant
testing in which the nano-filtration membrane NF product is
sent to the RO unit and its brine reject is utilized as a make-up
for the MSF plant. The NF unit received pre-treated seawater
with a temperature feed varying in 24 - 34°C and was operated
at a pressure about 23.54 bar and at a recovery of 53-57%.



In the SWRO unit receiving the NF product as feed, the
pressure was fixed at 58.86 bar and the temperature varied in
the range 23 — 34°C, where the average permeates recovery of
the 1t and 2" vessels were 30 and 21%, respectively. But, the
overall recovery the SWRO system was about 45%.

Figure 3 shows the diagram of the hybrid NF/RO
desalination pilot system. The variation of the operating

temperature, conductivity, and the flow) as a function of time
will be considered as inputs of the ANN model. However, the
permeate conductivity, flow rate and recovery of the SWRO
will be the outputs (Figure 4).

The values of the standard deviations (STD), mean (Mean),
minimum (Min), and maximum (Max) of the used database are
shown in Table 1.
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Figure 4. Experimental data of performance parameters of hybrid system NF/RO
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2.2 Neural network modelling

Artificial Neural Networks (ANNs) provides an appropriate
control strategy for the controlled process [22, 23]. The feed
forward neural network (FFNN) is one of the most used neural
network paradigms in modelling a wide range of nonlinear
systems, such as the biological and chemical engineering
processes [24, 25]. It has been utilized here with forecasting
horizon and supervised learning. The artificial neural network
(ANN) algorithm is used to simulate the permeate flow rate
and overall recovery (i.e., target variables). Sixty experiments
were conducted for different values of the following
parameters (Table 1): the time (h), temperature (°C), pressure
(bar), feed conductivity, feed flow rate and power (kW).

Figure 5 presents the schematic diagram of an artificial
neural network (ANN) where six input neurons were set at the
input layer. The permeate recovery, permeate conductivity,
and permeate flow were determined for the two output neurons
taken at the output layer.

A neural network with eight hidden layers selected
experimentally has given satisfactory results for solving the

present problem. While training data of very small size may
prevent learning. Each node within a given layer is connected
to all the nodes of the previous layer. A formal neuron is
characterized by Eqns. (1) and (2):

x; = f(Z)) (1)

Zj = fu(Ziawhjix; + bnj) )
j=1,2,..,m.

As highlighted by Eq. (3), the obtained value is propagated
through outgoing connections to the neurons of the succeeding
layer, where it undergoes the same process. For example, the
outputs Z; of the hidden layer fed to neuron k of the output
layer gives the output S:

Se = 1o Wi + boy) G)

i=1

k=1,2,., 1 lis the number of neurons in output layer.

Table 1. Description of the desalination pilot data

Variable category Parameters Symbol  Unit STD Mean Min Max
Time t h 385.92 680.317 25.197 1343.830
pressure p Bar 2.821 27.079 23.315 31.233
Inbuts temperature T < 2.7422 29.063 23.968 33.789
P Power P KW 02661 8992 8.239 9.487
Feed flow rate Ji m3/h 0.088 7.748 7.586 8.014
Feed conductivity Ot puS/cm  535.010 60519.500 59851.060 61872.340
Outputs Permeate flow rate Jp m3/h 0.042 1.406 1.288 1.483
P Recovery y % 1.018 44.308 41.093 45.951
Hidden layer
# Output layer
Input layer by P Y
. e
Time
Permeate
flow rate
Feed
pressure
Feed
temperature
Recovery
Feedflow
rate
Feed
conductivity
Power

Figure 5. Schematic diagram of an artificial neural network model
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By combining Eqns. (3) and (2), the relation between the
output Sy and the inputs x; of the ANN is obtained:

Sk = fo(Xits Whjkfh(Z?:l leixi + bhj) + boy) 4

In this investigation, the log sigmoid (logsig) was utilized
as transfer functions in the hidden layer (Eq. (5)) and the
tangent sigmoid transfer function (7ansig) was used in the
output layer (Eq. (6)). However, the (logsig) function,
produces output in the range of -1 to +1 and the tansig transfer
function produces outputs in the range of -oo to +oo [26].

209 = 1+e™* ©)

The normalization is needed if the ranges of the input data
are different. All the training data were normalized in this
research between -1 and 1, by using Eq. (7):

2(x; — min (x;))

norm = ax (x;) — min (x;) 1 )

here x; in the input or output variable X, Xmax and Xmin are equal
to the maximum and minimum values noted for each variable
of X. In order to determine the ANN system’s model, a
program of the neural network is performed using Matlab
(R2016b version).

2.3 Statistical analysis

The statistical parameters of the optimal NN model and
performance prediction are the correlation coefficient R, the
root mean square error RMSE (square root of the average sum
of squares) and mean absolute error (MAE) [27] calculated for
the predicted permeate flow rate and recovery. The equations
are expressed as:

Zi(yexp - yexp)(ycal - m)

R o e R
. 2
RMSE = %;(yew — yeal) 9
&
MAE = N;KYW Yo (10)

Here N is the number of experiments, Veqp is the
experimental value for each parameter, yca is the predicted
value of the i experiment calculate by the model for each

parameter. y and ;/cal are the arithmetic mean of

experimental and calculated values, respectively. Several
techniques are available today, some of them may be used with
minor modifications, while others are not suitable for this
specific type of data set.

3. RESULTS AND DISCUSSION
3.1 Model performance

The network was trained in this study using all 60 data
points. The number of iterations for finding an adequate ANN

model is 504 and the MSE is 2.9503x10-10,

Best Validation Performance is 0.4055 at epoch 3
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Table 2. Linear regression vectors [linear equation]:
ypredict — qyexv 4+ b R,RMSE,MAE.

Permeate Flow rate (m3/h)  Recovery (%)

a 0.9999 1.0005

b 1.7125 10* -0.0225

R 0.9992 0.9999
RMSE 0.0409 0.00048
MAE 0.0213 3.710*
wl —— RECOVHI] oy
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!*v:‘;:
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Figure 8. Simulation of experimental and predicted values of
(a) recovery and (b) permeate flow rate, respectively

Figure 6 shows the performance of the trained ANN model
where it is observed in first that the error decreases in few
iterations (fast training) after it is stabilized until the
convergence to the maximum number of epochs. The trained
network was then simulated by feeding it with all of the data
used for training. Figure 7 shows the predictive values of the
network versus experimental values. An attempt is conducted
to predict the recovery and permeate flow rate of the hybrid
NF/RO process for seawater desalination treatment, aiming to
enhance the water quality and reduce the production costs.

Through the analysis, Table 2 summarizes the model
statistical parameters obtained by using the MATLAB
function “postreg”, [a, b, R] = [1.0005, -0.0225, 0.9992] for

24

24  H 0 24 H 0
exp(2i=1wﬁzi+b2)—exp(—Zizlwﬁzi+b2)

the overall recovery; [a, b, R] = [0.999, -1.7125 10-4, 0.9999]
for the permeate flow rate.

The results given by the ANN code are similar to the
experimental data. The optimal structure corresponds to the
correlation coefficient for NN 6-24-2 are 0.999935 and
0.99921, respectively for the permeate flow fate and overall
recovery. A small means absolute error (MAE) and root mean
square (RMSE) for the permeate flow fate and overall
recovery.

The comparison between the experimental values and those
calculated by ANN is presented in Figure 8, where an
acceptable agreement is observed.

3.2 Mathematical equations of ANN developed model

The weights and bias of the optimized ANN models are
given in Table 3, where W! is the input and hidden layer
connection weight matrix, WY is the hidden and output layer
connection weight matrix, b" is the hidden neurons bias and 5°
is the output neuron bias.

From the optimized ANN, we can express recovery (y) and
permeate flow rate (J,) by a mathematical model that
incorporates all inputs x; (time, temperature, pressure,
conductivity feed, flow rate feed and power is given by Eq.
(11). Knowing that f;, is the Logsig sigmoid transfer function
used in hidden layer:

6
Z] = fh IZ Wﬁxi + b{l
i=1
1

1+ exp(— X8, wix; + b})

(11)

j=1,2, ..., 24. The instance outputs Z; of the hidden layer are
the output y and J, (Eq. (12)). The combination of equations
(12) and (13) leads to the mathematical formula for recovery
and permeate flow rate taking into account all the inputs x; (Eq.
(13)).

These mathematical formulas were used for the calculation
of the recovery and permeate flow rate, and to predict the
performance of the NF-SWRO hybrid seawater treatment. The
prediction was achieved by including important relevant
features that may be easily applied in controlling the
desalination systems.

4. MODELLING DIMENSIONS AND OPTIMIZATION
OF PHOTOVOLTAIC/DESALINATION SYSTEM

Combining the desalination with renewable energies is a
way to reduce the energy consumption in seawater
desalination processes [28]. The energy expenditure can
exceed the half of the cost of operation for each process [29,
30]. The overall cost including the production of water and the
energy consumption of these systems strongly depends on the
specific parameters of each technology. The energy
requirements of the NF-SWRO hybrid membrane process are
significantly lower than those of the conventional SWRO
process.

yl]p = fO[ WjIgZi + bg] =

i=

exp(X

24W
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H 24
2 ﬁZi+bg)+exp =X

12
i whzi+b3) (12)



Yilp

24 H 1
exp ( 21 Wi

5 * bS) —exp (-1,

wi 1

bO
T+ exp(— X0, wyix; + bf)) + b2)

(13)

1

““1+exp(—X5, WjiX;
exp(

24 \yH + b |+ exp (— Y22, wh +
UM +oexp(— X8, wiixg + bf)) 2 P (=21 Wi 1+ exp(— X, wjix; + bf))

1

b2)

Table 3. Weights and bias of the optimized NN model

Input and hidden layer connections

Hidden layer and output connections

w! " wH 0

t(h) Pbar) T(C) Jm*/h) 8 us/em) PGw) D1 y L, b2
-0.00022 -0.00049 -0.24238 -0.24452 -0.18530 0.00134 3.18595 -0.00493 4.93906
-0.00013 0.00007 -0.43411 1.49330 -0.44865 -0.00066 -2.99437 -0.00130 4.11969

0.00002 0.00029 1.16235 1.64378 -0.25506 -0.00104 -0.60247 0.00008 -0.00312
0.00034 -0.00005 2.55987 0.20847 0.23936 -0.00107 -0.54756 0.00391 -0.00037
0.00016 0.00033 -1.03864 1.37116 0.22075 0.00010 1.18852 4.83447 -3.43846
0.00009 0.00053 2.91488 1.89925 -0.99727 -0.00086 1.87594 -0.00513 -0.00680
1.98547 -0.00046 -0.69812 0.00063 -1.15051 0.00323 -1.44032 -3.57866 0.00834

2.33267 -0.00026 -0.10148 0.00179 0.01060 -0.00093 0.63800 0.22776 -4.93655
1.54040 -0.00003 1.19866 0.00085 2.13683 -0.00169 -1.87212 -0.42809 4.16520
-0.77783 0.00037 1.60591 -0.00297 0.14919 -0.00089 -1.43780 -0.00063 0.17560

0.70447 0.00021 -0.23998 -0.00009 2.20851 -0.00033 2.04408 0.00291 0.00278
-0.50803 -0.00001 -0.52796 0.00438 -2.66601 -0.00298 -0.37095 -5.33116 5.37838

0.00181 0.00150 -0.00034 0.01512 -0.00001 -2.84990 -2.79447 0.00262 0.05018 -1.92521
-0.00124 -0.00011 -0.00001 -0.06365 -0.00095 -0.82540 -0.27675 -0.00823 -0.04616 1.88754
-0.00094 -0.00013 0.00018 0.41999 -0.00018 -0.98313 -4.56674 0.00171 0.00062

0.00020 -0.00150 0.00038 -0.24045 0.00026 0.72625 -5.17365 -0.00397 -0.00377
-0.00022 0.00000 -0.00013 -0.06758 0.00015 0.59016 -0.84911 -0.02195 -0.33057
-0.00291 -0.00013 0.00012 3.53384 -0.00127 -0.64655 1.34461 0.00150 -0.01339
1.91034 0.00049 0.00181 6.22952 0.38450 -0.82229 -2.00470 -0.05718 0.00758
-0.83535 -0.00061 -0.00120 1.37660 0.32993 -1.05713 1.25119 4.12923 0.04144
-1.76895 -0.00051 -0.00064 1.05375 0.09944 0.88303 0.16639 -1.59597 -0.10482
0.91538 0.00021 0.00192 -2.52199 -0.41873 -2.88922 0.07895 -0.00673 -1.70748
1.72058 -0.00006 -0.00083 0.93180 -0.20638 -1.59650 4.59911 -0.00325 -0.01000
0.18731 -0.00145 -0.00564 -0.42074 -0.91719 1.12731 0.04285 0.17993 -0.19405

4.1 Dimensioning of the photovoltaic system for a
desalination plant

The photovoltaic systems are used today in small-scale
desalination plants. The photovoltaic is needed for the system
power input. The PV module is expected to operate directly
with the NF/SWRO during eight hours per day (Figure 9). The
elements of the PV system are: a PV module, an electric
inverter unit (convert DC to AC), a distribution cabinet, cables,
and an array power 150 Watt/array with 24V.

'ﬁ Photons
‘ag‘\x RO Membrane
Solar panel ‘\ Permeate Reject 3o
(€,P,. Q) RO (CoPr. 0r)
| LS
l E I Battery
NF Membrane (") Booster
A Reject
NF viater
ﬁ l ——] Product NF T
Feed (CePr, Q) Pump HP Reject yr
(CrPr, Q)

Figure 9. NF/RO/PV seawater desalination pilot plant
system
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4.1.1 Meteorological data and location of the operation

A seawater desalination pilot without an energy recovery
system installed in Saudi Arabia was composed of NF
membrane for pre-treatment and RO in post-treatment. The
plant location is suitable to inspect the model. The average
ambient temperature is around 11-35°C along the year and a
maximum of solar irradiation is recorded in June with a value
close to 7 kWh/m%*/day and a min in December. The
meteorological operating conditions of the plant location are
provided in Figure 10 [31].
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Figure 10. Monthly average of solar radiation [31]

4.1.2 Estimated energy requirement of the desalination plant

The values of NF and SWRO operating parameters utilized
in the operation of the dual NF-SWRO unit are given in Table
4.



Table 4. NF/SWRO unit parameters

Parameters NF/SWRO
Recovery 45%
Feed pressure (bar) 58.89
Feed flow rate (m%/h) 8.014
Permeate flow rate (m%h) 1.406

The energy requirements during the seawater desalination
by NF-SWRO membrane processes were calculated for the
part desalination only from the general equation [32]:

_ Qf*Hf*g

SEC =
366 % Qp xe

(14)

The specific energy consumption equation of the NF-
SWRO process is presented as:

SECdes,(NF—SWRO) =

(Qf(NF) * Hf(NF) * g) + (Qf(SWRO) * Hf(SWRO) * g) (15)

(366 * QP(Final) * e)

where, the sec in kWh/m?®, Q¢ and Q, are the feed and permeate
flow rate (m*/h), respectively. Hr is the pressure head (m), g is
the specific gravity of seawater (1.03), and e is the pump
efficiency (=0.85). The SEC of the dual NF-SWRO, process
was calculated from Eq. (17) and the power of the plant is
calculated for a pumping time per day (5 hours) as follow:
Ppgs = sec X Q, X 5h/day (16)
4.1.3 Modelling of the PV modules
The energy consumption of the desalination unit, which is
determined based on the values of the flow rate and feed
pressure, is used to model the photovoltaic PV. In this

configuration, the PV system is connected to a battery unit to
drive the NF-SWRO desalination unit.

= Battery Storage:

In this configuration, PV is coupled to batteries whose state
of charge and discharge control the operation of the desalting
system. The nominal capacity calculation of the battery takes
into account the needs and the days of autonomy, as well as
the depth of discharge. The batteries capacity is determined as:

NaEC

C
UP,

(17)

where, Pq is the discharge depth (0.7 to 0.8), Eg is the
consumption energy, U is the DC system voltage (volt), and N,
is the battery autonomy days (5 days).

A suitable charge regulator was used in the PV-NF/SWRO
system with the specification of 12 V/24 V.

= PV panels:
The power generated by the PV system is expressed as [33]:
PpV,moq = 0.001 X Py, 1o X tpg (18)
Ppgs
Ppy tor = (19)

tha/24 + (1 — tpq/24) apeu®ppen
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where, Pyy.arr is the module photovoltaic power (kW/h/m?/day),
Ppy ot 1s the power energy of photovoltaic system, fg is the
hourly solar insolation (about 7 h/j). ascu and oppch are the
battery efficiency charge and discharge, respectively. The
number of modules necessary to power the NF-SWRO unit is
calculated for a module of 150 W, capacity by the following
equation [33]:

1 Ppgs
tha/24 + (1 — tyq/24) apcyppc Pevarr

Npoa = (20)

Following the design method, Table 5 presents the
performance parameters of the photovoltaic system
desalination plant.

Table 5. Summary of design NF/RO/PV system parameters

Parameters Values
. SEC 6.397 kWh/m?3
NF/RO unit Paes 44.97 kWh
Chatt 58.32 kWh
Ppv,tot 111.98 kWh/day
PV system Povmod 0.77 KWhiday
Nmod 148 modules

4.2 Optimization of the specific energy consumption

A program on Matlab has been established to minimize the
specific consumption energy of desalination plant, based on
the projected gradient decent (PGD) method under constraint
algorithms (Figure 11).

The principle of the method is based on the gradient
calculation of the objective function based on various
parameters and recalculates, under constraints in order to
assess the specific energy consumption. The PGD method is
based on the usual gradient methods.

Supposing that we want to solve the constrained
optimization problem, where f is a convex function [34].
min f(xj )XCR“ ; If we wish to use gradient descent update to a

pointx, € R, itis possible that the iterate x,,, = X, — aVf (xt)

may not belong to the constraint setR. In the projected gradient
descent, we simply choose the point nearest to x, — aVf (Xt)

in the set R as Xt+1.
Given a starting point X, € R and step-size »)0, PGD

works as follows until a certain stopping criterion is satisfied:

" xt+1_xt "> €,€> 0

2

In this configuration, the unit of desalination is without a
recovery system. However, the high-pressure pump is
considered as a recovery system. The energy required to
produce 1.406 m’h is of the order of 6.397 kWh/m’.
According to the literature, the specific energy for the
production of one cubic meter of treated water without energy
recovery is between 6 and 7.5 kWh/m?>. This value depends on
the Physico-chemical characteristics of seawater.

The program recalculates the values and gives the optimum
values of the operational parameters. The initial value of the
specific energy consumption (SEC) is of the order 6.397
kWh/m? after the execution of the program. The optimal value
is 4.36 kWh/m?® with an error of 31.8% (Figure 12).



Finally, the performance of the electricity cell may be
improved based on the heat exchangers [35-46] in order to
reduce its temperature and increase its efficiency as a future

study.
v
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Figure 11. Flowchart of projected method
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Figure 12. Results of the program using the projected
gradient method

5. CONCLUSION

Aiming to control the operation of a hybrid NF/RO seawater
desalination unit, a feed-forward artificial neural network was

used for the development of a model able to predict the
permeate flow rate and recovery. The analyses of the results
showed that the ANN models were good for the prediction of
flow rate and recovery with high R?, and low RMSE and MAE
values.

An ANN model used as control system tools for a small-
scale prototype NF/SWRO desalination plant was tested. The
design and sizing of the PV-NF/SWRO unit components was
presented.

The energy needs of seawater desalination are such that they
constitute the largest share of operating desalination costs. In
this paper, an optimization of the specific consumption energy
(SEC) of the unit was achieved. The projected gradient method
under MATLAB Environment software was utilized to solve
the corresponding equation. The program minimized the SEC
of the desalination unit up to 38%.
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