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This paper solves the job-shop scheduling problem (JSP) considering job transport, with 

the aim to minimize the maximum makespan, tardiness, and energy consumption. In the 

first stage, the improved fast elitist nondominated sorting genetic algorithm II (INSGA-II) 

was combined with N5 neighborhood structure and the local search strategy of 

nondominant relationship to generate new neighborhood solutions by exchanging the 

operations on the key paths. In the second stage, the ant colony algorithm based on 

reinforcement learning (RL-ACA) was designed to optimize the job transport task, abstract 

the task into polar coordinates, and further optimizes the task. The proposed two-stage 

algorithm was tested on small, medium, and large-scale examples. The results show that 

our algorithm is superior to other algorithms in solving similar problems. 
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1. INTRODUCTION

Job-shop scheduling, a key link in the intelligent 

manufacturing system, involves multiple manufacturing 

resources, such as processing and transport resources. Facing 

the depletion of global non-renewable energies and the 

deterioration of the natural environment, it is of great 

significance to explore the job-shop scheduling problem (JSP) 

that considers energy consumption [1-4]. 

Heuristic methods have been widely used to solve multi-

objective scheduling problems [5]. One of the most successful 

algorithms in solving such problems is the genetic algorithm 

(GA) [6-8]. So far, many improved versions of GA, namely, 

non-dominated sorting genetic algorithm (NSGA) and fast 

elitist NSGA (NSGA-II), have been developed, and effectively 

applied to multi-objective JSPs [9-13]. 

Lan et al. [14] introduced an improved GA to solve the 

complex multi-objective problem of flexible job-shop 

scheduling, and demonstrated the effectiveness of the 

algorithm through experiments. Considering the sequence of 

task points and its impact on trajectory distance, Baizid et al. 

[15] proposed a GA-based method to optimize the sequence of

visiting task points, and experimentally proved the validity of

the method. Baizid et al. [16] put forward a novel scheduling

strategy to determine the shortest path between continuous

operating points of job-shop transport devices, which

indirectly saves resources. Desirable experimental results have

also been achieved by solving multi-objective optimization

problems with algorithms like the gray wolf optimizer [17-20]

To sum up, most studies have only obtained the Pareto 

solutions of the problem. Few have optimized the job transport 

task based on these solutions. Drawing on the features of 

specific scheduling problem, this paper improves the NSGA-

II and combines it with Q-learning optimization to solve a 

multi-objective JSP. In the first stage, three objectives, namely, 

makespan, tardiness, and energy consumption, were optimized 

to obtain the corresponding Pareto optimal solutions. In the 

second stage, the job transport task was further optimized to 

minimize the number of transport robots and their transport 

paths. Experimental results demonstrate the feasibility and 

effectiveness of the proposed algorithm. The research results 

provide theoretical and technical support for the JSPs in 

similar scenarios. 

2. PROBLEM DESCRIPTION

Our research focuses on a JSP with multiple transport robots. 

Let J={J1, J2,…, Jn}be the set of n jobs, and M={M1, M2,…, 

Mm} be the set of m machines. Each job has m operations that 

must be completed on the m machines. In addition, the 

operation of job i on machine j is denoted as Oi,j; the start time, 

processing time, and completion time of job i on machine j are 

denoted as Si,j, pi,j, and Ci,j, respectively. After the completion 

of operation Oi,j, job i will be transported by the robot from 

machine j to machine j+1, kicking off the operation Oi,j+1. The 

objectives of the job-shop scheduling include makespan, 

tardiness, and energy consumption of the job-shop. The 

production process must satisfy the following hypotheses: 

(a) All machines in the job-shop can start working at zero

hour; 

(b) Unless the release time of job is otherwise specified, the

processing of each job can start at zero hour; 

(c) Every job has a fixed operation sequence;

(d) Each machine can only process a job at a time, and each

job can only be processed by one machine at a time; 

(e) No preemption is allowed, and no machine fails during

job processing; 

(f) There are enough transport robots;

(g) Each robot can only transport one type of materials at a

time, and does not fail throughout the process; 

(h) There is a buffer zone between stations for temporary
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storage of raw materials and finished products; 

(i) Each robot can stop at any station to provide transport 

service, and the loading and unloading times are so small as to 

be negligible; 

(j) The physical distance between stations is known in 

advance. 

Figure 1 (a) describes the simple JSP without considering 

transport robots, and Figure 1 (b) presents the Gantt charge of 

centralized scheduling for machines and robots. In Figure 1 (a), 

operation 1 of J1 is processed on M2, and operation 2 of that 

job is processed on M1; there is obviously no time interval 

between the two operations. Figure 1 (b) expresses the 

sequence of jobs, as well as the transport time 𝑇𝑖
𝑘,𝑘+1

 of each 

job between every two stations. For example, 𝑇1
12 means the 

transport time of job 1 from station 1 to station 2; 𝑇1
23 means 

the transport time of job 1 from station 2 to station 3. Although 

the operation sequence is the same, J1 needs to be transported 

by robot between M2 and M1, which respectively process jobs 

1 and 2. This leads to a transport time between the two 

operations, which depends on the physical distance between 

the stations and the efficiency of the robot. In total, five 

transport tasks 𝑇1
12 , 𝑇1

23 , 𝑇2
12 , 𝑇3

12 , and 𝑇3
23  need to be 

completed. The transport time of each task hinges on the 

processing time of each operation, the processing capacity of 

each machine, the physical distance between stations, and the 

operating speed of the robot. 

In addition, the number of robots can be optimized based on 

the urgency of the processing task, and the cost and energy 

consumption of robots. Each robot belongs to either load state 

or no-load state. The load state means the robot carries 

materials from the current station to the next station; the no-

load state means the robot moves from current station to the 

next station, or waits at the current station, without carrying 

any materials (Figure 1). 
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Figure 1. The Gantt charts of simple scheduling (a) and centralized scheduling (b) 

 

Under the joint constraint of machines and robots, the 

transport time of jobs is uncertain. But there must exist an 

optimal transport time. Therefore, the scheduling of our 

problem aims to select the machines and robots befit the jobs, 

such that the job processing can start as early as possible and 

meet the requirement on processing time; Meanwhile, the no-

load state of robots needs to be minimized to reduce the 

number of robots in operation. Further, the processing 

sequence of jobs and transport paths of robots should be 

rationalized to satisfy the job transport demand of the job-shop 

at the lowest cost. 

 

 

3. PROBLEM MODELING 

 

3.1 Modeling of makespan 

 

For the JSP considering job transport time, the first 

objective is to minimize the maximum makespan of the jobs, 

the second is to minimize the tardiness of the jobs, and the 

third is to minimize the energy consumption of the job-shop. 

The scheduling plan outputted by the algorithm must satisfy 

the relevant constraints. The first objective can be modeled as: 
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Formula (1) is the first optimization objective, i.e., the 

minimization of the maximum makespan of the production 

task; Formulas (2) and (3) are the completion time of job i and 

its constraint, respectively; Formula (4) is the start time for the 

processing of job i, where tg,j is the transport time of the job 

from machine g to machine j; Formula (5) is the technological 

constraint, i.e., the operations of the same job are processed in 

different sequences; Formula (6) is the machine constraint, i.e., 

each machine can only process one job at a time, where W is 

a sufficiently large positive number; Formulas (7) and (8) are 

indicator variables. 

 

3.2 Modeling of tardiness 

 

Based on the model of the first objective, the tardiness of 

the production task can be modelled as: 

 

( )total

1

max 0,
n

i i

i

D C C

=

= −  (9) 

 

where, Ci and 𝐶′𝑖  are the completion time and delivery date of 

job i, respectively. 

 

3.3 Modeling of energy consumption 

 

The energy consumption of machines was divided into a 

load-independent component E1 and a load-dependent 

component E2. Let 𝑃𝑗
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝑡)  be the load-independent 

comprehensive power of machines, e.g., the energy consumed 

by the activation of relevant parts during the startup and 

shutdown of machines. Then, the load-independent 

component E1 can be expressed as: 

 

1
0

1

( )
start

m t
constant constant

j

j

E C P t dt
=

=   (10) 

 

where, tstart is the startup time of machines; Cconstant is a 

constant of energy consumption. 

The load-dependent component E2 of machines mainly 

manifests as the resistance to elastic deformation, the 

resistance to plastic deformation, and the friction against the 

tool surface of the material during the cutting process. In actual 

applications, the resultant cutting force is generally divided 

into three mutually perpendicular components: cutting force, 

feed force, and thrust force. Let 𝑃𝑖𝑗
𝑐𝑢𝑡  be the comprehensive 

power of machines in the cutting process. Then, the load-

dependent component E2 can be expressed as: 

 

2 ,

1

m n
cut cut

ij i j

j i

E C P p
=

=    (11) 

 

where, Ccut is a constant of energy consumption in cutting; pi,j 

is the processing time of job i on machine j.  

When a machine waits for the next job, an idling energy 

consumption E3 will occur. Let 𝑃𝑗
𝑖𝑑𝑙𝑒  be the power of idling 

energy consumption. Then, the idling energy consumption E3 

can be expressed as: 

 

3
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m
idle idle idle

j j

j

E C t P
=

=    (12) 

where, Cidle is a constant of energy consumption in idling; 𝑡𝑗
𝑖𝑑𝑙𝑒  

is the idling time of machine j. 

The transport energy consumption E4 of a robot refers to the 

energy consumed by the robot to transport a job between 

machines. Let 𝑃𝑗𝑗′
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡

 be the power of transport energy 

consumption. Then, the transport energy consumption E4 can 

be expressed as: 

 

4 , ,transport transport

jj jjE C P t j j m =    =  …  (13) 

 

where, Ctransport is a constant of energy consumption in 

transport; 𝑡𝑗𝑗′ is the transport time of the robot from machine j 

to machine j’. 

Through the above analysis, the optimization objective of 

total energy consumption of the job-shop can be established as: 

 

1 2 3 4{ }E min E E E E= + + +  (14) 

 

The three aspects of multi-objective optimization were 

combined into one objective function f={f1,f2,f3} that contains 

three sub-objective functions. This function can be solved by 

handling each sub-objective function in turn: 

The first objective: minimizing the maximum makespan 

 

1 maxmin( )f C=  (15) 

 

The second objective: minimizing the tardiness 

 

2 min( )totalDf =  (16) 

 

The third objective: minimizing the energy consumption 

 

3 min( )f E=  (17) 

 

 

4. IMPROVED NSGA-II (INSGA-II) 

 

The improved fast elitist nondominated sorting genetic 

algorithm II (INSGA-II) was employed to solve the multi-

objective JSP. 

 

4.1 Coding and decoding 

 

By operation sequence coding, all the operations in the 

production task were coded with natural numbers starting from 

1. For each job, the serial number of each operation and that 

of the corresponding machine were included in the code. Take 

a JSP with 3 machines and 3 jobs as an example to explain the 

coding method. Table 1 presents the operations in the problem 

and their processing sequence. 

 

Table 1. The information of the processing task 

 

J 

Processing 

time 

Operation 

sequence 

Serial number of 

operations 

M1 M2 M3 M1 M2 M3 M1 M2 M3 

J1 3 4 2 3 2 1 (3) (2) (1) 

J2 1 2 1 2 1 3 (5) (4) (6) 

J3 1 2 1 1 3 2 (7) (9) (8) 

 

Randomly generate chromosome 1 according to the process 

number. For the three processes of the workpiece, according 
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to the chromosomal order, the processing order is Process 2 

Process 1 Process 3, the processing order of the workpiece is 

Process 1 Process 3 Process 2, and the processing order of the 

workpiece is Process 1 Process 3 Process 2. Partially sort each 

workpiece to obtain legal chromosome 2, as shown in Figure 

2. 

Chromosome 1 is randomly generated based on the serial 

number of the operations. For job J1, the three operations are 

sorted by the chromosome as: operation 2 → operation 1 → 

operation 3; For job J2, the operations are sorted as: operation 

1 → operation 3 → operation 2; For job J3, the operations are 

sorted as: operation 1 → operation 3 → operation 2. 

 

2 4 1 3 7 6 5 9 8 

 

1 4 2 3 7 5 6 8 9 

 

chromo1

chromo2

 
Figure 2. The local sorting of chromosomes 

 

According to the start time and completion time of each 

operation, the value of the objective function was solved. The 

decoding process can be specified as follows: 

Step 1. Identify the operation at the first gene of the 

chromosome, find the corresponding job in the operation list, 

process the job on the corresponding machine, and record the 

start time and completion time of the operation. 

Step 2. Identify the operation at the next gene, find the 

corresponding job in the operation list, arrange a suitable 

machine to process the job according to the operation sequence 

of the job and the idle state of machines, and record the start 

time and completion time of the operation. 

During the machine arrangement, scan all the idle periods 

of the corresponding machine, and judge if: 

(a) The length of idle period [Idlestart, Idleend] is greater than 

the processing time of the operation pi,j; 

(b) The start time point of the idle period Idlestart is earlier 

than the completion time point of the previous operation Oi-1,j. 

If both conditions hold, insert operation Oi,j into idle period  

[Idlestart, Idleend]; otherwise, insert the operation behind the 

current operation on the machine. 

Step 3. Repeat (b) until the operations at all genes of the 

chromosomes have been inserted. 

Step 4. Calculate the makespan Cmax of the scheduling plan. 

 

4.2 Selection, crossover, and mutation 

 

Our coding method has the natural advantage of retaining 

excellent chromosome fragments. The excellent genes can be 

passed down to offspring chromosomes. Then, the crossover 

operator can be executed to realize global search. However, 

the offspring chromosomes are not always feasible scheduling 

plans. Sometimes, the adjacent chromosomes cannot fully 

demonstrate the operation features on each machine. 

(1) Selection  

Individuals are chosen by tournament selection. The genes 

with low non-dominated levels are selected first, while the 

elite individuals are retained; if two individuals are of the same 

level, the one with the larger crowding distance is selected. In 

the parent population, two individuals are randomly selected, 

and the one with the higher fitness will be retained for the next 

generation. 

(2) Crossover 

The precedence preserving order-based crossover (POX) 

operator was selected for crossover, which can effectively 

inherit the excellent genes of the parent chromosomes, and 

achieve better scheduling results under the same conditions. 

For an mn production task, the parent chromosomes of 

operation codes are denoted as P1 and P2, and the offspring 

chromosomes obtained through POX are denoted as C1 and C2. 

Then, the POX procedure can be summarized as follows 

(Figure 3): 

Step 1. Randomly divide each chromosome {1, 2, …, mn} 

into two non-empty chromosome fragments S1 and S2. 

Step 2. Copy the operations of P1 in fragment S1 to C1, and 

those of P2 in fragment S1 to C2, while keeping the position of 

each operation unchanged. 

Step 3. Copy the operations of P2 in fragment S2 to C1, and 

those of P1 in fragment S2 to C2, while keeping the position of 

each operation unchanged. 

Step 4. Obtain the offspring chromosomes through 

crossover. 

 

 

2 4 1 3 7 6 5 9 8 

 

7 4 8 1 9 5 6 2 3 

 

1S = 2 3 4 6 

 

2S = 1 7 5 8 9 

 

2 4 7 3 8 6 1  9 5 

 

1 4 7 5 9 8 6 2 3 

 

1P

2P

1C 2C

 
 

Figure 3. The POX crossover 

 

(3) Mutation 

To diversify the population, mutation is implemented by 

locally disturbing the chromosomes. The common mutation 

operators include insertion, inversion, and exchange. Different 

mutation probabilities bring varied benefits. If the mutation 

probability is low, the excellent gene fragments in 
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chromosomes can be preserved well, but the optimal solution 

is very likely to be missed due to the weak search ability; if the 

probability is high, the algorithm will degenerate into random 

search, which affects the stability and convergence. This paper 

implements mutation with a strategy based on neighborhood 

search, and improves offspring chromosomes through local 

search. As shown in Figure 4, the mutation process can be 

detailed as follows: 

 

1 4 7 2 8 5 3  9 6 

 

7 6 2

6 7 2

6 2 7

2 7 6

2 6 7

1 4 6 7 8 5 3  9 2 

  
 

Figure 4. The mutation operation 

 

Step 1. Set the loop variable x=0, and the maximum number 

of mutations X. 

Step 2. Randomly generate the judgment factor μ, and judge 

the relationship between μ and the mutation probability Pm. If 

μ≤Pm, go to the next step; otherwise, terminate the mutation 

process. 

Step 3. Select σ operations from a chromosome, and 

generate all the neighborhoods of these operations. 

Step 4. Calculate the fitness values of all neighborhoods, 

and identify the one with the highest fitness. 

Step 5. Increase x by 1. 

Step 6. Terminate the mutation process if x>X. 

(4) Improved N5 neighborhood search strategy 

Based on the classic N5 neighborhood search strategy [21], 

the N5 neighborhood structure was improved, and coupled 

with the non-dominated relationship into a new local search 

strategy: 

Step 1. Calculate the total number Np of individuals in the 

population, randomly select an individual Pi from the 

population, and initialize the value of Pi as 1. 

Step 2. Move the N5 neighborhood of individual i to 

generate the corresponding neighborhood individual Ci, and 

perform decoding on the new individual. 

Step 3. Calculate the objective values of the scheduling plan 

for individual i; if the objective values of Ci are better than 

those of Pi, then Ci dominates Pi, i.e., Pi<Ci, and replace Pi 

with Ci; otherwise, preserve Pi. 

Step 4. Increase Pi by 1; if Pi≤Np, execute Step 2; otherwise, 

terminate the iterative process. 

 

 

5. FURTHER OPTIMIZATION OF JOB TRANSPORT 

TASK  

 

Despite the consideration of energy consumption in 

transport, the scheduling plan obtained by INSGA-II only 

takes account of the theoretical transport energy consumption 

of jobs in the solving process. This section further optimizes 

the completion of the transport tasks in the scheduling plan. 

5.1 Position scan 

 

During the position scan, the demand points were grouped 

before path selection. Each demand point was expressed as 

polar coordinates. Taking a random demand point as the 

starting point, the zoning was performed in the clockwise or 

counterclockwise direction under the constraint of robot 

capacity. Then, the exchange method was implemented to sort 

the demand points, thereby minimizing the number and energy 

consumption of robots. 

 

5.2 Path selection 

 

The ant colony algorithm (ACA) was adopted for path 

selection. During the selection, each ant selects the next node 

at a certain probability. That is, the transition node with the 

highest probability is chosen by the ant: 

 

(t)* (t)
      

(t) (t)=

0                              

k

ij ij

k
k

ij ij
ij

s allow

k

s allow
p

s allow

 
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 

 










  (18) 

 

where, 𝑝𝑖𝑗
𝑘  is the transition probability of ant k from node i to 

node j; α is the heuristic information (the greater the α value, 

the more likely for the ant to select the already chosen paths, 

and the less likely for the ant to randomly explore other paths; 

the smaller the   value, the smaller the search scope, and the 

algorithm is prone to falling into the local optimum); β is the 

expected heuristic factor (the greater the β value, the more 

likely for the ant to select the local optimal path, the faster the 

convergence, and the greater the proneness to falling into the 

local optimum); 𝜏𝑖𝑗
𝛼 (𝑡) is the pheromone from node i to node j; 

𝜂𝑖𝑗
𝛽
(𝑡) is the heuristic factor from node i to node j. 

To prevent ants from repeatedly selecting nodes that have 

been visited, the visited nodes were recorded in a tabu list. 

After time t, all ants completed a traversal search. Then, the 

path length covered by each ant was calculated, and the 

minimum was saved. To balance convergence speed with 

solution quality, threshold θ0(0,1) was introduced to the node 

selection strategy. Before an ant makes a selection, a threshold 

𝜃′was randomly generated. If 𝜃′ ≤ 𝜃0, the ant will choose the 

node with the largest 𝜏𝑖𝑗
𝛼 (𝑡) ∗ 𝜂𝑖𝑗

𝛽
(𝑡); otherwise, the ant will 

choose another node. 

The pheromone can be updated by:  

 

 ( 1) (1 ) ( )

/ ( )

ij ij ij

ij

t t

Q fitness i

   

 

+ = − +

=  
(19) 

 

where, ρ is the pheromone volatilization factor; 1-ρ is the 

residual pheromone factor (if ρ value is small, there will be too 

many residual pheromones on the selected path; in this case, 

the illegal paths will be searched continuously, which impedes 

algorithm convergence; If ρ value is large, the invalid paths 

can be excluded from the search, but the legal paths are not 

necessarily covered in the search space, which will affect the 

quality of the optimal solution.); 𝑄′ is a constant. After all ants 

completed a traversal search, the tabu list was emptied, and all 

ants would return to the initial node, and perform the next 

round of search. 
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5.3 Obstacle avoidance 

 

The path optimization and dynamic obstacle avoidance 

were realized through reinforcement learning (RL), which 

autonomously interacts with the environment, and obtains the 

mapping function from state to action by maximizing the 

reward function. The Q-learning algorithm is a model-free 

time-series difference algorithm for estimating the Q value. 

The core idea is to estimate the action of the Q value based on 

the increment of the reward value, and select the maximum 

action value of the next state iteratively: 

 

1

1

( , ) ( , )

( max ( , ) ( , ))

k t t k t t

t k t k t t
a

Q s a Q s a

r Q s a Q s a 

+

+



+ + −
 (20) 

 

As the state transfers from st to st+1, the corresponding 

reward value rt is received. The algorithm selects the 

maximum action value through iterations, and eventually 

converge to the optimal strategy. Taking the opposite of the 

path length between nodes as the reward, the path selection by 

greedy strategy can be expressed as: 

 

1 1
( )

arg max { ( )}
k

a a

k k k
a A s

a r V S+ +


= +  (21) 

 

 

6. EXPERIMENTS AND RESULTS ANALYSIS 

 

6.1 Experimental setup 

 

Table 2. The main parameters of the INSGA-II 

 
Name Meaning Value 

Npopu Initial population 300 

Npare Size of Pareto solution set 40 

Niter Number of iterations 400 

psele Selection probability 0.02 

pcros Crossover probability 0.90 

pmuta Mutation probability 0.10 

 

The main parameters of the INSGA-II are presented in 

Table 2. The main cost parameters of the transport task are 

given in Table 3. In addition, the other parameters were 

configured as: the pheromone importance factor=1; constant 

Q=1; the importance of heuristic function=5; pheromone 

volatilization factor=0.1; crossover probability=0.85; genetic 

gap=0.8; mutation probability=0.1, learning rate=0.1; discount 

factor=0.9. 

 

Table 3. The main cost parameters of the transport task 

 
Type Name Value Weight 

Basic cost 
Basic cost of robot 

assignment 
300 

0.3 

Transport cost Unit distance cost of robot 5 0.5 

Time window 

penalty costs 

Penalty coefficient for early 

arrival 
0.002 

0.2 
Penalty coefficient for late 

arrival 
0.04 

Operating speed of robot 30 

Maximum capacity of robot 4 

 

6.2 Comparative analysis 
 

(a) Multi-objective scheduling experiments 

Tables 4, 5, and 6 record the processing sequence, 

processing time, and energy consumption power of each job 

on each machine, respectively. 

First, the INSGA-II and NSGA-II were separately adopted 

to find the reasonable scheduling plan for an 88 JSP, with the 

aim to minimize the maximum makespan and energy 

consumption. Each algorithm was run 40 times independently. 

The optimal results of the two algorithms were compared. As 

shown in Table 7, most results of NSGA-II were dominated by 

those of INSGA-II. The results of INSGA-II had higher non-

dominance level. Thus, INSGA-II clearly outperformed 

NSGA-II. 
 

Table 4. The processing sequence 
 

 Processing sequence 

 M1 M2 M3 M4 M5 M6 M7 M8 

J1 2 5 4 8 3 7 6 1 

J2 8 5 7 2 1 4 6 3 

J3 7 3 5 8 2 4 1 6 

J4 4 8 5 3 2 1 7 6 

J5 2 4 7 6 1 5 8 3 

J6 2 4 3 5 1 8 7 6 

J7 1 5 4 3 8 2 6 7 

J8 6 5 7 2 4 3 1 8 

Table 5. The processing time 

 
 Processing time Release time Delivery date 

 M1 M2 M3 M4 M5 M6 M7 M8 0 150 

J1 17 18 11 14 18 18 10 15 0 120 

J2 11 8 21 18 12 8 19 25 30 190 

J3 17 23 21 9 18 20 9 9 0 120 

J4 13 20 11 19 10 23 15 19 0 180 

J5 15 18 11 8 12 10 13 15 0 180 

J6 17 8 25 18 10 8 9 7 0 - 

J7 7 18 9 10 14 18 12 13 10 190 

J8 11 8 25 18 12 9 22 13 0 150 

 

Table 6. The power of energy consumption 

 
 Machine 

Energy consumption M1 M2 M3 M4 M5 M6 M7 M8 

Cutting energy consumption 22 15 9 10 6 7.5 8 12 

Idling energy consumption 3.2 2.3 1.8 2.1 1.9 4.4 3.4 4.0 

Other energy consumption 1.2 1.3 0.9 0.7 1.2 1.4 1.6 1.4 

Transport energy consumption 3 3 3 3 3 3 3 3 
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Table 7. Some solutions of the two algorithms 

 
INAGA-II NAGA-II 

Makespan (Cmax) Energy consumption (E) Tardiness (Dtotal) Makespan (Cmax) Energy consumption (E) Tardiness (Dtotal) 

159 405 84 163 409 89 

160 400 86 164 405 91 

161 394.9 87 166 404 92 

162 390 87.5 166 403 93 

163 385 88 167 400 93 

164 383 88.5 168 399 94 

165 380 89 168 397 94 

166 372 90 169 390 95 

167 370 90 170 388 96 

168 365 91 171 386 97 

 

 
 

Figure 5. The distribution of Pareto solutions 

 

The distribution of Pareto solutions of the two algorithms 

are compared in Figure 5, where the three dimensions stand 

for energy consumption, makespan, and tardiness, 

respectively. Obviously, the Pareto solutions of INSGA-II 

were nearly all on the upper right of those of NSGA-II. 

Suppose the theoretical optimal solution is point (155, 75, 

320). The spatial distance between the solutions of each 

algorithm and the theoretical value can be solved by: 

 

2 2 22

1

1
( -155) +( -75) +( -320)

pateto

N
i i i

max total

i

D

Distance

C E
N =

=


 (22) 

 

For comparability, the three terms under the radical in (22) 

were normalized by: 

 

min

max min

x - x
x =

x - x
  (23) 

 

It was calculated that the Distancepateto of INSGA-II stood 

at 3.333, and that of NSGA-II at 3.357. Obliviously, the result 

of INSGA-II is closer to the theoretical optimal solution. 

Next, the mean maximum makespan and mean number of 

iterations of each algorithm in 40 independent runs were 

calculated to compare their convergence speeds. As shown in 

Figure 6, INSGA-II converged in an average of 200 iterations, 

while NSGA-II converged in an average of 216 iterations. 

Thus, INSGA-II converges faster than NSGA-II. 

 

 
 

Figure 6. The comparison of convergene curves 

 

Through the experiments on the small-scale problem of 88, 

the proposed INSGA-II outperforms NSGA-II in solution 

quality and convergence speed. To further validate its 

performance, our algorithm was compared with NSGA-II and 

SPEA2 (Strength Pareto Evolutionary Algorithm 2) [22] on 

medium and large-scale problems. Four numbers of jobs were 

selected: 20, 50, 80, and 100; Each number of jobs were 

processed on 4, 6, 8, and 10 machines, respectively. Each 

algorithm was run independently for 40 times on each problem. 

The makespan of the processing task was generated from a 

uniform distribution U(30,100). The total makespan of jobs p 

can be expressed as: 

 

1

n

i i
p p

=
=  (24) 

 

The delivery date of jobs can be calculated by:  

 

(1 ) ( 1.2 (1 )) ( 1)iD p p p n -  − += +  −  (25) 

 

where, ξ is a set of values from 0.2 to 1.0; the step size is 0.2. 

Table 8 compares the gradient descent (GD) of the three 

algorithms on the 16 medium and large-scale problems. It can 

be seen that INSGA-II outshined the other algorithms on most 

examples: SPEA2 achieved the best results on 1 medium-scale 

example; NSGA-II achieved the best results on 4 examples; 

INSGA-II achieved the best results on 11 examples. This 

further verifies the excellent convergence ability of INSGA-II. 

Moreover, the best results on all four large-scale examples 

belonged to INSGA-II, an evidence to the superiority of our 

algorithm in solving large-scale JSPs. 
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Table 8. The comparison of GD indices 

 

Problem 
SPEA2 NSGA-II INSGA-II 

Mean Standard deviation Mean Standard deviation Mean Standard deviation 

204 3.96E-03 7.16E-03 8.06E-03 7.47E-03 5.48E-03 3.75E-03 

206 9.33E-03 1.39E-03 3.67E-03 8.10E-03 1.20E-03 2.03E-03 

208 8.77E-03 3.22E-03 2.31E-03 8.12E-03 1.05E-02 1.84E-03 

2010 2.23E-03 8.36E-03 3.49E-03 3.09E-03 1.17E-03 2.52E-03 

504 5.61E-02 1.07E-02 3.59E-02 3.67E-02 2.62E-02 1.30E-02 

506 6.70E-03 9.59E-03 2.47E-03 2.66E-03 9.10E-03 3.91E-03 

508 6.71E-03 1.69E-03 9.47E-03 7.70E-03 4.09E-03 4.26E-03 

5010 1.92E-03 7.89E-03 1.36E-03 9.45E-03 4.74E-03 6.92E-03 

804 5.82E-03 1.12E-03 1.26E-03 9.69E-03 4.30E-03 6.93E-03 

806 5.23E-03 2.23E-03 8.39E-03 8.29E-03 2.06E-03 1.28E-03 

808 3.83E-02 8.14E-02 3.66E-02 2.57E-02 1.06E-02 4.26E-02 

8010 9.60E-03 7.59E-03 3.03E-03 1.12E-03 3.43E-03 4.08E-03 

1004 7.49E-02 2.81E-02 4.77E-02 1.90E-02 3.42E-02 1.08E-02 

1006 1.33E-03 4.34E-03 1.77E-03 3.72E-03 1.01E-03 5.56E-03 

1008 9.40E-03 7.36E-03 6.42E-03 6.39E-03 4.24E-03 9.36E-03 

10010 3.22E-03 2.62E-03 1.82E-03 4.98E-03 1.04E-02 3.35E-02 

Accuracy 1/16 4/16 11/16 

 

Table 9. The comparison of IGD indices 

 

Problem 
SPEA2 NSGA-II INSGA-II 

Mean Standard deviation Mean Standard deviation Mean Standard deviation 

204 4.05E-03 3.75E-03 3.91E-03 9.77E-03 1.06E-04 7.43E-04 

206 4.32E-03 5.37E-03 7.42E-03 6.69E-03 1.27E-03 1.61E-03 

208 8.46E-03 3.19E-03 5.73E-03 3.20E-03 3.43E-04 7.68E-04 

2010 8.34E-03 4.23E-03 1.08E-03 2.39E-03 8.83E-04 7.77E-04 

504 1.08E-02 1.06E-02 4.04E-03 2.82E-03 1.10E-04 2.23E-04 

506 8.37E-03 3.82E-03 8.80E-03 2.23E-03 2.16E-03 4.75E-03 

508 3.82E-03 6.67E-03 8.76E-03 7.07E-03 8.26E-04 8.26E-04 

5010 1.01E-02 4.20E-03 8.33E-03 1.28E-03 6.81E-04 9.38E-04 

804 4.08E-03 5.51E-03 8.72E-03 7.66E-03 6.04E-04 4.07E-04 

806 2.83E-03 8.64E-03 3.14E-03 1.21E-03 9.93E-04 9.36E-04 

808 1.01E-03 8.69E-03 6.79E-03 5.01E-03 9.32E-04 1.01E-04 

8010 8.65E-03 6.96E-03 9.55E-03 8.46E-03 7.46E-03 9.12E-03 

1004 3.55E-03 4.05E-03 1.05E-03 6.07E-03 7.31E-03 3.11E-03 

1006 6.31E-03 1.02E-02 4.90E-03 8.03E-03 6.09E-04 1.03E-04 

1008 2.17E-03 3.29E-03 7.91E-03 2.49E-03 9.69E-04 4.97E-04 

10010 8.31E-03 6.75E-03 4.54E-03 8.56E-03 2.35E-04 1.10E-04 

Accuracy 0/15 1/16 15/16 

 

Table 10. The comparison of spread indices 

 

Problem 
SPEA2 NSGA-II INSGA-II 

Mean Standard deviation Mean Standard deviation Mean Standard deviation 

204 3.14E-01 2.11E-01 1.36E-01 6.47E-01 8.41E-01 5.29E-01 

206 6.67E-01 5.66E-01 7.54E-01 1.84E-01 2.16E-01 4.43E-01 

208 8.13E-01 9.89E-01 1.05E-02 5.14E-01 4.36E-01 8.40E-01 

2010 8.48E-00 6.01E-00 8.43E-00 6.47E-00 3.74E-00 1.02E-00 

504 9.73E-02 9.58E-02 1.83E-02 1.01E-02 5.68E-02 2.18E-02 

506 1.02E-02 3.76E-02 9.63E-02 2.29E-02 2.89E-02 6.58E-02 

508 1.02E-02 5.13E-02 1.01E-02 6.63E-02 9.20E-02 7.31E-02 

5010 4.10E-02 4.46E-02 4.40E-02 8.12E-02 1.95E-02 4.12E-02 

804 7.31E-02 4.42E-02 9.25E-02 4.31E-02 3.29E-02 1.54E-02 

806 4.47E-01 3.42E-01 1.01E-02 2.95E-01 1.08E-02 2.67E-01 

808 5.09E-01 9.49E-01 3.30E-01 9.42E-01 1.01E-01 3.91E-01 

8010 1.66E-02 6.26E-02 1.08E-02 2.40E-02 1.05E-02 8.26E-02 

1004 8.65E-02 6.47E-02 7.87E-02 4.36E-02 7.50E-02 5.57E-02 

1006 8.99E-02 7.16E-02 9.80E-02 1.07E-02 5.19E-02 1.02E-02 

1008 9.99E-00 1.14E-00 4.85E-00 1.15E-00 3.09E-00 3.62E-00 

10010 3.60E-02 5.62E-02 8.50E-02 7.77E-02 1.67E-02 1.01E-02 

Accuracy 1/16 5/16 10/16 
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The incremental gradient descent (IGD) of the three 

algorithms on the 16 medium and large-scale problems are 

compared in Table 9. It can be seen that INSGA-II achieved 

the best results on 15 examples, and NSGA-II achieved the 

best results on 1 example. Therefore, INSGA-II has much 

better performance than the other algorithms in terms of IGD. 

Table 10 compares the spread of the three algorithms on the 

16 medium and large-scale problems. It can be seen that 

INSGA-II achieved the best results on 10 examples, NSGA-II 

achieved the best results on 5 examples, and SPEA2 achieved 

the best results on 1 example. This means the solution 

distribution of INSGA-II is better than that of the other 

algorithms. 

(b) Further optimization of job transport task 

A total of 20 examples were selected, including five 104 

examples, five 106 examples, five 108 examples, five 

1010 examples, five 204 examples, five 206 examples, 

five 208 examples, and five 2010 examples. The proposed 

algorithm was running 30 times on each example. The number 

of assigned robots, transport energy consumption, and robot 

utilization rate were calculated. Among them, the robot 

utilization rate refers to the ratio of the load state time tw of a 

robot to the total time tv from entering into transport task to the 

completion of the transport of the last job: 
 

= 10 0%w

v

Utilization ra
t

t
t

io   (26) 

 

The relevant results are recorded in Table 11. It can be seen 

that the further optimization of job transport task effectively 

suppressed the number of assigned robots and the transport 

energy consumption, and greatly enhanced the robot 

utilization rate. This fully demonstrates the effectiveness of 

our algorithm.  

 

Table 11. The comparison of transport results 

 

Problem 

Results of first stage Post-optimization results 

Number 
Transport energy 

consumption 

Utilization 

ratio 
Number 

Transport energy 

consumption 

Utilization 

ratio 

104 10 50.4 36.5% 6.2 30.5 90.0% 

106 10 80.7 30.7% 6.1 48.8 88.3% 

108 10 92.6 27.4% 7.3 65.3 80.9% 

1010 10 107.5 22.9% 8 80.2 78.2% 

204 20 78.9 33.4% 12 50.7 87.3% 

206 20 90.3 28.3% 11 60.3 83.2% 

208 20 123.5 22.3% 11 71.2 78.1% 

2010 20 189.3 15.7% 9 110.6 74.5% 

 

 

7. CONCLUSIONS 

 

This paper designs a two-stage optimization algorithm for 

multiple objectives of JSP with job transport, including the 

makespan, tardiness, and energy consumption of the 

production task, and proves the feasibility and effectiveness of 

the algorithm through experiments. The research also proves 

that the combination between RL and GA can greatly improve 

optimization performance. The future research will further 

probe into the synergy between the two techniques. 
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