
 

 

 

 

 
 

 
1. INTRODUCTION 

Engineer-To-Order (ETO) companies design and produce 

products that are generally highly customized to meet 

individual customer requirements but produced in low volume 

[1]. High levels of customization lead to increased costs, 

higher risks, and long lead times. Many ETO companies have 

recognized these difficulties, and are trying to increase design 

standardization based upon modular design principles, termed 

Mass Customization (MC) [2]. MC simplifies the 

manufacturing process, thus lowering costs of the 

manufactured products. It also facilitates automation of some 

internal processes, and encourages more customer 

involvement, hence speeds the delivery times. In many cases, 

however, this approach has been proven challenging. ETO 

products are often hard to standardize; product configuration 

involves extensive knowledge base design. Further, the 

predefined product solution space limits the options for 

customers, which should have been originally a competitive 

advantage for an ETO company. 

The customer delivery performance, a key competitive 

factor in ETO markets, is based on lead time estimates. The 

lead time is usually estimated without sufficient information 

on available capacity as there are always several quotations 

awaiting responses from potential customers. Detailed 

specifications that determine work contents and durations are 

also uncertain at this early stage. So, it needs to be reevaluated 

after the order being accepted. Improving the delivery 

performance relies on two factors: reducing the lead time and 

increasing the reliability of lead time estimates. Lead time 

reduction can be achieved by shortening the duration of 

individual processes and by encouraging parallel activities of 

the processes through concurrent engineering. Improving the 

estimate accuracy, on the other side, requires decision makers 

and the relevant decision support systems to take advantage of 

the data collected from all product-, production-, and service-

related activities and turn them into meaningful information. 

Product Lifecycle Management (PLM) with advanced data 

analytics technologies provides the necessary concepts and 

tools to facilitate these two aspects [3]. PLM includes a shared 

platform for creating, managing, and disseminating product-

related information across the extended enterprise [4]. It also 

embeds capabilities to access, use, and maintain product 

definition information, as well as the business processes 

related to all lifecycle activities. Data analytics is intended to 

answer the questions of “what has happened” (descriptive 

analytics), “what could happen” (predictive analytics), and 

“what should we do” (prescriptive analytics), using statistical 

and machine learning techniques. Data analytics provides the 

techniques needed to increase the degree of data-driven 

decision making. 

One of our earlier studies demonstrated the benefit of 

extending traditional PLM functions to support data analytics 

model development which is similar to a physical product 
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development process [3]. A standard analytics model 

representation language, PMML (Predictive Model Markup 

Language), and a standard process model, CRISP-DM 

(CRoss-Industry Standard Process for Data Mining), are 

integrated into a PLM system, so that metadata and lifecycle 

information of analytics models can be fully managed. We 

focused on Predictive Analytics in that study. In this paper, we 

report an ongoing effort to enable Prescriptive Analytics in 

PLM in order to provide manufacturing firms data-driven 

decision-making capabilities. We apply the proposed 

methodology to the engineering department of a local ETO 

company to improve its product delivery performance by 

improving its project resource (particularly, the engineers) 

planning efficiency. 

 

 

2. CHALLENGES 

 

2.1 Prescriptive analytics in manufacturing 

 

Prescriptive analytics has been referred to as the final 

frontier of analytic capabilities not only to predict future 

outcomes, but also to make recommendations based on those 

outcomes. Prescriptive analytics typically involves decision 

optimization techniques, such as mathematical and constraint 

programming [5].  

There are two critical challenges for conducting data 

analytics project in a manufacturing firm. The first challenge 

comes from the data variety when considering the relevant 

data related to a product’s full lifecycle. The product-, 

production-, and service-related data are available in various 

manufacturing information systems (PLM, MES, and ERP) [6], 

even the data may reside in external supply chain partners’ 

systems. The second challenge is the inability of big data 

processing and fusion due to limitations of IT resources in a 

manufacturing firm [7]. Few manufacturing experts are 

familiar with the modern big data analytics techniques which 

naturally ask for interdisciplinary skills. The information from 

the upstream (sales and project planning) and the downstream 

(production and quality assurance) of the engineering 

processes may not accessible by the engineering department. 

In addition, the current manufacturing practice is that every 

analytics task is often implemented from scratch, following a 

task-focused approach due to the trial-and-error nature. The 

sharing and combination of analysis resulting from isolated 

methods and terminologies on local datasets become 

significantly limited [8]. This leads to high-cost and long-

duration development, and results in models and algorithms 

that are difficult to modify, extend, and reuse [9]. There is an 

additional challenge particularly to ETO companies. The 

product produced by ETO companies varies significantly, so 

do their customer demands and available capability (engineers, 

plants, equipment, etc.). This variability makes it difficult to 

prescribe best practice(s) for optimal market responses [1]. 

The intention of prescriptive analytics is to make algorithms 

self-adaptive as guided by minimal rules for given data sets. 

The algorithms will be programmed in such a way that they 

can take over and adapt based on changes in established 

parameters, instead of humans controlling them. With 

algorithms optimizing automatically, their ability to predict 

the future becomes better with time. This implies the decision 

optimization modeling and execution shall be embedded in the 

overall product development process and continuously 

incorporate the newly available data. 

2.2 Prescriptive analytics in PLM 

Our earlier study shows the feasibility of uniform modeling 

of physical products and analytics models [3]. Though this 

previous work primarily focused on predictive models, the 

idea can be generalized for other types of analytics models (e.g. 

descriptive models and prescriptive models). Indeed, a 

descriptive model can be immediately seen as a predictive 

model that makes perfect predictions [10]. The CRISP-DM 

process model is generic enough to provide the lifecycle 

contexts to all kinds of analytics models. The task and activity 

details naturally vary from project to project, and we will 

discuss (in section 3) how it could be utilized for prescriptive 

analytics modeling. 

However, for the prescriptive model meta data, extra efforts 

are needed. The PMML employed in [3] supports popular 

predictive models such as classification, regression, clustering, 

and association rules. While it can capture the information of 

data transformation, model structure, and model performance, 

it does not support the goal and constraints presented in an 

optimization model. We need a structured language to encode 

prescriptive models. 

Brodsky et al. [5] proposed to use JSON-based structured 

language to describe an optimization model. It combines the 

features from several optimization modelling languages: 

AMPL (A Modeling Language for Mathematical 

Programming), GAMS (General Algebraic Modeling System), 

and OPL (Optimization Programming Language). Microsoft 

provides a model-based optimization package which is open 

source and termed MSF (Microsoft Solver Foundation) [11]. 

It uses a proprietary optimization modeling language, OML. 

These languages define optimization-specific objects: 

parameters, decisions, constraints, and goals. These schemas 

and the relevant optimization model execution engine need to 

be appropriately integrated into our PLM-based architecture. 

 

 

3. PLM-BASED PRESCRIPTIVE ANALYTICS 
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Figure 1. An itegrated concept development process model 

 

The PLM-based prescriptive analytics framework is shown 

in Figure 1. It consists of three tiers: 1) a PLM platform with 

core product lifecycle management functions and built-in 

computational methods for the execution of analytics models; 

2) a formal data analytics process model to guide the data-

driven model formulation, evaluation and deployment; and 3) 

an application tier for applying prescriptive analytics 

techniques to engineering problems, for instance, engineer 

task assignment in a product development process. 
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3.1 PLM platform tier 

 In [3], we employed an object-oriented, web-based PLM 

system as part of a service-oriented architecture (SOA), in 

order to provide a unified development environment for 

physical components and predictive analytics models.  In 

addition, we extend the PLM core functions (metadata and 

relationship management, workflow management, version 

control and change management, item structure and 

configuration management, etc.) to include two additional 

functions: 1) Visualization - visualizating of data, models, and 

their relationships; and 2) Analytics model execution - 

providing engines to interpret analytics models and apply them 

to new data. 

The PLM system is, essentially, a data repository. As such, 

it stores all the available instance data and instance models. It 

also stores all the necessary lifecycle information such as 

states and revisions of the data and the models. The PLM 

system uses the concepts Item and Relationship to abstract 

arbitrary objects and connections between objects. This Item-

Relationship-Item architecture has been proven to be suitable 

in capturing an analytics model and its associated information. 

The PLM system is able to return information regarding any 

physical component model, dataset, analytics models, and any 

of their compositions, corresponding to different levels of 

queries requested. It also provides computational engines to 

retrieve and execute the models stored in the PLM database.  

3.2 Data analytics process model tier 

The CRISP-DM is the leading reference model for data 

analytics projects. It provides the necessary lifecycle context 

for analytics model development [8]. CRISP-DM defines six 

phases to complete a data analytics project and each phase 

further defines several key generic tasks and outputs. The six 

phases are: business understanding, data understanding, data 

preparation, model building, model evaluation, and model 

deployment. The tasks and outputs of each stage are described 

in detail by Shearer [12]. Prescriptive analytics has its own 

characteristics compared to other types of analytics. For 

instance, the goal and constraints to the decision making must 

be identified; and an optimization model usually consists of 

other types of models (e.g., a descriptive model for a particular 

variable with certain distribution). Finally, the optimization 

results can be encoded as decision trees or business rules so 

that they can be deployed in the production environment. 

Hence, it requires appropriate adaptation of the CRISP-DM 

model. 

 

3.2.1 Business understanding and data understanding 

Data may come from various sources (e.g. patents, bill-of-

materials, engineering drawings, simulation, machinery, sales, 

and ERP data, etc.) that are related to products, processes, and 

the organization. The relationship among these data need to be 

recognized before constructing the decision models. The DSM 

(Design Structure Matrix) method is capable of representing 

both static and temporal information as directed graphs. A 

variety of analytical techniques (sequencing, clustering, 

banding, and tearing) are available to analyze information 

presented in DSMs [13], [14]. Accordingly, DMM (Domain 

Mapping Matrix) is to connect DSMs representing different 

domains in order to model and visualize interactions across 

domains [15]. 

The DSM/DMM analyses are extensively used in the 

Business Understanding and Data Understanding phases 

(Figure 1) for identifying the relationship between the various 

information domains. Each analysis involves the following 

steps: 1) decomposing the system into elements (e.g. 

decompose the resources in the engineering department into 

engineering managers, project managers, quality engineers, 

drafters, document and manual specialists, etc.); 2) 

understanding and documenting the interactions between the 

elements (i.e., the collaboration of the engineers); and 3) 

analyzing potential reintegration of the elements via clustering 

(integration analysis) [13], [16]. Qualitative and quantitative 

measures can be employed when filling the matrices. 

 

3.2.2 Data preparation and modeling 

With variables and their relationships identified in the 

previous two phases, the data can be aggregated and 

descriptive/predictive models can be formulated to capture the 

system characteristics. Then, the optimization model is 

formulated to capture the system goal and constraints. As 

proposed in our earlier study [17], a model-driven approach is 

employed to formulate a data-driven optimization model that 

begins with a set of data concerning the domain of interest. 

The relevant variables, attributes, and rules that govern the 

model are identified through data analytics. Scenarios are 

dynamically classified and new elements of the system are 

continuously incorporated. The simulation and optimization 

models simulate and evaluate the performance of different 

scenarios; the optimization engine is used for clustering, 

feature selection, scenario classification, and the what-if 

analyses. This data-driven simulation and optimization model 

provides a practical approach to discover the system and 

evolve the system. With a PLM platform, the data comes from 

the PLM database; the optimization model, the intermediate 

models used by the optimization model, and the results of the 

optimization process can be stored back to the PLM database. 
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Figure 2. A data-driven simulation/optimization model 

(adpated from [17]) 
 

3.2.3 Evaluation and deployment 

The evaluation phase is a quality assurance step to the data-

driven optimization model, which can be seen as a data 

product produced by the data analytics process.  The previous 

steps to create the model need to be thoroughly reviewed to 

ensure that the model achieves the business objectives. 

The final phase is to deploy the optimization model into the 

production environment. The usual way is to extract a decision 

tree or a set of business rules to encode the optimal results 

according to classification of scenarios. This turn to deploy a 
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set of predictive models, which we have discussed in the 

earlier study. Another way is to directly deploy the 

optimization model so that it can be periodically run on 

production data, to dynamically update the decisions. 

The PLM platform consists of computational engines so that 

the optimization model can be executed as demanded. The 

change of the optimization model can be versioned, and so 

does the optimization results. Hence, the model selection and 

deployment can be done by comparing different versions of 

the results using a Champion-Challenge model that is usually 

employed in business analytics community [18]. 

3.3 Application tier 

The top application tier provides users the interface to 

formulate the problem, configure the data processing and 

modelling strategies, and visualize the results. For a resource 

planning problem concerned by an engineering manager (or 

project manager in product development), the prescribed 

decisions are assigned tasks to individual engineers, given 

project task requirements, the availability of each engineer and 

his/her capability to do a particular job, plus other necessary 

information. The essential inputs to initialize the problem 

include the project scope, goal statements, critical constraints 

and parameters, and the specific performance measures.  

The application is able to send/receive information from the 

PLM system at different lifecycle phases. The optimization 

model can be created based on modification to an early model 

stored in PLM or can be totally new. The application can be 

embedded in the PLM platform or runs independently. This is 

because the analytics models can either be (1) executed inside 

the PLM system using PLM built-in execution engines and 

methods, or (2) retrieved and utilized from an external 

application through web services or PLM’s application 

programming interfaces (API) [3]. 

 

 

4. CASE STUDY 

 

In this section, we present a real case study that applies the 

proposed framework in this paper to a local company. 

4.1 Problem description 

This local manufacturing firm produces industrial liquid 

filtration systems and waste disposal equipments. The 

company employs an Engineer-To-Order (ETO) business 

model to develop a customized product system for each 

individual customer as a project. Each project has a long lead 

time, and there are usually tens of ongoing projects. The 

company also offers its customers a preventative maintenance 

program to insure long, efficient operational life of the 

equipment performance in service. The challenge for the 

engineering manager is how to improve the development 

process so that the productivity of each engineer is maximized 

and the lead time of each project can be minimized, while 

maintaining the product/service quality. The company is using 

information systems to manage the sales order, project budget 

estimation, project planning, and customer information 

management. However, the engineering team’s activities are 

not properly synchronized with these systems, i.e. the product 

data management is an isolated silo from other business 

systems.  

4.2 Data collection and data analysis 

We collected the on-site data in the company, and 

interviewed the engineers, engineering manager and business 

owners. The documents and information collected include: 

project quality management plan, engineering meeting agenda, 

engineer weekly time sheets, project plans with project memo, 

drawings and bill of materials. The data is cleaned, 

transformed, and stored in the PLM system. 

Advanced data analytics and visualization techniques are 

applied to the data in order to reveal the patterns and 

bottlenecks of the as-is situation. For instance, DSM/DMM 

techniques are employed to investigate the dependencies 

among project tasks, products, and engineer resources. We 

develop several measures to quantify the engineer skills, 

project task priorities, and product module importance weights 

as the qualitative and quantitative measures for the 

visualization. The results (shown in Figure. 3) illustrate that 

the working loads are heavily concentrated on several 

engineers, and the existing product modules are not evenly 

reused.  

The as-is decision making process in the company as 

interviewed is recorded in a DMN (Decision Model and 

Notation) model (see Figure. 4). The primary data sources 

include historical project data, engineer weekly time-sheets 

and meeting review, and new project requrirements. Three 

analytics models - the engineer capacity determination, 

engineer availability determination, and the project task 

estimation - could be established based upon these data. The 

final task assignment decision is then based on the three 

analytics models. It is also constrained by several corporate 

policies: the project quality management plan guide and the 

task classification code.  

 

 
 

Figure 3. Product-project-resource visualization in a sankey 

diagram 
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Figure 4. A project-task-assignment decision making model 

in DMN 
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Figure 5. A network max-flow formulation of the problem 
 

 
 

Figure 6. XML Data file for optimization input 
 

The tasks in a project are usually precedence-constrained 

(or time-bounded) and resource-constrained. Hence, it turns 

into a resource planning problem that can be reduced to a 

network max-flow problem (or equally, min-cut problem) with 

virtual source and target nodes [19]. And a network max-flow 

problem can be solved using Linear Programming algorithm 

such as Simplex. The identified variables, constraints, and the 

utility function to minimize the overall project costs, can be 

encoded using an optimization modelling language. We use 

the Microsoft OML in this study. 

The data from the PLM system first needs to be translated 

into an XML (Extensible Markup Language) format to feed to 

the optimization engine as model inputs. This input XML 

specifies the activities (Figure. 6). Each task has an earliest-

start-time and latest-end-time. The tasks can be scheduled in 

between those times. Each task specifies an amount of time 

working on the task. Each task has an active-time (the amount 

of time dedicated to a task) and a passive-time (the time that 

the task can be run automatically). Other tasks can be 

scheduled while passive activities are occurring. The user 

specifies the maximum number of times a task can be 

interrupted (set as 0 in Figure. 6).  Thus, the active time can be 

broken up as long as the total time doing that task is achieved. 

The goal is to end the day as early as possible with all the 

activities completed. So that the total working time of all the 

engineers can be minimized.  

The model is then encoded as OML that can be parsed by 

an optimization engine (we use Microsoft Solver Foundation 

in the project) and executed based on the given data. 

 

4.4 Model evaluation and deployment 

 

We compare the result generated by the optimization model 

to the schedules (historical working hours in the engineer 

timesheets) created by human beings of the company to 

validate the model. 

The model can be deployed in the PLM system and it is 

executed as demanded. The associated data can be retrieved 

based on the relationship (e.g. the Application-Product-Task-

Deliverable relationship). The relationship between the 

involved elements can be visualized in real-time and be 

updated dynamically. The final application is embedded in the 

PLM system (Figure. 7). 

 

 
 

Figure 7. The final application in the PLM system 
 

 

 

5. CONCLUSION 

 

In this paper, we focus on a critical challenge, long lead time 

in product development to ETO manufacturing firms. To 

address this problem, we propose a PLM-based framework to 

enable Prescriptive Analytics capability in ETO companies to 

reduce the lead time and improve the lead time commitment. 

Also, the PLM system is extended to support a model-based 

approach for optimization model development, management, 

and execution. The proposed PLM-based Predictive Analytics 

framework has been applied in a local manufacturing company 

for testing and validation. And we have proved that the 

emergent data-driven design approach is a possible solution to 

alleviate ETO companies’ pressures on more accurate lead 

time estimate in a continuously updated manner, by utilizing 

rich data collected from the product’s lifecycle and building 

reusable data analytics models. 

Using the data analytics process model, the data is 

transformed and stored in an open source PLM platform. With 

the domain-specific information collected through the 

application tier, the optimization problem has been formulated 

and the data analytics plan has been executed and deployed. 

With the product and application, project and task, engineer 

data stored in the PLM database, the built-in optimization 

engine (Microsoft Solver Foundation) and data analytics 

engine compute the optimal engineering task schedule and 

offer visualization of the results (as shown in Figure. 3). The 

application (Figure. 1) can be internal or external to the PLM 

platform. And finally, the data analytics model can help in 

improving the delivery performance. 

The current work has its limitations. For example, lack of 

the measurements of engineer capabilities, and insufficient 

estimation of different kind of tasks’ importance. The 

optimization results can be improved with more accurate 

estimation of these factors, but efforts are needed from both 

the research group and the industrial partners. For the future 

work, we wish to enable the data analytics processes to 

become part of the day-to-day business and its environment. 

The efforts on development and utilization of prescriptive 

analytics models as described in this paper, along with the 

description of predictive analytics models in the PLM platform, 

will invariably improve the future data analytics application. 
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