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Considering the importance of time in today's world and the rising traffic congestion in 

urban areas, using methods to reduce wait times and air pollution can have a significant 

impact on promoting urban management. Given the uncertainty in the number of vehicles 

and the emission rate of vehicles, a complex T intersection with three traffic lights was 

simulated in this study. Three objective functions were defined for the mean of wait time, 

average queue length, and aggregate pollutant emission of the vehicles in queue. First, 

regression equations for each of the variables were obtained by a full factorial design and 

analysis of variance, and the optimal period for each traffic light was then computed with 

a utility function approach. Finally, the results were compared to the results obtained from 

the optimization of each response variable OptQuest for Arena software. 
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1. INTRODUCTION

In the twentieth century, a large number of vehicles and 

population increase has led to a decrease in the effectiveness 

of urban passageways. The improvement of transport 

networks is largely limited by the boundary of the existing 

networks [1]. Nowadays, cities have to deal with traffic 

congestion caused by an increase in the number of vehicles 

and the need for transportation [2]. Solving problems such as 

traffic congestion, air pollution, and fuel waste, which are 

caused by traffic, are of great importance [3]. Fuel 

consumption is also a significant parameter; for example, in 

the United States drivers spend 40 hours per year stuck in 

traffic. The cost of the fuel that is used in these 40 hours is 

about 87 billion dollars per year [4]. Pollution is also one of 

the permanent problems in today's world [5]. A study has been 

conducted on bus drivers to detect the probable damages to 

DNA. Traffic congestion has adverse effects on human health, 

especially in big cities [6]. In industrialized countries, and 

especially in major cities, air pollution is one of the factors that 

affect the population and is associated with many diseases 

such as cancer [7, 8]. Another issue is the time people waste in 

traffic. An origin and destination study were conducted to 

investigate this wasted time [9]. Simulation is one of the most 

common methods for analyzing and solving problems in a 

complex transport network [10]. Bieker et al. [11] presented a 

scenario for Bologna's traffic that could be used as a source for 

more research. The semantic language of the Web is studied 

as well [12]. The amount of deviation from molecules’ 

mechanical force is also examined to simulate the structure 

[13]. Five software programs were used to evaluate the 

simulation of several models [14]. A multi-agent simulation 

environment that could be generalized for Java programming 

is presented [15]. Balci [16] presented a large-scale model to 

determine the quality of the application of modeling and 

simulation. Simulation is also of importance in health and 

medicine. Simulating a Glucose-insulin system, which was 

done by Dalla et al. [17], can greatly help diabetic patients. 

Analysis of different approaches and evaluation of their effects 

in a clear and comprehensible way is also possible through 

simulation. Selecting the right software is an important issue 

as well. Among various software programs, a great number of 

researchers have used Arena; for instance, this software was 

used to simulate the design and analysis of a coastal town [18]. 

Bush et al. presented a technique that utilizes both 

optimization and simulation [19]. An automated driving 

system for vehicles is simulated with regard to JIT philosophy 

by Kesen et al. [20]. Arena Software is used for reliability and 

simulation in health systems [21]. One of the most common 

uses of Arena is in modeling different types of transportation. 

Almaz et al. have provided a model for Vessel Traffic [22]. 

The simulation of the transportation of cargo in Sevia, a port 

city, is also noteworthy [23]. Arena has been used for the 

simulation of the Newcastle railway network and to show the 

efficiency of railways [24]. Through simulation modeling in 

Arena, the amount of use of various parts of the railway was 

computed [25]. Due to time change, fuzziness, and non-

linearity, artificial intelligence is used in traffic control [26]. 

D’Ambrogio et al. have presented a method to help designers 

simulate traffic systems [27]. The traffic flow in a T-shaped 

intersection is simulated using Monte Carlo techniques [28]. 

Arena software is also used to simulate a T-shaped intersection 

[10], the intersection is then studied in two different situations: 

with and without traffic lights. The results were encouraging; 

thus, Arena can be used as a tool to model various 

transportation issues and find a solution for the problems. 

Arena is used to model a traffic signal system [29]. As 

mentioned before, simulation is done to model many types of 

traffic and analyze the solutions. Since Arena is easily 

available for researchers, the present study has selected this 

software for simulation. The comprehensiveness of Arena also 

lends to its use for purposes other than production, which was 

another reason that we decided to use this software.  

The literature review reveals that most articles only study 
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queues at intersections and are not concerned with issues such 

as pollution. They also merely use mathematical models and 

as a result, uncertainty factors are investigated less. Therefore, 

the present study attempts to use these two methods 

simultaneously. Thus, parameters such as entry rate for each 

of intersection entrances and the amount of emission per 

vehicle are regarded as probable variables. The amount of 

emission for various vehicle types is also separately 

considered. Figure 1 shows a schematic abstract of the 

problem.  

In this study, we have simulated a T-shaped intersection in 

the city of Bojnourd, using Arena software. Intersections are 

one of the most common areas in which traffic congestion 

happens. As mentioned, many solutions to reduce traffic at 

crossroads and intersections have been proposed, but 

simulation and the analysis of simulated conditions can 

provide very useful information with minimal cost and trial 

and error. These two features of simulation distinguish it and 

make it very important in transportation issues, as these issues 

are quite complex and costly. The simulation gives us a 

systematic view, which can help provide new solutions. 

This paper is organized as follows. We present a description 

of the Proposed Approach, Selected methods, and evaluation 

metrics used to compare the algorithms in Section 2. Section 

3 presents three mathematical models. Section 4 concludes the 

simulation model and results. Section 4 presents the design of 

experiment (DOE) and regression Equations for optimization. 

Section 6 concludes the Optimization approach for desirability 

function as well as discussing the advantages and 

disadvantages of the selected methods. The main contribution 

is the optimization of three objectives function average wait 

time, the average number of vehicles in the queue, and total 

Pollutant emission simultaneous by using experiment design 

and simulation-based on desirability functions. 

 

 
 

Figure 1. Schematic abstract 

 

 

2. THE PROPOSED APPROACH 
 

The present study attempts to provide an optimal approach 

for finding the best time intervals for traffic lights. As all 

events in an intersection have probable times and uncertainty, 

using a mathematical model is difficult, as a result, we have 

used a simulation to investigate the contributing factors. A 

complex intersection with a 3-phase traffic light was selected 

for simulation. 
 

 
 

Figure 2. The proposed approach 
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Given that all the events that happened at an intersection are 

uncertain in terms of time, using a mathematical model is 

rather difficult. Hence, a simulation model is used for different 

factors. In this study, a complex intersection with three-phase 

traffic lights is simulated. As shown in Figure 2, first we 

defined a mathematical model for the objective functions. 

Because of the probability of parameters, the simulation was 

used. The central points of the response variables were studied 

by the use of a two-stage full factorial design, and for each of 

the objective functions, a mathematical regression model was 

provided. Next, a desirability function was used to find the 

optimal response for each of the three response variables. 

Ultimately, the obtained responses were used as initial 

responses to optimize each of the objective functions in 

OptQuest software and the results were analyzed.  

OptQuest is a generic optimizer in ARENA software that 

makes it possible to separate successfully the optimization 

solution procedure from the simulation model. This design 

adaptation of meta-heuristic methods lets you create a model 

of your system that includes as many elements as necessary to 

represent the “real thing” accurately. While the simulation 

model can change and evolve to incorporate additional 

elements, the optimization routines remain the same. Hence, 

there is a complete separation of the model that represents the 

system and the procedure that solves optimization problems 

defined within this model, which provides maximum 

efficiency in identifying new scenarios. the advantages of 

OptQuest are Efficient, Intelligent, Flexible, and Aggressive. 

 

 

3. MATHEMATICAL MODEL AND OBJECTIVE 

FUNCTIONS 

 
To optimize the model, a mathematical model is presented. 

This model has three objective functions. The first objective is 

to minimize the average wait time. Minimizing the average 

number of vehicles in the queue is also very important. 

Pollutant emission is also the third objective in this model. 

 

𝑇𝑊𝑇 = 𝑀𝑊𝑇𝑎1 + 𝑀𝑊𝑇𝑎2 + 𝑀𝑊𝑇𝑏1

+ 𝑀𝑊𝑇𝑏2+𝑀𝑊𝑇𝑏3 + 𝑀𝑊𝑇𝑐2

+ 𝑀𝑊𝑇𝑐3 

(1) 

 

𝑇𝑁𝑄 = 𝑀𝑁𝑄𝑎1 + 𝑀𝑁𝑄𝑎2 + 𝑀𝑁𝑄𝑏1

+ 𝑀𝑁𝑄𝑏2+𝑀𝑁𝑄𝑏3 + 𝑀𝑁𝑄𝑐2

+ 𝑀𝑁𝑄𝑐3 

(2) 

 

𝑇𝐸 = 𝐸𝑎1 + 𝐸𝑎2 + 𝐸𝑏1 + 𝐸𝑏2+𝐸𝑏3 + 𝐸𝑐2 + 𝐸𝑐3 (3) 

 

𝐸𝑎1 = ∑𝑟𝑖𝑤𝑡𝑖

𝑛𝑎

𝑖=1

 (4) 

 

Eq. (1) shows the mean of wait time for all intersections, 

which is obtained from the sum of all means of wait times in 

different lines. Eq. (2) shows the mean the number of cars 

waiting in the queue, which is the sum of means in different 

lines. Eq. (3) shows the total amount of emissions created by 

vehicles. Eq. (4) shows the aggregate pollutant emission of the 

vehicles in the queue, which is the sum of emissions by each 

vehicle. The amount of emission of each vehicle is obtained 

by multiplying the vehicle wait time by its emission rate. To 

obtain the amount of emission of each vehicle, we used the 

Euro 4 standard, which is the standard currently used in Iran. 

Table 1 shows the amount of emission for each vehicle per 

minute in four main categories based on European emission 

standards [30]. 

 

Table 1. Emission rate by Euro 4 Standard 

 
Row Date CO NOx HC+NOx PM g/Km g/min 

Category 1 Jan-05 0.5 0.25 0.3 0.03 1.43 1.075 

Category 2 Jan-05 0.5 0.25 0.3 0.03 1.43 1.075 

Category 3 Jan-06 0.63 0.33 0.39 0.04 1.85 1.39 

Category 4 Jan-06 0.74 0.39 0.46 0.06 2.20 1.65 

 

 

4. SIMULATION  

 

The following set of hypotheses were considered in our 

simulation. 

1. No accident or breakdowns results in a stop. 

2. The cars that are going towards the exits will not get in 

any queues. 

3. The cars in the queue of the last line of C will only move 

into B, and the car in the queue of the middle line of C will 

only move into A (those who want to follow a straight line in 

C will move on through the first line of C, without getting into 

any queues).  

4. If the cars wait more than 90 seconds, 90% of the drivers 

will turn their cars off to reduce emissions. 

5. The four types of vehicles entering the intersection are in 

accordance with the Euro standard. 

Figure 3 shows a schematic plan of the intersection. Based 

on the above-mentioned explanations and a real model, the 

present study presents a simulation model generated by Arena 

software, as shown in Figure 4. Each of the modules used in 

the model is discussed as follows. 

 

 
 

Figure 3. Schematic of the simulated location 
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Figure 4. Simulated model 

 

Figure 4 shows the model which is simulated for the 

intersection. It consists of four main parts: three of which (A, 

B, and C) are the main intersection entrances and the other one 

is the time length of each traffic light. Each one of the entrance 

simulation models has a sub-model that Appendix1 shows it. 

 

4.1 Warm-up 

 

Considering that the results of a simulation cannot be used 

until the model reaches a stable state, obtaining the WU time 

is very important. As such, a graph (Figure 5) is used to show 

the approximate time of reaching a stable state. The horizontal 

index presents the time and the vertical index, the mean the 

number of vehicles in queue. As shown, the stable state 

happens after about 40 minutes. This period is considered as 

WU. 

 
 

Figure 5. Warm up period 

5. EXPERIMENTS DESIGN 

 

The main purpose of the design of experiment (DOE) is to 

obtain the maximum amount of data with a minimum number 

of experiments 

 

5.1 Obtaining high and low levels 

 

To obtain the high and low levels for each decision, Opt 

Quest software was used for each decision variable. To this 

purpose, we assumed that the objective of the whole 

simulation is to minimize the wait time for each of the decision 

variables. To minimize the mean, wait time, the decision 

variable must be at its highest value. The value of -1 was 

assigned for the low level of each decision variable; thus, -1 is 

the minimum time required for a vehicle to cross the 

intersection. The high and low levels for each of the decision 

variables are shown in Table 2. 

 

Table 2. High and low levels of the variables 

 

 High level Low level 

Time a 260 9 
Time b 400 9 
Time c 470 9 

 

5.2 Design of experiments 

 

To do the experiments, a full-factorial design was used with 

3 decision variables. The experiment was simulated four times 

for the central points and each of the corners, and the results 

are shown in Tables 3, 4, and 5. 

 

Table 3. Results of simulations for design of experiments for mean of wait time 

 

time a time b time c 
Total waiting time(min) 

Replication1 Replication2 Replication3 Replication4 

-1 -1 -1 3.1707 3.1523 3.6739 3.1721 

1 -1 -1 1,937.72 1,939.26 1,954.31 1,933.73 

-1 1 -1 1,543.39 1,568.49 1,555.31 1,552.42 

1 1 -1 859.01 854.68 846.05 855.80 

-1 -1 1 1,963.95 1,952.34 1972.21 1,950.94 

1 -1 1 1,249.96 1,247.40 1,259.39 1,247.63 

-1 1 1 831.14 831.11 826.09 824.11 

1 1 1 39.9175 42.7596 48.1784 46.0691 

0 0 0 24.0286 30.3630 29.7507 23.3526 
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Table 4. Results of simulation for design of experiments for mean of number of vehicles in queue 

 

time a time b time c 
Total number in queue 

Replication1 Replication2 Replication3 Replication4 

-1 -1 -1 9.2097 10.1411 9.4696 10.9055 

1 -1 -1 7,967.61 8,131.74 8,082.71 8,007.59 

-1 1 -1 5,815.35 5,927.18 5,937.46 5,929.42 

1 1 -1 4,387.88 4,432.48 4,464.65 4,477.32 

-1 -1 1 5,827.67 5,826.43 5,864.84 5,755.47 

1 -1 1 4,324.84 4,387.62 4,313.66 4,492.83 

-1 1 1 1,788.16 1,872.16 1,863.22 1,819.59 

1 1 1 82.4994 102.42 120.87 134.01 

0 0 0 52.5650 106.57 60.9502 71.9519 

 

Table 5. Results of simulation for design of experiments for the aggregate emission 

 

time a time b time c 
Total emission(gram) 

Replication1 Replication2 Replication3 Replication4 

-1 -1 -1 4,157.83 4,259.82 4,147.35 4,214.76 

1 -1 -1 33,341.03 28,182.85 33,295.75 30,727.49 

-1 1 -1 20,797.25 16,121.83 20,700.04 14,442.45 

1 1 -1 7,790.56 10,790.15 8,074.65 10,927.50 

-1 -1 1 17,726.63 17,665.41 17,041.98 18,356.61 

1 -1 1 12,518.55 9,301.62 8,411.55 10,190.79 

-1 1 1 7,255.96 8,081.18 9,187.53 6,076.61 

1 1 1 5,085.93 7,275.59 6,025.86 5,319.77 

0 0 0 4,018.05 4,175.02 4,135.41 4,041.14 

5.3 Results of design of experiments 

 

To verify the design variables, a two-stage full factorial 

design with central points is used. Table 6 shows the results of 

the three objective functions. 

 

Table 6. Analysis of variance total emission total number in queue total waiting time 

 
 total emission Total number in queue total waiting time 

 Coef P-Value Coef P-Value Coef P-Value 

Constant 1054.58 0.000 3818.04 0.000 13047 0.000 

time a -31.96 0.000 426.38 0.000 1157 0.001 

time b -234.30 0.000 -745.88 0.000 -2800 0.000 

time c -33.75 0.000 -782.03 0.000 -2702 0.000 

time a*time b -339.26 0.000 -1223.28 0.000 -3743 0.000 

time a*time c -341.20 0.000 -1217.55 0.000 -3486 0.017 

time b*time -350.36 0.000 -1317.27 0.000 -757 0.000 

time a*time b*time c 320.48 0.000 1151.54 0.000 5210 0.000 

 

 
A= total in queue 

 
B= total waiting time 

795



 

 
C= total emision 

 

Figure 6. Distribution of errors 

 

5.4 Normality test 

 

The normal graph is drawn for each of the errors (Figure 6). 

As the images show, the errors are approximately on a 

straight line in each case. This indicates the normality of errors 

for any of the response values. Statistical tests could also be 

used to examine the claims. 

 

5.5 Dispersion index 

 

 
A= total in queue 

 
B= total waiting time 

 
C= total emision 

 

Figure 7. Dispersion of errors 

 

Another index to take into account is the equality of 

distribution of errors for each of the stages. As shown in Figure 

7, a slight difference in dispersion levels can only be seen for 

the emission response. However, these values are not 

considerable and the distribution in each stage is 

approximately equal for the other two responses, and there are 

no outliner data. 

 

5.6 Correlation 

 

 
A= total in queue 

 
B= total waiting time 
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C= total emision 

 

Figure 8. Correlation errors for each response variable 

 

The lack of correlation or any specific relations in the data 

should also be considered. As shown in Figure 8, the data is 

distributed randomly, and there is no special correlation for 

any of the responses.  

As each of the response variables has the required features 

to use the experiment design and regression lines, we can use 

the obtained results. To investigate the decision variables, a 

two-stage full factorial design with central points is applied. 

The results for the three objective functions are shown in Table 

6. 

 

5.7 Analyzing the effect of each factor on response 

variables 

 

Figure 9 shows the main as well as the interaction effect of 

each factor on the response variable of the number of vehicles 

in the queue. There is an interaction between each of the three 

decision variables. Considering the main effect of each factor 

in minimizing the number of cars in queue, the number of cars 

in time A should be at a low level, and time B and C, at a high 

level.  

Figure 10 shows the main and interaction effect of each 

decision variable on the mean of wait time. As seen, 

interaction is present in all factors in the response. The 

decision variables A and C have an insignificant effect and the 

responses in various levels are not much different.  

 

 

 
 

Figure 9. Interaction effect of the decision variables on 

response variable of number of cars in queue 

 

 

 
 

Figure 10. Interaction effect of the decision variables on 

response variable of mean of time 

 

Figure 11 shows the main and interaction effects of decision 

variables on the response variable of the amount of emission. 

As seen, the decision variables A and B, as well as A and C do 

not have a significant interaction effect.  
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Figure 11. Interaction effect of the decision variables on 

response variable of total emission 

 

Figure 12 shows the factors affecting each of the response 

variables. All of the decision variables and their interaction 

effect on each other have a main effect on all of the response 

variables.  

  

 

 

 
 

Figure 12. Factors affecting each response variable 

 

5.8 Regression equations 

 

A regression model is used to predict each of the objective 

functions. The regression model consists of a first-order 

regression and the interaction effect between them [31]. 

A general model for the first-order regression with three 

factors and the relationship between the factors is shown in the 

Eq. (5). 

 

𝐷 = 𝛽0 + ∑𝛽𝑖𝑥𝑖

3

𝑖=1

+ ∑ 𝛽𝑖𝑗𝑥𝑖

3

𝑖=1,𝑖<𝑗

𝑥𝑗+∈ (5) 

 

Based on the results of ANOVA and the design of 

experiments, a regression equation is defined for each of the 

objective functions. The regression equation of the mean of 

total waiting time is shown in Eq. (6) and the mean of total 

vehicles in the queue is shown in Eq. (7). The total amount of 

emission is shown in Eq. (8). 

 

𝑇𝑊𝑇 = 1054.58 − 31.96 × 𝑎 − 234.30 × 𝑏
−  33.75 × c −  339.26 × a × b 
−  341.20 × a × c 
−  350.36 × b × c
+  320.48 × a × b × c 

(6) 
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𝑇𝑁𝑄 = 3818.04 + 426.38 × 𝑎 −  745.88 × 𝑏 
−  782.03 × 𝑐
−  1223.28 × 𝑎 × 𝑏 
−  1217.55 × 𝑎 × 𝑐
−  1317.27 × 𝑏 × 𝑐 
+  1151.54 × 𝑎 × 𝑏 × 𝑐 

(7) 

 

𝑇𝐸 = 13047 + 1157 × 𝑎 −  2800 × 𝑏 
−  2702 × 𝑐 −  3743 × 𝑎 × 𝑏 
−  3486 ×  𝑎 × 𝑐 
−  757 ×  𝑏 ×  𝑐 
+  5210 ×  𝑎 ×  𝑏 ×  𝑐 

(8) 

 

 

6. OPTIMIZATION APPROACH FOR DESIRABILITY 

FUNCTION 

 

When the optimization procedure involves more than one 

response variable, it cannot be optimized separately [32]. One 

of the methods that are widely used for multi-objective 

optimization is the desirability function approach [32]. This 

approach attempts to simultaneously minimize the distance 

from the optimal solution for each of the response variables. 

Since our objective is to minimize or maximize the response 

variable, we define a separate desirability function for each of 

the response variables. To maximize the response variable, Eq. 

(9) is used, and to minimize it, Eq. (10) is applied. In these 

equations, 𝐿𝑖 and 𝑈𝑖 show the minimum and maximum limit 

of each response variable. T and s indicate the significance of 

each response variable. 

 

𝑑𝑖(�̂�𝑖(𝑥))

=

[
 
 
 
 

0 �̂�𝑖(𝑥) < 𝐿𝑖  اگر 

(
�̂�𝑖(𝑥) − 𝐿𝑖

𝑈𝑖 − 𝐿𝑖

)

𝑠

𝐿𝑖 ≤ �̂�𝑖(𝑥) ≤ 𝑈𝑖 اگر 

1 �̂�𝑖(𝑥) > 𝑈𝑖 اگر  ]
 
 
 
 

 
(9) 

 

𝑑𝑖(�̂�𝑖(𝑥))

=

[
 
 
 
 

1 �̂�𝑖(𝑥) < 𝐿𝑖  اگر 

(
𝑈𝑖 − �̂�𝑖(𝑥)

𝑈𝑖 − 𝐿𝑖

)

𝑡

𝐿𝑖 ≤ �̂�𝑖(𝑥) ≤ 𝑈𝑖 اگر 

0 �̂�𝑖(𝑥) > 𝑈𝑖 اگر  ]
 
 
 
 

 
(10) 

 

To optimize the two response variables simultaneously, the 

total desirability function is defined concerning Eq. (11). 

 

𝐷 = (𝑑1(𝑥) × 𝑑2(𝑥) × … × 𝑑𝑘(𝑥))
1
𝑘 (11) 

 

6.1 Optimization case study 

 

The present study applies the desirability function approach 

described above. In this approach, the desirability function for 

each response variable is obtained and the total desirability 

function is then defined. 

 

𝑑(𝑇𝑊𝑇) =

2060 − (1054.58 −  31.96 × a −  234.30 × b −  33.75 × c −  339.26 × a × b − 

341.20 ×  a × c −  350.36 × b × c +  320.48 × a × b × c)

2060 − 180
 

 

𝑑(TNQ) =

8877 − (3818.04 +  426.38 × a −  745.88 × b −  782.03 × c −  1223.28 × a × b − 

1217.55 × a × c −  1317.27 × b × c +  1151.54 × a × b × c)

8877 − 1091
 

 

𝑑(𝑇𝐸) =

33341 − (13047 +  1157 × a −  2800 × b −  2702 × c −  3743 × a × b 
− 3486 ×  a × c −  757 ×  b ×  c +  5210 ×  a ×  b ×  c )

33341 − 4018
 

 

𝐷 = [(

2060 − (1054.58 −  31.96 × a −  234.30 × b −  33.75 × c −  339.26 × a × b − 
341.20 ×  a × c −  350.36 × b × c +  320.48 × a × b × c)

2060 − 180
)

× (

8877 − (3818.04 +  426.38 × a −  745.88 × b −  782.03 × c −  1223.28 × a × b −  1217.55 × a × c
− 1317.27 × b × c +  1151.54 × a × b × c)

8877 − 1091
)

× (

33341 − (13047 +  1157 × a −  2800 × b −  2702 × c −  3743 × a × b 
− 3486 ×  a × c −  757 ×  b ×  c +  5210 ×  a ×  b ×  c )

33341 − 4018
)]

1
3

 

 

Table 7. Results of desirability function optimization 

 

 a b c 
Results from regression 

D TWT TNQ TE 

TWT TNQ TE 9 9 9 0.9979 3.2 9.9 4194 

TWT   134.5 204.5 239.5 0.9975 - - 4092 

 TNQ  9 9 9 0.9999 - 9.9 

-
 

  TE 9 9 9 0.9999 3.2 - 

-
 

 

799



To optimize the total desirability function, Lingo software 

was used. The results are shown in Table 7.  

Each of the objective functions was optimized separately 

(the results are presented for comparison). The result of 

optimization by OptQuest software is also provided for 

comparison. These results were tested in the simulation model 

(Table 8). 

As seen in Tables 7 and 8, only when the objective is to 

minimize the TWT, the result of optimization using Opt Quest 

software is better. In other cases, the result of desirability 

function optimization is better. 

 

Table 8. Results of the optimization by using Opt quest, 

Results from Opt Quest 

 

 a b c 

Results from Opt 

Quest 

TWT TNQ TE 

TWT   9 9 17 2.02 5.07 4431 

 TNQ  9 9 17 2.02 5.07 4431 

  TE 178 227 315 24 53 3595 

 

 

7. CONCLUSION 

 

The present study attempted to use a desirability function 

along with simulation to calculate the optimal intervals for a 

traffic light at an intersection. A new approach with combining 

the design of experiments, simulation, and desirability 

function was presented. Given that most of the parameters are 

in a state of uncertainty, to obtain the required information, 

Arena software was used to simulate a complex intersection. 

Also, we attempted to minimize the waiting time and the queue 

length, as well as the amount of emission at an intersection. To 

this purpose, first, the regression equations for each of the 

response variables were obtained through the design of 

experiments and a full-factorial design, and then a desirability 

function approach was applied to find the optimal amount of 

time for each traffic light at the intersection. Finally, the results 

were compared for each objective function using Arena 

OptQuest software 
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