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The Vehicle Routing Problem (VRP) is among the most studied optimization problems in 

the field of supply chain management. Typically, VRP requires dispatching a fleet of 

vehicles from a central depot to deliver demand to pre-determined spatially dispersed 

customers, with the objective of minimizing the total routing cost, and the constraint of 

not exceeding vehicles’ capacities. Agent Based Modelling (ABM) assists industries in the 

use of technology to support their decision-making process. This paper proposes a model 

of an Agent Based Vehicle Routing Problem System. The system under study is modelled 

using the Unified Modelling Language 2.0 (UML 2.0). The aim of the proposed model is 

to exploit the clear visualization provided by UML and the detailed view of the Agent-

based modelling, in order to propose a new modeling perspective for the classic VRP. The 

paper covers the System initiation phase, in addition to, the functional, behavioral, and 

structural models. 
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1. INTRODUCTION

The Unified Modeling Language (UML) has a remarkable 

impact on how software systems are constructed since its 

standardization in 1997 [1, 2]. The role of modeling in 

specifying and documenting complicated software systems is 

currently recognized, and software engineering's industrial 

strategy is on its course to becoming reality. With the adoption 

of UML, a fresh generation of methods have also appeared. 

Those methods use UML to illustrate the system’s architecture 

and requirements engineering. UML is being used to aid 

various industries in modelling. For instance, returned goods 

has commonly been seen for years as a burden for both 

vendors and customers. Many organizations and companies 

recognize reverse logistics; the motion of products back up the 

supply chain. Major environmental concerns have been the 

motive to launch the reverse logistics domain. Moreover, 

companies have found that reverse logistics plays a major role 

in attaining “green supply chains” [3]. Building a practical 

reverse logistics management system is expected to realize 

high efficiency reverse logistics operations. In addition, it can 

also create a modern alternative for information management. 

UML has been helpful in developing the information system 

for reverse logistics, for example, UML modeling of capacity 

for life-cycle of products [4, 5].  

The classical Vehicle Routing Problem (VRP) is the 

problem of determining several routes for a fleet of vehicles 

that are placed at one or several depots. The vehicles are 

required to serve pre-determined customers that are 

geographically dispersed. The objective of the VRP is to 

deliver to all customers with minimum cost. Dantzig et al. [6] 

proposed the first mathematical programming formulation and 

algorithmic approach to represent and solve the problem. They 

also described VRP with a real-world application concerning 

the delivery of gasoline to service stations. Clarke and Wright 

proposed an effective greedy heuristic that improved on the 

Dantzig-Ramser approach [7]. After these two papers, many 

models and algorithms are proposed for the optimal and 

approximate solutions of different variants of the VRP [8-12]. 

VRP has several applications in various industries. VRP is 

used to aid the ambulance service, disaster relief, and the blood 

program to efficiently respond in the shortest time to critical 

situations [13, 14]. A survey on the applications of the problem 

on the different elements of the “transport chain” within and 

outside the port is introduced [15]. Moreover, the paper depicts 

the increasing need to a heightened efficiency at the different 

portals. This is to be done while taking into consideration the 

complexity of managing a terminal’s logistics operations. 

Terminal’s interactions with other terminals and ports are 

noted as well.  

Agent-based Modeling (ABM) is an important technique of 

modeling systems composed of independent communicating 

agents [16]. An increasing number of Agent-based 

applications in diverse areas have been made possible through 

computer developments. Applications greatly vary. For 

instance, ABM is used in modelling stock market mapping [16, 

17] and supply chains [18-20]. In addition, anticipating the

spread of disease outbreaks [21] and the danger of using

biological beings as weapons in wars [22]. Agent-Based

concepts are also typically implemented in microscopic

modeling of systems where common activities are represented

by independent decision-makers, mostly humans [23]. An

Agent-based model for sustainable logistic ideas in courier

services is provided by Meyer [24].

Agent-based VRP has been addressed by Komenda et al. 

[25]. The authors illustrate Contract-Net Protocol (CNP) based 

approach. For every task, the best Vehicle Agent is selected 

according to insertion estimation satisfying capacity 

constraints. This strategy contains no backtracking and in case 

of allocation failure, due to capacity constraint of Vehicle 
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Agents, the whole process restarts with a higher number of 

Vehicles. Moreover, capacity backtracking strategy is based 

on the CNP strategy, but with backtracking in case of 

allocation failure. In case no Vehicle Agent can undertake a 

new task because of the capacity constraint, the best Vehicle 

Agent is selected regardless of capacity limitations. 

Several research articles discuss UML Modelling within the 

context of supply chain management. Other research articles 

address Agent-Based VRP. However, to the best of our 

knowledge, no research has been done to investigate modeling 

VRP using UML. Furthermore, no research has been done on 

modelling Agent-based VRP using UML. Due to the 

importance of Agent-based VRP and UML visualization 

capabilities, this work presents UML diagrams to model 

Agent-based VRP. The aim of the paper is to aid in the 

visualization of VRP from an Agent-based perspective, 

instead of the optimization of the solution. Hence, the 

modeling approach adopted to represent the problem defined 

in this work is the UML approach, and not the classical 

mathematical programing modelling approach. 

The rest of the paper is organized as follows; Section 2 

provides problem statement, Section 3 illustrates the different 

UML models, while Section 4 concludes the paper. 

 

 

2. PROBLEM STATEMENT 

 

The vehicle routing problem modeled in this work is defined 

as the problem of finding the minimum distance to travel using 

a fleet of identical vehicles to satisfy demands of a group of 

customers. The fleet of vehicles is located at a central depot, 

where customers’ demands are available. A vehicle starts its 

trip from the central depot, visits its assigned customers for 

delivery of demands, and end the trip back at the depot. Each 

vehicle has a limited capacity that cannot be violated. The 

objective is to minimize the total distance travelled by all 

vehicles while serving all customers.  

The VRP falls into the class of NP-hard problems as 

mentioned by Kassem et al. [9]. As a result, it is challenging 

to find a solution for practical size VRP instances in 

reasonable time.  

The Agent-based VRP concept relies on dividing the 

problem into sections and having an agent responsible of each 

section. In this paper, there are four sections to the problem. 

The “demand points location and demand collection” section, 

where an agent called “Demand Points Agent” is responsible 

for. The “sortation and evaluation of different tasks”, i.e., 

deliveries, and this is the responsibility of the “Task Agent”. 

The “allocation of different demand points to clusters, or 

partitions” is another section and the “Allocation Agent” is 

responsible for. Finally, the “Vehicle Agent” is responsible for 

the section “determining the optimum route”. The paper does 

not rely on a mathematical representation of the problem. This 

is because the objective of this work is to model VRP from a 

different perspective that relies on visualization. The aim is to 

aid in software implementation rather than the typical route 

optimization associated with VRP. 

Figure 1 shows an Integration Definition0 (IDEF0) to 

illustrate the problem and depict a clearer view of the purpose 

of the model. The inputs are the quantity of Demand Points 

locations and their corresponding Demand and the minimum 

Number of Vehicles that can be utilized. On the other hand, 

the Dynamic Route is the output. The route is considered 

dynamic because it might change according to the route 

congestion. The controls that direct the activities in the process 

are the maximum vehicles’ capacity, Tasks Sorting Strategies, 

and Allocations Strategies. The Vehicles’ capacity is 

determined by the vehicles, while the Tasks Sorting Strategies, 

and Allocations Strategies are determined according to the 

depot’s strategy, which is one of the following: Most Demand 

First (MDF), Least Demand First (LDF), or First in First Out 

(FIFO). Finally, the mechanisms required to complete the 

process are Equipment and Technology. 

The system begins with the Demand Points Agent 

determining customers’ locations and their corresponding 

demands. The Task Agent (TA) sorts demand points according 

to the depot’s strategy, namely, Most Demand First (MDF), 

Least Demand First (LDF), or First in First Out (FIFO). Then, 

the Allocation Agent (AA) clusters the demand points into 

independent clusters according to depot’s strategy, as well, 

such that each cluster is served with one vehicle. The 

Allocation Agent clusters orders through two phases. In the 

first phase, a feasible solution is obtained using one of two 

strategies, which are Contract-Net Protocol (CNP) or Capacity 

Backtracking (CB). Then, the AA starts improving the feasible 

solution using one of three strategies. Delegate Worst (DW), 

Delegate All (DA), or Reallocate All (RA), the Vehicle Agent 

determines the optimal dynamic routes, or the sequence of 

visiting customers per cluster with the associated vehicle. 

After vehicles are dispatched from the depot, feedback from 

drivers may require routes change to avoid traffic congestions. 

The Task Agent determines the orders that will be served 

(delivered) immediately, using the strategy Iterative 

Processing (ITER), and the other orders that will wait until 

consolidated with other orders, later, using the Batch 

Processing (NORM) strategy. This decision is taken by the 

source depot according to the customer’s request, such that, 

immediate service implies additional cost to customers. If the 

order has the privilege of immediate shipping, then the depot 

serves the corresponding demand point immediately, 

otherwise, the order is collected and sorted according to the 

depot’s strategy through the Task Agent. Then, the order is 

sent to an Allocation Agent (AA) that will cluster orders. 

Finally, the Vehicle Agent (VA) will output the optimal route 

per vehicle. More details about agents and associated roles are 

available in the paper [25].  

Figure 2 illustrates a context diagram to identify and explain 

the system boundaries, sometimes called a level 0 data-flow 

diagram. The diagram defines data flows between the system 

and outside entities. The figure shows a shipping company that 

operates a fleet of vehicles. The shipping company sends data 

of the available capacities of vehicles to the Agent Based VRP 

System (ABVRPS). The ABVRPS has information regarding 

the amount of demand to be delivered. Accordingly, the 

ABVRPS determines the minimum number of vehicles 

required to satisfy the available demand. A Geographic 

Information System, referred to as Maps, receives demand 

point locations and their corresponding demand amounts. 

Accordingly, Maps provides ABVRPS with real time 

geographic data about possible routes to reach demand points; 

this includes distances, traffic congestion conditions, and 

alternative routes. Project Manager is the end user of ABVRPS. 

The project Manager is provided with a summary report of the 

input of concern and the system output. Input included in the 

report are demand point locations with the corresponding 

demand. Output included in the report are the optimal routes 

for vehicles and the total distance travelled. Reports generated 

for the Project Manager might be in the form of tables or 
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illustrative figures where demand points are shown on a map 

along with the routes traversed. These reports have managerial 

implications in regards with control and improvement. 

 

 
 

Figure 1. IDEF0 diagram 

 

  
 

Figure 2. Context diagram 
 

 

3. UML MODELS 
 

3.1 Functional modelling 
 

3.1.1 Use case model 

A use case shows the interactions between users and the 

Agent-based VRP system and describes functionalities of a 

VRP system. A use case diagram is illustrated in Figure 3. The 

diagram consists of a set of use cases, actors, and relationships 

between actors and use cases.  

The purpose of use case diagram is to show a context of an 

Agent-based VRP (ABVRP) system. There are three types of 

Agents: Task Agent (TA), Allocation Agent (AA), and 

Vehicle Agent (VA). All three agents have an inheritance 

relationship with the actor Agents. Demand Points actor 

represents the customers with their location and demanded 

quantity. The actors represent the external systems related with 

ABVRP. 

Use Cases are functions in the system. For example, 

Demand Points use the Report an Order use case to place an 

order. The use case includes a use case called Collect Demand 

which is responsible for adding the order to a list of orders for 

processing. Collect Demand has two use cases that extends it: 

Order Tasks and Process Demand. Order Tasks use case is 

triggered when the system is set to order tasks, or orders, 

according to a certain priority rule. Otherwise, Process 

Demand use case is triggered. 

Identifying business actors is a crucial step to properly 

define the system and build the use case model. Table 1 

summarizes and documents the actors in the system. Some 

Actors have a synonym that illustrates what that actor 

represents in the proposed model. Other actors do not have a 

synonym as they do not represent other entities in the system 

and are part of the novel proposed system. 

In the use case diagram, relationships between use cases are 

represented by using stereotypical <<include>> and 

<<extend>>. For example, Most Demand First (MDF), Least 

Demand First (LDF), and First in First Out (FIFO) use cases 

and Collect Demand use cases share the functionality of the 

Process Demand use case. After an order is requested, Collect 

Demand use case can be extended to the Order Tasks use case 

as the Demand Point may ask for tasks ordering or not. All use 

cases of the system are documented in Table 2. 

The activity diagram in Figure 4 illustrates the sequence of 

activities and the participating actors. The system is initiated 

when a demand point sends a notification with its demand to a 

Task Agent (TA). The TA receives orders from different 

demand points, then checks the orders to be consolidated, and 
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the orders that to be served immediately. This is decided by 

the owner of the ABVRP system who is the source depot. In 

case of needing to batch for consolidation, the order is 

collected and sorted according to the depot strategy. Then the 

order is sent to an Allocation Agent (AA). The AA will start 

allocating demand points to partitions in a cost-efficient 

manner. The Vehicle Agent (VA) will then conduct a plan 

based on the orders sorted by the TA and the partition made 

by the VA. 

The processing and ordering of orders are done by the Task 

Agent. There are two processing strategies. First, to batch the 

orders together to consolidate the demand. The orders can be 

processed once received by the Task Agent as well. In case of 

batching the orders, a priority rule can be set for their sequence 

of processing. They could be processed by giving a priority to 

the orders with least demanded quantity, most demand, or first 

order in will be processed first.  

The Allocation Agent (AA) clusters the orders into 

partitions. There are two strategies for clustering: Contract-

Net Protocol (CNP) and Capacity Backtracking (CB). 

Contract-Net Protocol strategy assigns orders to vehicles 

based on the insertion estimation in accordance with the 

vehicles’ maximum capacity. However, if the vehicles’ 

capacity constraint hindered the allocation process, additional 

vehicle would be added to increase the total vehicles’ capacity. 

The process of CNP is then re-initialized. 

Capacity Backtracking allows re-allocation of orders before 

adding additional vehicles. The AA will keep on re-allocating 

orders in different vehicles aiming to fit all orders with the 

initial number of vehicles. CB is stopped after a predefined 

maximum number of iterations. The AA starts the 

improvement stage based on one of three strategies: 

Delegating the worst tasks to different partition, Delegating 

All tasks in a partition to other partitions, or re-allocating all 

partitions. The decision of delegation or re-allocation is made 

if the savings are higher than the insertion costs. 

 

3.1.2 Structural modeling 

Class diagrams describe a static view of any system in terms 

of classes and relationships among them [26]. Figure 5 shows 

a class diagram of the system under study.  

The model consists of two abstract classes: Agents and 

Vehicle. In Figure 5, Task Agent, Allocation Agent, and 

Vehicle Agent are classes that inherit from Agents Class. 

While only Vehicle Agent inherits from Vehicles as well. 

There are other concrete classes like Demand Points, Tasks, 

and Partitions. A Partition is composed of several Tasks. 

 
Figure 3. Use case diagram 

 

Table 1. Business actors glossary 

 
Actor Synonym Description 

Task Agent (TA)  
A system that is Responsible for collecting Demand from the demand points, 

sorting, and sending them. 

Allocation Agent (AA)  
A system that is Responsible for allocating the demand points to partitions in 

the most cost-efficient way possible. 

Vehicle Agent (VA) Vehicle A system that is Represents a vehicle and responsible for the routes ordering. 

Demand Points Customers A system that notifies the task agent with the demand needed at which point 
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Table 2. Use cases glossary 

 

Use-Case 

Name 

Use-Case  

Description 
Actors (roles) 

Most 

Demand 

First (MDF) 

This use case describes the event of a sorting the demand based on MFD, where the tasks are ordered in a 

descending order 

Tasks Agent 

(Primary actor) 

Least 

Demand 

First (LDF) 

This use case describes the event of a sorting the demand based on LDF, so the tasks are ordered in an 

ascending order 

Tasks Agent 

(Primary actor) 

First in First 

Out (FIFO) 

This use case describes the event of a sorting the demand based on FIFO where tasks’ sequence 

corresponds to the order of arrival. 

Tasks Agent 

(Primary actor) 

Batch 

Processing 

(NORM) 

This use case describes the event of a Processing the demand-based Batch processing, where all available 

tasks are sent as one batch 

Tasks Agent 

(Primary actor) 

Iterative 

Processing 

(ITER) 

This use case describes the event of a Processing the demand Iterative processing, where tasks are sent 

one by one. 

Tasks Agent 

(Primary actor) 

Contract-Net 

Protocol 

(CNP) 

This use case describes the event of allocating the demand to partitions based on Contract-Net Protocol. 

For every task, the best Vehicle Agent is selected according to insertion estimation satisfying capacity 

constraints. This strategy contains no backtracking and in case of allocation failure (because of capacity 

constraint of Vehicle Agents) the whole process is restarted with an added vehicle 

Allocation 

Agent 

Capacity 

Backtracking 

(CB) 

strategy 

This use case describes the event of allocating the demand to partitions based on CNP, but with 

backtracking in case of allocation failure. In case when no Vehicle Agent can undertake a new task 

because of the capacity constraint, the best Vehicle Agent is selected regardless of capacity limitations. 

This agent removes the worst tasks until the new task fits the increased free space. After that, the removed 

tasks are allocated again. The reallocation counter controls the number of reallocations and when it 

reaches the pre-defined maximum, the number of Vehicle Agents is increased, and the process is restarted. 

Allocation 

Agent 

Delegate 

Worst (DW) 

This use case describes the event of improving the allocated partitions by delegating the worst tasks if the 

savings are higher than the insertion cost. 

Allocation 

Agent 

Delegate All 

(DA) 

This use case describes the event of improving the allocated partitions by delegating all tasks if the 

savings are higher than the insertion cost. 

Allocation 

Agent 

Reallocate 

All (RA) 

This use case describes the event of improving the allocated partitions as each Vehicle Agent successively 

removes all its tasks from the plan and allocates it again using the CNP strategy. 

Allocation 

Agent 
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Figure 4. Activity diagram 
 

 
 

Figure 5. Class diagram 

 

3.1.3 Behavioral modelling 

The sate-machine diagram given in Figure 6 illustrates the 

state of the Allocation Agent (AA). The AA is chosen to be 

illustrated by a state machine diagram as it is the actor with the 

largest number of states and is the most complex one.  

As shown in Figure 6, AA’s “Staring Allocation phase” 

state is triggered when it receives tasks from the Task Agent. 

The allocation next state is based on the allocation strategy. If 

the allocation strategy of the tasks is to utilize CNP, then AA 

state will be “Allocating Using CNP”. However, if the 

allocation strategy is CB, then the AA’s state will be 

“Allocating Using CB”. This concludes the allocation phase. 

The improvement phase is then triggered to improve the initial 

allocation, making the state of the AA “Starting Improvement 

Phase”. The next state is determined by the improvement 

strategy adopted. If it is Delegate Worst, AA’s state will be 

“Improving using DW”. While if the strategy is to Delegate 

All, AA’s state will be “Improving using DA”. If the strategy 
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is to Re-allocate All, AA’s state will be “Improving using RA”. 

The next state would be “Reaching Best Allocation for a 

partition”. When the improvement phase is done and the best 

allocation is reached, the state would be “Sending the 

partitions to VA”. This means that each partition is to be sent 

to its allocated vehicle. 

The sequence diagram in Figure 7, illustrates how objects 

interact with each other. The diagram emphasizes how 

messages are sent and received between objects [26, 27]. To 

represent the example of a sequence diagram, “Delegate Worst” 

is chosen among use cases of the system to show its sequence. 

This specific sequence is chosen due to its complexity. Many 

scenarios can occur in a single use case and each scenario is 

related to a sequence diagram. Thus, a use case can have many 

sequence diagrams. Since sequence of the primary scenario is 

complex enough, for ease of readability, the sequence diagram 

of the primary scenario is given in Figure 7. 

Figure 7 illustrates the improvement of the allocation 

strategy, ignoring any error due to allocation infeasibility. For 

example, the Allocation Agent starts by inquiring about the 

worst task from Class “Partition: Partitions” to find the task 

with the highest cost in the “Tasks” class. The worst task’s 

Insertion Cost (IC) in various vehicles is computed then the 

vehicle having the minimum IC is called the winner. Next, the 

IC of the winner is compared to the savings (Sv) of keeping 

the task at its delegated vehicle. If ICs is less than Sv, the task 

is to be transferred. Otherwise, nothing changes. 

 

 
 

Figure 6. Sate-machine diagram 

 

 
 

Figure 7. Sequence diagram 
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4. CONCLUSION 

 

UML modeling is a powerful tool of visualization for 

complex systems. The vehicle routing problem (VRP) is 

among the most studied problems in the field of supply chain 

management. Agent-based methodology have proven efficient 

in representing many real-life problems. It provides a clear 

representation of problems in a flexible manner that facilitates 

the decision-making process. In this paper, the Agent Based 

VRP was addressed from the modeling viewpoint of UML 

modeling paradigm. The objective was to provide a clearly 

visualized representation of the problem, which serves as an 

input for software engineers who will design and implement 

the necessary software to solve the VRP problem. Through 

building functional, structural, and behavioral models of an 

Agent Based VRP system, this paper proposed a novel 

perspective for modeling and visualizing the classical VRP. 

The approach could extend to include several variants of the 

problem to assist in the decision-making process in one of the 

known challenges in supply chain management, namely, the 

vehicle routing problem and its variants. 
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NOMENCLATURE 

 

VRP Vehicle Routing Problem 

ABMS Agent Based Modelling 

UML Unified Modelling Language 

CNP Contract-Net Protocol 

IDEF0  Integration Definition0 

MDF Most Demand First 

LDF Least Demand First 

FIFO First in First Out 

TA Task Agent 

VA Vehicle Agent 

AA Allocation Agent 

CB Capacity Backtracking 

DW Delegate Worst 

DA Delegate All 

RA Re-allocate All 

ITER Iterative Processing 

NORM Batch Processing 

ABVRP Agent Based Vehicle Routing Problem 

IC Insertion Cost 

Sv Savings 

 

 

 

789




