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This paper mainly explores the consensus control of multi-agent robot system with 

repetitive motion under the constraints of a leader and fixed topology. To realize the 

consensus control, a fractional order iterative learning control (FOILC) algorithm was 

designed under the mode of distributed open-closed-loop proportional-derivative alpha 

(PD
α

). The uniform convergence of the algorithm in finite time was discussed, drawing

on factional calculus, graph theory, and norm theory, resulting in the convergence 

conditions. Theoretical analysis shows that, with the growing number of iterations, each 

agent can choose the appropriate gain matrix, and complete the tracking task in finite time. 

The effectiveness of the proposed method was verified through simulation. 
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1. INTRODUCTION

The multi-agent robot system can complete large and 

complex fieldwork through communication, coordination, and 

cooperation. The efficiency and performance of the system are 

much better than those of a single robot. As a result, the multi-

agent robot system has been widely used in mobile robot 

handling, three-dimensional (3D) printing, and welding [1, 2]. 

The consensus control, as a representative problem of the 

collaborative control of the multi-agent robot system, aims to 

design a suitable control algorithm to regulate the state or 

output of each robot in a finite time. The coordination and 

consensus between multiple agents have attracted much 

attention from the academia, yielding fruitful results [3-6]. 

However, most consensus control methods for multiple agents 

are based on integer-order descriptions of the agents, that is, 

the differential equations of the robots are of integer-order [7, 

8].  

In complex natural environments (e.g. material mechanics, 

motor systems, and robots), it is more accurate to describe 

robot dynamics with fractional calculus than integer calculus 

[9, 10]. Strictly speaking, the integer-order system is a special 

case of the fractional-order system. Therefore, many scholars 

engaging in multi-agent robot system have turned their 

attention from the integer-order model to the fractional-order 

model [11-14].  

Yu et al. [11, 12] pioneered the study of consensus control 

of fractional-order multi-agent system (FOMAS), and judged 

the convergence of factional multiple agents with a leader. 

Later, Bai et al. [13] explored the consensus control of 

FOMAS in fixed reference states and time-varying reference 

states. Ma et al. [14] introduced consensus control to fractional 

dynamics, and developed a consensus control algorithm based 

on relative output measurements. By graph theory and 

Lyapunov method, Yu et al. [11, 12] defined the criteria for 

the consensus control of nonlinear FOMAS with a leader, put 

forward the stability theory on fractional differential systems, 

and derived the matrix inequalities based on the theory. Yu et 

al. [15] presented the necessary and sufficient conditions for 

the consensus control of FOMAS with leaders, and designed 

an observer to solve the consensus problem. Chai et al. [16] 

and Sun et al. [17] realized consensus control of FOMAS with 

adaptive control, and sliding mode control, respectively. 

Most of the above studies focus on the consensus control 

with gradual convergence. However, the FOMAS with 

repetitive motions, such as the coordinated operation of 

multiple manipulators on a production line, generally require 

the control algorithm to converge within a finite time. The 

methods of the above research cannot satisfy this requirement. 

Among the current control methods, iterative learning 

control can complete the tracking task in a finite time. This 

method has been applied to various models of integer-order 

multi-agent system (IOMAS) [18-20]. But there is little report 

on the fractional-order iterative learning control (FOILC) of 

FOMAS. To make matters worse, the actual FOMAS often 

face state delays induced by digital signal processors (DSPs), 

communication processors, and other processors. Hence, it is 

of engineering significance to solve the consensus control of 

FOMAS with state delay. 

Considering the state delay in FOMAS, this paper proposes 

several methods to solve the consensus control of FOMAS 

composed of robots, namely, FOLIC algorithms under the 

mode of open-closed-loop proportional-derivative alpha (PDα), 

closed-loop PDα, and, open-loop PDα. Based on graph theory, 

norm theory, and fractional calculus, the finite-time 

convergence of the proposed algorithms was theoretically 

proved for FOMAS with state delay. Finally, the open-closed-

loop PDα FOLIC algorithm was verified to be the most 

effective consensus control method for FOMAS with state 

delay through numerical simulation. 
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2. PRELIMINARIES 

 

2.1 Graph theory 

 

For a multi-agent system of n fractional agents, the 

communication links between the multiple agents constitute a 

network. The network can be expressed as a directed weighted 

graph G={V, E, M}, where V={v1,⋯,vn} is the set of nodes 

(agents), and E∈V×V is the set of edges (communication links). 

Let I={1, 2,⋯, n} be the index set of the nodes. Then, the 

adjacency matrix of the network can be described as M=(aik)n×n, 

where aik is the weight of the edge between node i and node k. 

If node i transmits information to node k, then aik>0; otherwise 

aik=0. It was also assumed that no node in the network commits 

self-connection:  aii=0 for i∈I. 

Let Ni={k: aik>0} be the set of neighboring nodes of node i, 

and D=diag{di, i=1,⋯,N}, where 𝑑𝑖 = ∑ 𝑎𝑖𝑘
𝑁
𝑘=1  is the sum of 

the elements in row i of adjacency matrix M. Hence, the 

Laplacian matrix of graph G can be obtained as L=D-M. For 

two nodes i and k, if a set of subscripts {k1,⋯, kl} satisfies 

𝑎𝑖𝑘1 > 0 , 𝑎𝑖𝑘1 > 0 , ⋯ , 𝑎𝑘𝑙𝑘 > 0 , then there exists an 

information transmission channel between the two nodes, such 

that node k can receive the information from node i. Node i is 

globally reachable if there is a path for it to reach any other 

node in the graph. 

Lemma 1. For an FOMAS of n autonomous individuals, if 

the edges forma directed weighted network, and if there is at 

least one globally reachable node, then the rank of the 

Laplacian matrix L of the directed weighted graph is N-1, with 

a zero eigenvalue corresponding to the eigenvector ξ0=c[1,

⋯,1]T. 

 

2.2 Fractional calculus and norm theory 

 

The fractional calculus adopted for this research can be 

defined as follows:  

Definition 1. In the interval [t0, t], the 𝛼-order fractional 

derivatives of function f(t) can be defined as: 
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where, α>0; Γ(⋅) is gamma function 𝛤(𝛼) = ∫ 𝑒−𝑡 𝑡𝛼−1 𝑑𝑡
∞

0
. 

In the interval [t0,t], the -order fractional Riemann-

Liouville and Caputo derivatives on the function f(t) can be 

expressed as: 
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where, α is any positive real number; [α] is the integer part of 

α. 

Lemma 2. For the continuous function f(x(t), t), there exist:  
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Then, the equivalent Volterra nonlinear integral equation 

for the initial value problem can be expressed as: 
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Let ℝ be any set of real numbers, ℂ be any set of complex 

numbers, and ℕ be the set of natural numbers. For a vector 

𝑥 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑛]
𝑇 ∈ ℝ𝑛, the lp norm can be represented as 

|x|, with 1≤p≤∞. In fact, when p equals 1, 2, and ∞, there exist 

|𝑥|1 = ∑ |𝑥𝑘|
𝑛
𝑘=1 , |𝑥|2 = √𝑥𝑇𝑥, and |𝑥|∞ = 𝑚𝑎𝑥

𝑘=1,⋯,𝑛
|𝑥𝑘|. Then, 

matrix 𝐴 ∈ ℝ𝑛×𝑛  |A| represents the matrix norm, and ρ(A) 

characterizes the spectral radius of matrix A. In addition, the 

Kronecker product is denoted as ⊗ , and the m×m identity 

matrix as Im. 

 

2.3 FOMAS model with state delay 

 

Suppose the FOMAS with leader contains N agents, 

numbered as 1, 2, 3..., N. Each agent can be modeled as: 
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where, t∈[0,T] (if t∈[-h,0], then xi,j(t)=ψ(t); α∈(0,1); i is the 

number of iterations; Dαxi,j(t) is the α -order derivative of xi,j(t); 

𝑥𝑖,𝑗(𝑡) ∈ ℝ
𝑚 is the vector of the j-th agent; 𝑢𝑖,𝑗(𝑡) ∈ ℝ

𝑚1 and 

𝑦𝑖,𝑗(𝑡) ∈ ℝ
𝑚2 are the input and output, respectively; A, B and 

C are constant matrices. 

Formula (6) can be written in the multi-agent vector form as 
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where, 𝑥𝑖(𝑡) = [𝑥𝑖,1(𝑡)
𝑇 , 𝑥𝑖,2(𝑡)

𝑇 , ⋯ , 𝑥𝑖,𝑁(𝑡)
𝑇]𝑇 ; 𝑢𝑖(𝑡) =

[𝑢𝑖,1
𝑇 (𝑡), 𝑢𝑖,2

𝑇 (𝑡),⋯ , 𝑢𝑖,𝑁
𝑇 (𝑡)]

𝑇
; 𝑦𝑖(𝑡) =

[𝑦𝑖,1
𝑇 (𝑡), 𝑦𝑖,2

𝑇 (𝑡),⋯ , 𝑦𝑖,𝑁
𝑇 (𝑡)]

𝑇
; 𝜉𝑖(𝑡) =

[𝜉𝑖,1(𝑡)
𝑇 , 𝜉𝑖,2(𝑡)

𝑇 , ⋯ , 𝜉𝑖,𝑁(𝑡)
𝑇]𝑇; ⊗ is the Kronecker product. 

Here, the desired trajectory yd(t) is generated by the leader in 

formula (6) within the time interval [0, T]. Then, the leader can 

be defined as:  
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where, ud(t) is the desired input. 

Due to the limitations on communication or sensors, the 

leader can only communicate with some of the multiple agents. 

Let G{V, E} be the communication network, and zero be the 

serial number of the leader. Then, the entire graph containing 

the leader can be expressed as 𝐺 = {0 ∪ 𝑉, 𝐸}, where 𝐸 is the 

corresponding edge in the new graph. Our main task is to 

design an FOILC algorithm to ensure that each agent 

converges to the desired trajectory in the new graph 𝐺. 

The distributed error ξi,j(t) can be defined as: 
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where, aj,k is the weight of the (j, k)-th neighborhood of the 

adjacency matrix M; Nj is the domain set of the j-th agent; dk 

is the sum of the elements in row i of the adjacency matrix. If 

dj=1, then the j-th agent can receive information from the 

leader, i.e., (0, 𝑗) ∈ 𝐸 ; if dj=0, then the j-th agent cannot 

receive information from the leader. The error can be 

expressed as ei,j(t)=yd(t)-yi,j(t). 

Then, the open-closed PDα FOILC can be designed as: 
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From formula (9) and the error expression, the distributed 

error can be further defined as:  
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Let 𝑥𝑖(𝑡) = [𝑥𝑖,1(𝑡)
𝑇 , 𝑥𝑖,2(𝑡)

𝑇 , ⋯ , 𝑥𝑖,𝑁(𝑡)
𝑇]𝑇 , 𝑒𝑖(𝑡) =

[𝑒𝑖,1(𝑡)
𝑇 , 𝑒𝑖,2(𝑡)

𝑇 , ⋯ , 𝑒𝑖,𝑁(𝑡)
𝑇]𝑇 , and 𝜉𝑖(𝑡) =

[𝜉𝑖,1(𝑡)
𝑇 , 𝜉𝑖,2(𝑡)

𝑇 , ⋯ , 𝜉𝑖,𝑁(𝑡)
𝑇]𝑇 be the column vectors. Then, 

formula (11) can be rewritten as:  
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where, L is the Laplacian matrix of graph 𝐺; D=diag{di, i=1,

⋯, N}. 

From formula (12), the controller in formula (10) can be 

written as a matrix vector:  

 

( )

( )

1 1

1

2 1

2 1

( ) ( ) (( ) ) ( )

(( ) ) ( )

(( ) ) ( )

(( ) ) ( )

i i P i

D i

P i

D i

t t t

t

t

t





+

+

+

= + + 

+ + 

+ + 

+ + 

u u L D e

L D e

L D e

L D e









 (13) 

 

For convenience, the root locus of matrix L+D can be 

defined as λj, j=1, 2,⋯, N. 

 

 

3. CONVERGENCE ANALYSIS 

 

Several assumptions were put forward to facilitate the 

convergence analysis. 

Assumption 1. During the repeated runs on the interval [0,T], 

the initial state of each agent (6) is the desired initial state. That 

is, for all k, xi,k(0)=xd(0) holds. 

Remark 1. To ensure tracking performance, the initial state 

in Assumption 2 must be established in the design of iterative 

learning control. However, if the assumption does not hold, it 

is impossible to achieve desired tracking without an optimal 

initial condition. The iterative learning control of the initial 

state is detailed by Shiping [21]. 

Assumption 2. The graph 𝐺 contains a spanning tree with 

the leader being the root.  

Remark 2. Assumption is a prerequisite for the consensus 

control of FOMAS, in which all followers can reach the leader. 

Otherwise, the isolated agents cannot track the leader’s 

trajectory, for the control inputs are inaccurate due to the 

absence of data. 

Theorem. Assumptions 1 and 2 hold for the FOMAS agent 

(7). Under the conditions of graph 𝐺 and controller (13), if the 

gain matrices ΓP1, ΓP2, ΓD1, and ΓD2 satisfy:  

 

(1) 𝛤(𝛼) − ||(·)𝛼−1(𝐼𝑛 ⊗𝐴)||1 > 0; 

 

(2) 0 < 𝜌1 < 1,0 < 𝜌2 < 1,
𝜌1

𝜌2
< 1; 

 

where, 𝜌1 = |𝐼 − ((𝐿 + 𝐷)⊗ 𝛤𝐷1)(𝐼𝑛 ⊗𝐶)(𝐼𝑛 ⊗𝐵)|| + 𝛽1, 
𝜌2 = ||𝐼 + ((𝐿 + 𝐷)⊗ 𝛤𝐷2)(𝐼𝑛 ⊗𝐶)(𝐼𝑛 ⊗𝐵)|| − 𝛽2,  𝛽𝑖 =
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𝛤(𝛼)−||(𝑡)𝛼−1(𝐼𝑛⊗𝐴)||1
||(𝑡)𝛼−1(𝐼𝑛 ⊗

𝐵)||1, 𝑖 = 1,2; I is the unit matrix; ρ is a constant; H=L+D (L 

is the Laplacian matrix; 𝐷 = 𝑑𝑖𝑎𝑔{𝑑𝑖 , 𝑖 = 1,⋯ ,𝑁} ), then, 

with the growing number of iterations, the control ui,k(t) and 

output yi,k(t) of each agent will converge to the desired values 

ud(t) and yd(t). 

Proof. Suppose 

 

, ,

, ,

( ) ( ) ( )

( ) ( ) ( )

i j d i j

i j d i j

t = t t

t = t t





−


−

x x x

u u u
 

(14) 

 

where, δxi(t) and δui(t) are the vector form of δxi,j(t) and δui,j(t), 

respectively. If t∈[-τ,0] (τ>0), then: 
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Following the definition of error and Assumption 1:  
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From Lemma 1, we have: 
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Thus, we have: 
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Taking the norm on both sides of formula (19), the 

following can be derived from Definition 1: 
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If 𝛤(𝛼) − ||(·)𝛼−1(𝐼𝑛 ⊗𝐴)||1 > 0 holds, we have: 
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Then, the following can be derived from formulas (7) and 

(14): 
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Taking formulas (17) and (18) into formula (22): 
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






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(23) 

 

Sorting formula (23): 
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


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 (24) 

 

Taking the norm on both sides of formula (24): 
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where, 
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Thus, the following can be derived from formula (25): 
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According to the Theorem, 
𝜌1

𝜌2
= �̃� < 1  holds. Then, the 

following can be derived from formula (26): 

 

1 1|| ( ) || || ( ) || || ( ) ||k

i p i p pt t t    +  u u u
 

(27) 

 

Obviously, with the growing number of iterations, if 𝑖 → ∞, 

then: 

 

1lim || ( ) || 0i p
i

t +
→

=u
 

(28) 

 

According to formulas (20) and (28), we have: 

 

1lim || ( ) || 0i p
i

t +
→

=x
 

(29) 

 

That is: 

 

1 1|| ( ) || || |||| ( ) ||i p n i pt t+ + e I C x
 (30) 

 

Hence, 

 

1lim|| ( ) || 0i p
i

t+
→

=e
 

(31) 

 

Formula (31) indicates that the FOMAS error converges to 

zero.  

 

Q.E.D. 

 

For the controller (13), the open-closed-loop PDα FOILC 

algorithm will degenerate into an open-loop PDα FOILC 

algorithm, if learning gains ΓP2=0 and ΓD2=0: 

 

( )

1 1

1

( ) ( ) (( ) ) ( )

(( ) ) ( )

i i P i

D i

t t t

t


+ = + + 

+ + 

u u L D e

L D e




 (32) 

 

Corollary 1. For the controller (13), if Assumptions 1-2 hold, 

if distributed open-loop PDα updating rule (32) is applied to 

the controller, and if matrices A, B, and C, as well as the 

learning gains ΓP1 and ΓD1 satisfy: 
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1|| (( ) ) || 1D + = − +  I L S CB
 (33) 

 

where, 𝛽 =
||𝐿+𝑆||(||𝛤𝑃1𝐶||+||𝛤𝐷1𝐶𝐴||)

𝛤(𝛼)−||(𝑡)𝛼−1(𝐼𝑁⊗𝐴)||1
||(𝑡)𝛼−1(𝐼𝑁 ⊗𝐵)||1 , then 

𝑙𝑖𝑚
𝑖→∞

||𝑒𝑖+1(𝑡)||𝑝 = 0 . That is, the output yi(t) converges 

uniformly to the desired trajectory yd(t) as i→∞. 

Similarly, for the controller (13), the open-closed-loop PDα 

FOILC algorithm will degenerate into a closed-loop PDα 

FOILC algorithm, if learning gains ΓP1=0 and ΓD1=0: 

 

( )

1 2

2

( ) ( ) (( ) ) ( )

(( ) ) ( )

i i P i

D i

t t t

t


+ = + + 

+ + 

u u L D e

L D e




 (34) 

 

Corollary 2. For the controller (13), if Assumptions 1-2 hold, 

if distributed open-loop PDα updating rule (32) is applied to 

the controller, and if matrices A, B, and C, as well as the 

learning gains ΓP1 and ΓD1 satisfy: 

 

1

1
1

|| (( ) ) ||D -



= 

− + I L S CB
 

(35) 

 

where, 𝜌 =
||𝐿+𝑆||(||𝛤𝑃1𝐶||+||𝛤𝐷1𝐶𝐴||)

𝛤(𝛼)−||(𝑡)𝛼−1(𝐼𝑁⊗𝐴)||1
||(𝑡)𝛼−1(𝐼𝑁 ⊗𝐵)||1 , then 

𝑙𝑖𝑚
𝑖→∞

||𝑒𝑖+1(𝑡)||𝑝 = 0 . That is, the output yi(t) converges 

uniformly to the desired trajectory yd(t) as i→∞. 

Remark 3. Under the conditions of the Theorem, and 

Corollaries 1 and 2, the convergence condition of the control 

law in the sense of Lebesgue-p norm depends on the learning 

gains and the intrinsic properties of the FOMAS. 

Remark 5. Since the directed graph �̄� is a connected graph, 

and the matrix L+S is positive definite, matrix -(L+S) is a 

Hurwitz stable matrix. Thus, the gain matrices ΓP1, ΓD1, ΓP2, 

ΓD2 to satisfy the conditions in formula (13), (32) or (34). 

 

 

4. SIMULATION 

 

To verify the effectiveness of the proposed algorithms, an 

FOMAS with state delay was set up as Figure 1, where 0 is the 

leader, 1-4 are the followers, and dotted lines are the links 

between the agents. 

From Figure 1, the adjacency matrix M and Din can be 

respectively defined as: 

 

0 0 1 0

1 0 0 0

0 1 0 1

0 1 0 0

M

 
 
 =
 
 
  , 

[1 1 2 1]D diag=
 

 

 

Then, the Laplacian matrix can be obtained: 

 

1 0 1 0

1 1 0 0

0 1 2 1

0 1 0 1

L D M

− 
 
−
 = − =
 − −
 

−  , [1,0,1,0]S diag=  

 

 

Here, each FOMAS agent with state delay can be described 

as: 

 

 

0.4 2 0
( ) ( ) ( ),

5 -6 1

( ) 0 1.2 ( ),

x x u

y x

j j j

j j

D t t h t

t t


    

= − +    
   

 =  

(36) 

 

The desired trajectory of the agent can be described as 

𝑦𝑑(𝑡) = 2𝑡2 + 3𝑡3 + 𝑠𝑖𝑛( 2𝜋𝑡),  𝑡 ∈ [0,1] . During the 

simulation, the fractional derivative was set as α=0.85. For 

each agent, the initial state and initial input in each iteration 

were set to zero: u0,j(t)=0, xi,j(0)=0, and j=1, 2, 3, 4. 
 

 
 

Figure 1. The structure of FOMAS 
 

4.1 Case 1: Open-closed-loop PDα FOILC algorithm  
 

According to the Theorem, the gain matrices were selected 

as ΓP1=1.2, ΓD1=0.25, ΓP2=1.6, and ΓD2=1.1. Then, we have 

ρ1=0.876 and ρ2=0.963, which satisfy the conditions in the 

Theorem. To verify the robustness of open-closed-loop PDα 

FOILC algorithm to state delay, the delay time was set to 0.1 

and 0.5, that is, h=0.1 and h=0.5. The simulation results with 

h=0.1 and h=0.5 are recorded in Figures 2 and 3, respectively. 

Figures 2(a)-(c) and 3(a)-(c) present the tracking results in the 

5th, 10th, and 50th iterations, respectively; Figure 2(d) and 

Figure 3(d) show the absolute maximum error of each iteration. 
 

 
(a) The 5th iteration 

 
(b) The 10th iteration 

 
(c) The 50th iteration 

4 2

3 1

0
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(d) The variation in tracking error 

 

Figure 2. The simulation results with h=0.1s 

 

 
(a) The 5th iteration 

 
(b) The 10th iteration 

 
(c) The 50th iteration 

 
(d) The variation in tracking error 

 

Figure 3. The simulation results with h= 0.5s 
 

It can be seen that, with the growing number of iterations, 

each agent gradually tracked the desired trajectory. When 

h=0.1, the maximum errors of the four followers were 0.0009, 

0.0012, 0.0011, and 0.0015 at the 50th iteration, respectively. 

When h=0.5, the convergence speed was slower than that 

under h=0.1. Concerning the convergence speed of each agent, 

agents 1 and 3 converged faster than agents 2 and 4, because 

the former two can directly receive the information from the 

leader. 
 

4.2 Case 2: Open-loop PDα FOILC algorithm 
 

According to Corollary 1 and controller (32), the gain 

matrices were defined as ΓP1=1.2 and ΓD1=0.25. Similar to 

Case 1, the delay time was set to 0.1 and 0.5, namely h=0.1 

and h=0.5. The simulation results with h=0.1 and h=0.5 are 

recorded in Figures 4 and 5, respectively. Figures 4(a)-(c) and 

4(a)-(c) present the tracking results in the 5th, 10th, and 50th 

iterations, respectively; Figure 5(d) and Figure 5(d) show the 

absolute maximum error of each iteration. 

It can be seen that, with the growing number of iterations, 

the multiple agents gradually tracked the desired trajectory. 

With the increase in delay time, the convergence speed slowed 

down. In the same iteration, the open-loop PDα FOILC 

algorithm performed poorer than the open-closed-loop PDα 

FOILC algorithm. This means the inclusion of the closed-loop 

control in the latter algorithm improves the control effect and 

speeds up the convergence. 
 

 
(a) The 5th iteration 

 
(b) The 10th iteration 

 
(c) The 50th iteration 

 
(d) The variation in tracking error 

 

Figure 4. The simulation results with h= 0.1s 

776



 

 
(a) The 5th iteration 

 
(b) The 10th iteration 

 
(c) The 50th iteration 

 
(d) The variation in tracking error 

 

Figure 5. The simulation results with h=0.5s 

  

 

4.3 Case 3: Closed loop PDα FOILC algorithm 

 

According to Corollary 1 and controller (32), the gain 

matrices were defined as ΓP2=1.6 and ΓD2=1.1. The initial 

conditions and delay time were configured the same as Cases 

1 and 2. The simulation results with h=0.1 and h=0.5 are 

recorded in Figures 6 and 7, respectively.  

 

 
(a) The 5th iteration 

 
(b) The 10th iteration 

 
(c) The 50th iteration 

 
(d) The variation in tracking error 

 

Figure 6. The simulation results with h= 0.1s 
 

 
(a) The 5th iteration 

 
(b) The 10th iteration 

 
(c) The 50th iteration 
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(d) The variation in tracking error 

 

Figure 7. The simulation results with h= 0.5s 

 

Figures 6(a)-(c) and 7(a)-(c) present the tracking results in 

the 5th, 10th, and 50th iterations, respectively; Figure 6(d) and 

Figure 7(d) show the absolute maximum error of each iteration. 

The simulation results show that the closed-loop PDα 

FOILC algorithm converged slower than the open-closed-loop 

PDα FOILC algorithm and open-loop PDα FOILC algorithm. 

In nature, many physical systems have fractional-order 

dynamic features. But the integer calculus theory in this 

research is merely a special case of fractional-order calculus 

theory. It can only approximate the actual fractional-order 

system. However, the theory of fractional calculus can reveal 

the nature of the object truthfully and accurately. The proposed 

fractional-order controller can achieve a good control 

performance, which highlights the significance of the research 

results. 

 

 

5. CONCLUSIONS 

 

This paper proposes an open-closed-loop PDα FOILC 

algorithm for FOMAS with state delay. Based on norm theory, 

graph theory and fractional calculus, the convergence of the 

proposed algorithm was analyzed in details, and the 

convergence conditions were summarized. Through 

theoretical analysis, the proposed algorithm was found to 

iteratively minimize the error of each agent in FOMAS with 

state delay. Finally, the algorithm was proved effective 

through numerical simulation. 

 

 

REFERENCES 

 

[1] Liu, X. (2020). Research on decision-making strategy of 

soccer robot based on multi-agent reinforcement learning. 

International Journal of Advanced Robotic Systems, 

17(3): 1729881420916960. 

https://doi.org/10.1177/1729881420916960 

[2] Ota, J. (2006). Multi-agent robot systems as distributed 

autonomous systems. Advanced Engineering Informatics, 

20(1): 59-70. https://doi.org/10.1016/j.aei.2005.06.002 

[3] Perrusquía, A., Yu, W., Li, X. (2020). Multi-agent 

reinforcement learning for redundant robot control in 

task-space. International Journal of Machine Learning 

and Cybernetics, 1-11. https://doi.org/10.1007/s13042-

020-01167-7 

[4] Osherenko, A. (2001). Plan Representation and Plan 

Execution in Multi-agent Systems for Robot Control. In 

PuK. 

[5] Naserian, M., Ramazani, A., Khaki-Sedigh, A., 

Moarefianpour, A. (2020). Fast terminal sliding mode 

control for a nonlinear multi-agent robot system with 

disturbance. Systems Science & Control Engineering, 

8(1): 328-338. 

https://doi.org/10.1080/21642583.2020.1764408 

[6] Gu, P., Tian, S. (2019). Consensus tracking control via 

iterative learning for singular multi-agent systems. IET 

Control Theory & Applications, 13(11): 1603-1611. 

https://doi.org/10.1049/iet-cta.2018.5901 

[7] Demir, O., Lunze, J. (2014). Optimal and event-based 

networked control of physically interconnected systems 

and multi-agent systems. International Journal of Control, 

87(1): 169-185. 

https://doi.org/10.1080/00207179.2013.825816 

[8] Liu, X., Zhang, Z., Liu, H. (2017). Consensus control of 

fractional‐order systems based on delayed state fractional 

order derivative. Asian Journal of Control, 19(6): 2199-

2210. https://doi.org/10.1002/asjc.1493 

[9] Liu, J., Chen, W., Qin, K., Li, P. (2018). Consensus of 

fractional-order multiagent systems with double integral 

and time delay. Mathematical Problems in Engineering, 

2018. https://doi.org/10.1155/2018/6059574 

[10] Bensafia, Y., Ladaci, S., Khettab, K., Chemori, A. (2018). 

Fractional order model reference adaptive control for 

SCARA robot trajectory tracking. International Journal 

of Industrial and Systems Engineering, 30(2): 138-156. 

https://doi.org/10.1504/IJISE.2018.094839 

[11] Yu, Z., Jiang, H., Hu, C. (2015). Leader-following 

consensus of fractional-order multi-agent systems under 

fixed topology. Neurocomputing, 149: 613-620. 

https://doi.org/10.1016/j.neucom.2014.08.013 

[12] Yu, Z., Jiang, H., Hu, C., Yu, J. (2015). Leader-following 

consensus of fractional-order multi-agent systems via 

adaptive pinning control. International Journal of Control, 

88(9): 1746-1756. 

https://doi.org/10.1080/00207179.2015.1015807 

[13] Bai, J., Wen, G., Rahmani, A., Chu, X., Yu, Y. (2016). 

Consensus with a reference state for fractional-order 

multi-agent systems. International Journal of Systems 

Science, 47(1): 222-234. 

https://doi.org/10.1080/00207721.2015.1056273 

[14] Ma, X., Sun, F., Li, H., He, B. (2017). The consensus 

region design and analysis of fractional-order multi-

agent systems. International Journal of Systems Science, 

48(3): 629-636. 

https://doi.org/10.1080/00207721.2016.1218570 

[15] Yu, W., Li, Y., Wen, G., Yu, X., Cao, J. (2016). Observer 

design for tracking consensus in second-order multi-

agent systems: Fractional order less than two. IEEE 

Transactions on Automatic Control, 62(2): 894-900. 

https://doi.org/10.1109/TAC.2016.2560145 

[16] Chai, Y., Chen, L., Wu, R., Sun, J. (2012). Adaptive 

pinning synchronization in fractional-order complex 

dynamical networks. Physica A: Statistical Mechanics 

and Its Applications, 391(22): 5746-5758. 

https://doi.org/10.1016/j.physa.2012.06.050 

[17] Sun, M., Wang, D. (2002). Iterative learning control with 

initial rectifying action. Automatica, 38(7): 1177-1182. 

https://doi.org/10.1016/S0005-1098(02)00003-1 

[18] Sun, M., Ge, S.S., Mareels, I.M. (2006). Adaptive 

repetitive learning control of robotic manipulators 

without the requirement for initial repositioning. IEEE 

Transactions on Robotics, 22(3): 563-568. 

https://doi.org/10.1109/TRO.2006.870650 

[19] Park, K.H. (2005). An average operator-based PD-type 

iterative learning control for variable initial state error. 

778

https://doi.org/10.1177%2F1729881420916960
https://doi.org/10.1016/j.aei.2005.06.002
https://doi.org/10.1155/2018/6059574
https://doi.org/10.1504/IJISE.2018.094839
https://doi.org/10.1016/j.neucom.2014.08.013
https://doi.org/10.1109/TAC.2016.2560145
https://doi.org/10.1016/j.physa.2012.06.050
https://doi.org/10.1016/S0005-1098(02)00003-1
https://doi.org/10.1109/TRO.2006.870650


 

IEEE Transactions on Automatic Control, 50(6): 865-869. 

https://doi.org/10.1109/TAC.2005.849249 

[20] Meng, D., Jia, Y. (2011). Finite-time consensus for multi-

agent systems via terminal feedback iterative learning. 

IET Control Theory & Applications, 5(18): 2098-2110. 

https://doi.org/10.1049/iet-cta.2011.0047 

[21] Yang, S.P. (2014). On iterative learning in multi-agent 

systems coordination and control (Doctoral dissertation).  

779

https://doi.org/10.1109/TAC.2005.849249



