
 

 
 
 

 
 

1. INTRODUCTION 

 

Functionally graded materials (FGMs) are a new class of 

composite materials that has attracted considerable attraction. 

Typically, FGMs are made from a mixture of metals and 

ceramics and further characterized by a smooth and 

continuous change of the mechanical properties from surface 

to another and thus eliminate the stress concentration at the 

interface of the layers found in laminated composites. The 

potential uses of FGMs in engineering applications include 

aerospace structures, engine combustion chambers, fusion 

energy devices, engine parts and other engineering structures. 

In recent years, the static and dynamic analyses of 

functionally graded (FG) beams have increasingly attracted 

many researchers. 

Based on the Euler-Bernoulli beam theory, the vibration 

responses of FGM beams have been widely studied by 

different approaches. Şimşek and Kocatürk [1] studied the 

dynamic response of an FGM simply supported beam under a 

concentrated moving harmonic load, in which the effects of 

the material homogeneity, the velocity of the moving 

harmonic load, and the excitation frequency on the dynamic 

responses of the beam were discussed. Yang and Chen [2] 

analyzed the free vibration and buckling of FGM beams with 

the presence of open cracks. Li et al. [3] analyzed a small 

vibration of post-buckled FGM beams with surface-bonded 

piezoelectric layers in thermal environment by a numerical 

shooting method based the exact geometrically non-linear 

theory for axially extensible beams. 

In the framework of the first shear deformation theory or 

the Timoshenko beam theory, Li [4] presented analytical 

solutions for the static bending and free vibration of FGM 

Timoshenko and Euler-Bernoulli beams. Huang and Li [5] 

also studied the free vibration of axially FGMs with non-

uniform cross-sections by using the integration technique to 

transform the differential governing equations into the 

Fredholm integral equations. Bouremana et al. [6] presented 

a new first shear deformation theory based on neutral surface 

position for FGM beams. 

Based on higher order shear deformation theories, studies 

on bending and vibration of FGM beams were performed. 

Aydogdu and Tashkin [7] studied the free vibration behavior 

of a simply supported FGM beam based on the first, 

parabolic, and exponential shear deformation beam theories, 

respectively, in which natural frequencies were obtained by 

the Navier type solution method. Şimşek [8] investigated the 

dynamic responses of functionally graded beams by different 

beam theories, in which a system of equations of motion was 
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derived by Lagrange’s equations. Mahi et al. [9] analyzed the 

free vibration of FGM beams with the temperature dependent 

material properties. The formulation was derived based on a 

unified higher order shear deformation theory. The effects of 

the initial thermal stress on the natural frequencies were also 

discussed. Thermal effect on wave propagation of 

functionally graded plates based on neutral surface position 

was studied by Boukhari et al. [10]. Bourada et al. [11] 

presented a new simple and refined trigonometric higher- 

order beam theory for bending and vibration analysis of FG 

beams with including the thickness stretching effect. 

The purpose of this work is to develop a simple and 

raffined higher-order shear deformation theory for free 

vibration behavior of beams. The proposed theory contains 

fewer unknowns and satisfies the zero traction boundary 

conditions on the top and bottom surfaces of the beam 

without using any shear correction factors. The displacement 

fields are chosen based on hyperbolic variation in the in-

plane displacements through the thickness. Partitioning the 

transverse displacement into the bending and shear 

components leads to a reduction in the number of unknowns, 

and consequently, makes the present theory much more 

amenable to mathematical implementation. Equations of 

motion are derived from Hamilton’s principle. Closed-form 

solutions are obtained for a simply supported beam. A good 

agreement between the present results and the available 

solutions existing in the literature are found to prove the 

validity of the proposed theory.  

1. THEORETICAL FORMULATIONS  

2.1 Material properties  

A functionally graded beam made of length L, width b and 

thickness h, with co-ordinate system (Oxyz) having the origin 

O is considered in this study. The beam geometry and the 

variation of material volume fraction across the beam 

thickness associated with the power law distribution are 

shown in figure 1. Based on the rule of mixture, the effective 

material properties, P, can be written as:  

( ) m m c cP z P V PV                                                               (1) 

where Pm, Pc, Vm and Vc are material properties and the 

volume fraction of the metal and ceramic respectively with 

the relation 

1m cV V                                                                             (2) 

According to the power law distribution, the volume 

fraction of ceramic can be written as 

1

2

p

c

z
V

h

 
  
 

                                                                     (3) 

where the positive number, 0 p   , is the power law or 

volume fraction index. The FG beam becomes a fully 

ceramic beam when n is set to zero. From the above 

relationship, the material properties, in terms of Young’s 

modulus and mass density are expressed as  

( ) ( )

( ) ( )

m c m c

m c m c

E z E E E V

z V   

  

  
                                               (4a-b) 

The Poisson’s ratio will assume to be constant in our study. 
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Figure 1. Geometry of a functionally graded beam and 

volume fraction profile. 

2.2 Basic assumptions 

The displacement field of the present theory is chosen 

based on the following assumptions: 

➢ The origin of the Cartesian coordinate system is 

taken at the neutral surface of the FG beam;  

➢ The transverse displacement is partitioned into 

bending and thickness stretching components;  

➢ The axial displacement is partitioned into extension, 

bending and shear components;  

➢ The bending part of the axial displacement is similar 

to those given by classical beam theory (CBT);  

➢ The shear part of the axial displacement gives rise to 

the hyperbolic variations of shear strains and hence to shear 

stresses through the thickness of the beam in such a way that 

the shear stresses vanish on the top and bottom surfaces of 

the beam.  

2.3 Kinematics and constitutive equations 

By considering the above hypothesis, the displacement 

field can be expressed as follow 

0( , , ) ( , ) ( )

( , , ) ( , ) ( , ) ( ) ( , )

b s

b s

w w
u x z t u x t z f z

x x

w x z t w x t w x t g z x t

 
  

 

  

                            (5) 

In this study, the shape functions f(z) and g(z) are chosen 

based on the hyperbolic function proposed by Zenkour [12].  
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The non-zero linear strains derived from Eq. (5) are  
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By assuming that the material of FG beam obeys Hooke’s 

law, the stresses in the beam become 

xzxz
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2.4 Equations of motion  

In order to derive the equations of motion, Hamilton’s 

principle is used 

  0   
0


T

dtKVU                                                              (10) 

where  ,U K and V    denote the strain energy, kinetic 

energy and the work done by external forces, respectively. 

The variation of the strain energy can be stated as 
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where the stress resultants QandMMN sbx ,,  are given by 
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(12) 

The variation of work done by externally transverse loads 

q can be expressed as  
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The variation of the kinetic energy can be expressed as 
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   (14) 

Substituting the expressions for δU, δV, and δK from Eqs. 

(11), (13), and (14) into Eq. (10) and integrating by parts, and 

collecting the coefficients of δu0, δwb, δws and δφ. The 

following equations of motion of the FG beam are obtained 
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Equations (15) can be expressed in terms of displacements 

(u0, wb, ws and φ) by using Eqs. (5), (7), (8) and (12) as 

follows 
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where  

 

 
 

where A11, B11, etc., are the beam stiffness, defined by 
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3. ANALYTICAL SOLUTIONS  

The equations of motion admit the Navier solutions for 

simply supported beams. The variables u0, wb, ws and φ can 

be written by assuming the following variations 

0
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where Um, Wbm, Wsm and Φm are arbitrary parameters to be 

determined, ω is the Eigen frequency associated with nth 

Eigenmode, and λ = mπ / L.  

For the beam with two ends simply supported, the 

boundary conditions are given by 

 

0 0,bu w M at x L                                                (19) 

Substituting the expansions of u0, wb, ws and φ from Eqs. 

(18) into the equations of motion Eq. (16) . The analytical 

solutions can be obtained from the following equations 
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4. NUMERICAL RESULTS AND DISCUSSION  

In the following computation, the material constituents of 

the FGM beam are considered to be composed by alumina 

and aluminum with the material properties as follows- 

Alumina (Al2O3): Ec = 380 GPa, ρc = 3960 kg/m3, ν = 0.3 - 

Aluminum (Al); Em = 70 GPa, ρm = 2702 kg/m3, ν = 0.3  

The dimensionless frequency is defined as 

 
2( / ) m mL h E    

 

To check the accuracy of the method used in this 

investigation, the non-dimensional frequencies ϖ computed 

by the present theory are compared with those of Ould Larbi 

et al. [13] and classical beam theory (CBT). 

 

Table 1. First three non-dimensional frequencies ϖ of FG beams 

 
L/h mode theory p 

0 0.5 1 2 5 10 

5 

1 

 

CBT 5.395 4.593 4.148 3.779 3.595 3.492 

HSDT [12] 5.153 4.411 3.990 3.626 3.400 3.281 

Present 5.166 4.434 4.026 3.670 3.437 3.304 

2 

CBT 20.619 17.541 15.798 14.326 13.588 13.238 

HSDT [12] 17.884 15.461 14.012 12.640 11.535 11.022 

Present 17.998 15.587 14.168 12.813 11.678 11.117 

3 

CBT 43.348 36.831 33.028 29.746 28.085 27.475 

HSDT [12] 34.225  29.849 27.108 24.319 21.699 20.555 

Present 34.556 30.168 27.459 24.676 21.985 20.753 

20 

1 

CBT 5.478 4.664 4.216 3.847 3.663 3.554 

HSDT [12] 5.460 4.651 4.205 3.836 3.648 3.539 

Present 5.466 4.669 4.238 3.879 3.685 3.560 

2 

CBT 21.844 18.598 16.810 15.333 14.596 14.168 

HSDT [12] 21.573  18.396 16.634 15.162 14.373 13.926 

Present 21.603  18.475 16.769 15.336 14.519 14.013 

3 

CBT 48.899 41.633 37.617 34.295 32.636 31.688 

HSDT [12] 47.594 40.653 36.769 33.468 31.572 30.534 

Present 47.686 40.845 37.079 33.863 31.903 30.737 

 

Table 1 presents the first three non-dimensional 

frequencies of FG beams for different values of power law 

index k and span-to-depth ratio L/h. Results are in good 

agreements with the published results of Ould Larbi et al.  

 

 

[13]. The small difference observed between the results 

obtained by the present theory and Ould Larbi et al. [13] is 

due to the effect of thickness stretching which is omitted this 

latter. It can be observed also that there is a remarkable 
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difference between the frequencies of CBT and those of shear 

deformable beam theories for thicker FG beam.  

The variation of natural frequencies in terms of the power-

law index and side-to-thickness ratio is plotted in figure 2. It 

can be seen from this figure that the natural frequencies 

decrease with the increase of the power-law index. It is due 

to the fact that a higher value of p corresponds to lower value 

of volume fraction of the ceramic phase, and thus makes the 

plates become the softer ones. 
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Figure 2. Effect of the power-law index p and side-to-

thickness ratio L/h on the natural frequency ϖ of Al/Al2O3 

beam 
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Figure 3. Variation of the non-dimensional fundamental 

frequency of FG beam with power-law index p and side-to-

thickness ratio L/h. 

 

Figure 3 shows the non-dimensional fundamental natural 

frequency versus the volume fraction exponent p for different 

values of span-to-depth ratio L/h. It can be seen from this 

figure that the full ceramic beams (p=0) lead to a highest 

frequency. However, the lowest frequency values are 

predicted for the full metal (p →∞). This is due to the fact 

that an increase in the value of the volume fraction exponent 

results in a decrease of the value of the elasticity modulus. In 

other words, the beam becomes flexible as the power law 

exponent increases. Therefore, as also known from 

mechanical vibrations, natural frequencies decrease as the 

stiffness of a structure decreases. 

5. CONCLUSION 

The free vibration response of FGM beams is studied 

based on the higher-order shear deformation theories. This 

method considers both the shear deformation and thickness 

stretching effects by a hyperbolic distribution of all 

displacements through the thickness and without introducing 

a shear correction factor. The equations of motion for the 

functionally graded beams are derived from Hamilton’s 

principle. The dimensionless frequencies are presented for 

the FGM beams with the material properties varying 

continuously in the thickness direction according to power-

law form. The effects of the slenderness ratio, the material 

gradient parameters on the frequencies are examined in detail. 

The results are validated by comparing them with the results 

of other researcher. The numerical results show that the 

effects of the shear deformation on the frequencies tend to be 

more significant when the beams become shorter (or thicker). 

Furthermore, for a given length-height ratio, the shear 

deformation effects are more evident for higher-mode 

frequencies than for lower-mode frequencies. 
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NOMENCLATURE 

 

b Width, mm 
C Stiffness coefficient ,  

E Young’s modulus, N.m-2 

h Thickness, mm 

I inertia term 

K kinetic energy, J 

L Length, mm 

P Material property 

q external forces, kN 

u Axial displacement, mm 

U strain energy, J 

V work done, J 

w Transverse displacement, mm 

Greek symbols 

 

 Normal strain  

 Shear strain, rad 

σ Normal stress, N.m-2 

 Shear stress, N.m-2 

ω Frequencie Hz 

ρ Mass density kg. m-3 

ν Coefficient de Poisson 

∂ differentiation 
δ variation 

Ñ  Laplacian operator 

Superscripts 

 

p Power law index 

i fluid (pure water) 

t temps 

. differentiation with respect to the 
time variable  

Subscripts 

 

b Bending  

c ceramic  

n mode 

m metal 

s Shear  
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