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 Over the past years, energy sectors have accomplished considerable progress in the transition 

from conventional fossil-based energy to low-carbon energy production, and microgrids are 

playing important roles in this sustainable energy transition. One of the key challenges for 

microgrids is to deliver power with the least possible cost and that too with such an approach 

that the environmental impact is the lowest and the overall system reliability is high enough. 

For this reason, generation cost, emission entities, and system reliability need to be efficiently 

optimized. Towards this goal, an online multi-objective technique has been employed to 

optimize cost, emission and system reliability taking these three factors in pairs at a time. The 

optimization model is designed using the non-dominated sorting genetic algorithm-II (NSGA-

II), and the algorithm has been employed for several double objective scenarios considering 

reliability as an objective and later as a constraint. To evaluate the performance of the proposed 

approach, the simulation results are compared with the relative parameters from a different 

model that uses the strength pareto evolutionary algorithm (SPEA). The results show that the 

proposed technique satisfies the multi-objective optimization goals and provides good trade-

offs between the conflicting objective functions while finding the optimal dispatch. 
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1. INTRODUCTION 

 

The world is facing the ever-increasing risk of the depletion 

of non-renewable energy sources at an alarming rate. 

Additionally, the heavy dependency on fossil-fuel-based 

energy generation is causing excessive environmental 

pollution. Therefore, the transition from conventional fossil-

fuel-based energy to renewable energy resources is a must to 

ensure a sustainable future. Microgrids are one of the key tools 

of this sustainable energy transition process since it provides 

significant advantages such as lower transmission losses and 

efficient renewable energy source (RES) integration capability. 

However, the delivered power through the microgrids needs to 

be cost-effective and at the same time, the environmental 

impacts need to be checked. Additionally, the grid-system has 

to be highly reliable, and this is a very big concern especially 

for the islanding microgrids. To meet the power demand with 

the least possible cost, lowest possible environmental impact 

and higher system reliability, an optimal dispatch system must 

be modeled based on estimated trade-offs. 

Microgrids can ameliorate the quality, reliability, and 

efficiency of a power system; and it can also create an 

opportunity to provide grid-independence. According to the 

U.S. department of energy (DOE), a microgrid can be defined 

as “a batch of distributed energy resources (DERs) and 

coordinated loads which maintains all the properties of an 

electrical system that resembles a controllable single unit with 

respect to the main power grid”. A microgrid has the ability to 

connect and disconnect from the main grid enabling it to 

operate in both grid-connected and islanded mode [1]. To deal 

with the economic dispatch problem, an efficient energy 

management system (EMS) is required. The EMS optimizes, 

monitors and co-ordinates the energy sources connected to the 

microgrid. In the past decades, several approaches have been 

proposed regarding EMS as well as the co-ordination between 

different renewable energy sources connected to microgrids. 

On the other hand, a number of efforts have also been made 

for effective generation scheduling in order to minimize the 

cost and pollution caused by the generator for achieving the 

optimal eco-friendly operation for the microgrids.  

Nikmehr and Najafi-Ravadanegh [2] have reported optimal 

power dispatching technique based on probabilistic analysis 

considering technical constraints and economic aspects, and it 

is solved by applying a heuristic algorithm called imperialist 

competitive algorithm. Monte carlo simulation (MCS) is also 

applied to compare the obtained results. Bayat et al. [3] have 

optimized the operation cost using multi objective particle 

swarm optimization (MOPSO) in grid connected mode 

considering the voltage constraints. For intelligent energy 

generation scheduling, a cost minimization optimization 

problem is formulated and solved by Wang et al. [4] using 

robust optimization and chance constraints approximations 

approaches. Hosseinnezhad et al. [5] have proposed an optimal 

power scheduling technique in order to minimize the operation 

cost and emission from the generators by applying species-

based quantum particle swarm optimization (SQPSO). Gupta 

and Gupta [6] have proposed a robust optimization approach 

for optimal management of a microgrid taking wind power 
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uncertainty into consideration. Askarzadeh [7] has used 

memory-based genetic algorithm (MGA) to solve the best 

economic DERs dispatching problem as a single objective 

optimization and compared his result with Genetic Algorithm 

(GA), and two variants of Particle Swarm Optimization: PSO 

with inertia weight (PSOw), PSO with constriction factor 

(PSOcf). 

Multi-objective PSO (MOPSO) technique can be used to 

develop a solution for the optimal power flow (OPF) problem 

of medium electrical systems [8]. Improved harmony search 

(EHS) algorithm can also be applied to resolve the economic 

dispatch problem [9]. Sundaram et al. [10] have implemented 

a synergistic hybrid metaheuristic algorithm merging the 

Nondominated sorting genetic algorithm-II (NSGA- II) and 

multi-objective PSO (MOPSO) algorithm in order to solve the 

combined heat and power economic emission dispatch 

problem. Zhao et al. [11] presented a dynamic economic 

dispatch model of a microgrid which uses a variant of NSGA-

II algorithm with an external penalty function for dealing with 

the constraint conditions. An improved NSGA-II method is 

adopted for planning the production of thermal unit for 

minimizing the cost and emissions [12]. 

Akram et al. [13] have proposed a methodology to find an 

optimal combination of hybrid renewable power generation 

system and energy storage for grid connected microgrids. The 

modeled hybrid generation system is comprised of solar 

photovoltaic (PV) and wind turbine (WT), while the hybrid 

energy storage system (HESS) includes the battery energy 

storage (BES) system and supercapacitor (SC) technology 

[13]. To minimize the generation cost of the microgrid, a 

reduced gradient algorithm (RGA) is applied on three 

generating units considering load demand as a constraint [14]. 

An algorithm based on dynamic programming (DP) has been 

proposed to minimize the cost and emission of CO2 as a form 

of cost [15]. Liu et al. [16] proposed that an optimal day-ahead 

bidding strategy can be used for finding the lowest possible net 

expected cost based on a hybrid robust or stochastic algorithm. 

Based on a robust optimization technique taking islanding 

capability as a constraint and cost minimization as a single 

objective, an economic dispatching model for a microgrid can 

be implemented [17]. 

For dealing with the reliability analysis, probabilistic 

techniques are extensively used. Billinton et al. [18] have 

presented composite DC power system adequacy assessment 

with monte carlo simulation (MCS). Billinton and 

Jonnavithula [19] have presented two variance-reduction 

techniques to improve the performance of sequential monte 

carlo simulation. The enhanced model is then applied for the 

adequacy analysis of a six-bus test system and a 24-bus system. 

It was suggested that system adequacy assessment of a 

composite system can also be evaluated by using a procedure 

called contingency evaluation instead of monte carlo 

simulation (MCS) [20]. A system reliability assessment based 

on spot pricing has been propose by Goel et al. [21]. Billinton 

and Wenyuan have evaluated the reliability of bulk composite 

system with the help of monte carlo simulation [22]. Henneaux 

et al. [23] have estimated the confidence intervals (CI) of 

reliability indices using monte carlo simulation method.   

In this paper, we have applied the non-dominated sorting 

genetic algorithm-II (NSGA-II) for multi-objective 

optimization by adding a nonlinear and non-convex objective 

for green-house-gas (GHG) emission, generation cost and 

system reliability. The proposed non-dominated sorting 

genetic algorithm-II (NSGA-II) is designed using MATLAB 

simulation software. The designed algorithm is then applied 

for multi-objective optimization purposes to optimize cost, 

emission and reliability by taking them in pairs, considering 

double objective functions at a time. The simulation results 

provide trade-offs between fuel cost Vs emission; fuel cost Vs 

reliability; and emission Vs reliability. In order to compare and 

verify the effectiveness of our proposed model, the simulation 

results of the energy dispatch, cost and emission quantities are 

compared with relevant parameters of another model which 

uses the strength pareto evolutionary algorithm (SPEA). The 

comparison between NSGA- II and SPEA model, verifies that 

the NSGA- II performes efficiently. After verifiying the 

performance of the proposed model, NSGA- II algorithm is 

applied to find out the optimized values of cost and emission 

but at this time the reliability factor is considered as a 

constraint.  

The structure of this paper is organized as follows: section 

2 presents the system description, section 3 demonstrates the 

problem statement, section 4 presents the solution 

methodology, section 5 shows the simulation results and lastly 

the conclusion of this study is presented in section 6. 

 

 

2. SYSTEM DESCRIPTION 

 
The topological model of the studied microgrid system is 

shown in Figure 1. The test system shown in Figure 1 is a 

modified version of Roy Bilinton Test System (RBTS) which 

is a widely used test system for electric power system analysis. 

Figure 1 illustates the diagram of the modified 6-bus RBTS 

system with the six distributed generators (DGs) and load 

connections. The microgrid is assumed to be connected with 

the main grid at bus 1. 

 

 
 

Figure 1. System topology 

 

To develop an on line algorithm, we need load data and 

status of the generators. In order to collect these data, the DGs 

should communicate with each other in a microgrid as 

illustrated in Figure 1. All the information is analyzed by the 

algorithms to select which generation sources should supply 

power to the loads with the least possible cost and toxic gas 

emission like SO2 and NO2. 
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3. PROBLEM FORMULATION

3.1 Problem objective 

An economic, environment friendly and reliable power 

dispatching problem has three objective functions, one is 

minimizing fuel cost, second one is minimizing the emission 

from the generators and the third one is minimizing the 

unserved energy (EENS) or maximizing the reliability. 

The electricity generation schemes largely depend on its 

cost. For minimizing the cost of the studied microgrid, a 

common quadratic cost function has been considered. This 

cost function FC(Pg) can be expressed as follows [24]: 

𝐹𝐶(𝑃𝑔) = 𝐶𝑔𝑖(𝑃𝑔𝑖) = 𝛼𝑔𝑖𝑃𝑔𝑖
2 + 𝛽𝑔𝑖𝑃𝑔𝑖 + 𝛾𝑔𝑖 (1) 

In Eq. (1), C denotes the cost per hour in USD($), gi implies 

the i th distributed generator, P denotes the real power 

generated by a distributed generator in MW, and α, β and γ are 

the cost coefficients which are listed in Table I. 

The environmental pollutant gases emitted from fossil-fuel-

run conventional generators have been modeled separately in 

[25]. The emission can be expressed in ton/hr to detect the 

amount of the pollutant gases emitted from the generators. The 

total emission function E(Pg) can be written as follows [25], 

𝐸(𝑃𝑔) = ∑[10−2(𝑎𝑖 + 𝑏𝑖𝑃𝑔𝑖 + 𝑐𝑖𝑃𝑔𝑖
2 ) + 𝑑𝑖  𝑒𝑥𝑝(𝑒𝑖𝑃𝑔𝑖)]

𝑁𝐺

𝑖=1

(2) 

where, NG is the number of generators; Pg refers to the real 

power output vector consists of all the generator outputs such 

that 𝑃𝑔  = [ 𝑃𝑔1,𝑃𝑔2,𝑃𝑔3,…..,𝑃𝑔𝑁𝐺 ];  𝑃𝑔𝑖  represents the real power 

generated from i-th generator; and 𝑎𝑖 , 𝑏 , 𝑐𝑖 , 𝑑𝑖 , ei are the 

emission coefficients of the i-th generator listed in Table 1 [25]. 

The reliability evaluation algorithm calculates the total 

curtailed power with the help of power flow algorithm and 

finds the total amount of unserved power of the system. Finally, 

it calculates the expected energy not served (EENS) by using 

the simplified equation of the reliability evaluation function 

R(Pg) [26], 

𝑅(𝑃𝑔) = 𝐸𝐸𝑁𝑆(𝑃𝑔) = ∑ 𝐶𝑖𝐹𝑖𝐷𝑖

𝑖∈𝑆

= ∑ 8760𝐶𝑖𝑝𝑖

𝑖∈𝑠

𝐸𝐷𝑁𝑆 = ∑ 𝐶𝑖𝑝𝑖

𝑖∈𝑠

 
(3) 

where, S is the set of all system states associated with loss of 

load; Ci is the curtailment of load for ith system state; 𝐹𝑖 

represents the frequency of departing system state i, 𝐷𝑖 is the 

duration of system state i; and pi is the probability of the ith 

system state. In Eq. (3) EDNS stands for expected demand not 

supplied (MW). 

3.2 Objective constraints 

Constraint of power balance: The power balance constraint 

is a very important constraint for the minimization cost 

problem. That is because if the dispatching algorithm does not 

meet this constraint, it can generate power more than the 

demanded power which will end in higher fuel cost and higher 

emission of toxic gas. Likewise, it can also generate power that 

is lower than the demand if this constraint is not satisfied. Both 

these conditions inrrupts the economic power dispatch process. 

That is why, the total power generation must be equal to the 

total power load demand Pd and the real power loss PLoss, for 

the power transmission. PLoss is assumed to be zero here. 

Therefore, the resulting power balance equation is shown in 

Eq. (4), 

∑ 𝑃𝑔𝑖 − 𝑃𝑑 − 𝑃𝐿𝑜𝑠𝑠 = 0

𝑁𝐺

𝑖=1

(4) 

Constraint of generation capacity: The real power output 

from each generator is confined by a lower limit and an upper 

limit for the stable operation of the generators as follows: 

𝑃𝑔𝑖
𝑚𝑎𝑥 ≥ 𝑃𝑔𝑖 ≥ 𝑃𝑔𝑖

𝑚𝑖𝑛 , 𝑖 = 1,2, … … . , 𝑁𝐺 (5) 

Reliability constraint: The expected energy not served 

(EENS) calculated by the Eq. (3) is confined by an upper limit 

for the reliable operation of the generators. This limitation is 

implemented by Eq. (6) as follows, 

𝑅(𝑃𝑔) ≤ 𝐸𝐸𝑁𝑆𝑃𝑔
𝑚𝑎𝑥

(6) 

3.3 Problem statement 

Combining all the objectives and constraints, the multi-

objective optimization problem can be mathematically 

formulated as a non-linear constrained problem as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑃𝑔

 [
𝐹𝐶(𝑃𝑔), 𝐸(𝑃𝑔); 𝐹𝐶(𝑃𝑔), 𝑅(𝑃𝑔);

𝐸(𝑃𝑔), 𝑅(𝑃𝑔)
] (7) 

A penalty factor has been used as a preference controller for 

the constraint given in Eq. (4) when combined with Eq. (1) 

during optimization. The value of this penalty factor is 10 in 

our case which is directly taken from [7]. 

3.4 Monte Carlo simulation for reliability analysis 

The reliability of a system is represented by a numerical 

value between 0 and 1 or 0 to 100%. A power system is 

normally very complex as huge amount of equipments are 

connected with each other, and it is very difficult to evaluate 

the reliability value for the whole system. Therefore, some of 

the system adequacy parameters such as EENS, EDNS etc. are 

used to define the reliability of a system. So, to define the 

reliability of a system shown in Figure 1, evaluation of EENS 

is considered as a reliability function. The EENS is calculated 

as a function of generated/ dispatched power from each 

generator. Though the dispatched power is not directly 

involved in the calculation of EENS, a dispatching sample is 

passed from the optimization algorithm to the EENS 

evaluation algorithm. EENS evaluation algorithm then 

evaluates the amount of load curtailed that means the power 

shortage between the load and the generated power due to the 

outage of a generator and line failures [26]. The outage of a 

generator or a line failure is calculated by the use of Monte 

Carlo Simulation Technique. 

For the reliability analysis, Monte Carlo Simulation has 

been implemented to find the system adequacy parameters. 

For the calculation of reliability, some indices are used in order 

to assess the system adequacy. Since the reliability is a 

numerical parameter that can vary between zero and one 
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mathematically, the values of these indices will determine the 

system adequacy. Some of these indices are loss of load 

probability (LOLP), expected demand not served (EDNS), 

expected energy not served (EENS), system minutes (SM) etc. 

EENS calculation will be used for this paper as reliability 

function. 

We have focused on EENS (MWh/yr). It is one of the major 

indices of system adequacy assessment. All most all literature 

on system adequacy assessment, calculates the EENS [27, 28]. 

Different papers have used different formula to calculate the 

EENS. In our calculation, we have used the formula for the 

implementation in MATLAB stated below, 

 

𝐸𝐸𝑁𝑆 =
1

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 
 ∑ (

1

𝑠𝑎𝑚𝑝𝑙𝑒
∑ 𝑑𝑖𝑠𝑐𝑜𝑛𝑡. 𝑙𝑜𝑎𝑑

𝑠𝑎𝑚𝑝𝑙𝑒

𝑗=1

)

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑖=1

 (8) 

 

𝐹𝑂𝑅 =
𝜆[𝑓/𝑦𝑒𝑎𝑟] ∗ 𝑟[ℎ]

(𝜆[𝑓/𝑦𝑒𝑎𝑟] ∗ 𝑟[ℎ]) + 8760
 (9) 

 

where, 𝑑𝑖𝑠𝑐𝑜𝑛𝑡. 𝑙𝑜𝑎𝑑 is an abbreviation of disconnected load, 

FOR refers to forced outage rates, λ is outage rate per year and 

‘r’ represents outage duration. 8760 shows the number of 

hours per year. Eq. (8) has been used in Monte Carlo 

Simulation to calculate the outage rate of all the generators and 

lines. According to their outage, the loads are disconnected 

which is used in Eq. (7) in MATLAB formulation for 

calculating EENS. All the reliability parameters for our system 

is given in Table 2. 

 

 

4. SOLUTION METHODOLOGY 

 

4.1 Heuristic methods for optimization 

 

Although the distributed generation of electricity using 

RESs is more environment friendly compared to conventional 

energy production, it is often very challenging to find the best 

dispatch scheme for the distributed energy source (DERs) 

without analyzing the generation/fuel cost. Both of these 

conflicting but vital objectives are trade-offs which are not 

possible to be solved without heuristic optimization 

techniques. There are a lot of algorithms which have already 

been applied to find the best possible trade-offs. For example, 

many authors have applied memory-based genetic algorithm 

(MGA), artificial fish swarm (AFS), additive-increase 

multiplicative-decrease (AIMD), direct search method (DSM), 

lambda iteration, lambda logic, and particle swarm 

optimization (PSO) for finding the best economic dispatch 

considering different constraints [7, 24, 29, 30]. But to the best 

of our knowledge, none of them has employed NSGA-II 

algorithm for finding the trade-offs between lowest cost, least 

emission entities as well as highest reliability all together. 

Therefore, NSGA-II algorithm has been considered here to 

find the optimal solution for dispatching six generators with 

the minimum possible cost, lowest toxic gas emission, and the 

highest reliability. 

 

4.2 NSGA-II: Non-dominated sorting genetic algorithm-II 

 

Complex calculation process, absence of elitism, and 

requirement of specified sharing parameter are the main 

drawbacks of non-dominantly sorted and shared multi-

objective evolutionary algorithms. For eliminating these 

difficulties, Deb et al. have proposed a new non-dominated 

sorting-based evolutionary algorithm called NSGA-II [31]. 

The authors have proposed an improved version of the non-

dominated sorting genetic algorithm which was proposed in 

[32]. They modified it for eliminating the criticisms mentioned 

above. The modified NSGA- II algorithm provides superior 

performance for both single and multi-objective optimization 

problems with or without constraint functions. Furthermore, 

NGSA-II does not need memory and it performs well in single 

and multi-objective as well as multi-constraints scenarios. It is 

also easy to implement and interpret. In addition, it works well 

as an online algorithm for optimization. For all these reasons, 

NSGA-II is chosen as a base to propose a solution. 

Load the initial parameters 

Start

Generate initial solution for N population and 

fitness Value Calculation for objective 

functions

Normalize the constraints violations and Apply 

Non-dominated sorting on Initial Population

Select Parents from the population pool for 

reproduction by using binary tournament 

selection based on the rank and crowding 

distance

Apply crossover and mutation and evaluate 

objective function for creating off-spring

Apply Non-dominated sorting on offspring

Combine Pareto solutions obtained in each run 

and Apply Non-dominated sorting on the 

combined Pareto solution set.

Is the Generation 

Maximum reachedd??

NO

Filter the solution of rank 1 Pareto and save it 

in another variable

STOP

END

YES

 Is max 

iteration 

reached?

NO

YES

 
Figure 2. Flow chart of proposed algorithm 

 

The application of basic NSGA-II [31, 33] have been 

combined in this paper in order to propose a new approach for 

optimal dispatching method as well as for multi-objective 

optimization. The performance comparison of NSGA-II 

performed by Deb et al. [31] has dealt with the un-equality 

constraints only for all the four constrained multi-objective 

optimization problems. But in the multi-objective 
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optimization case1 discussed in this paper, one equality 

constraint Eq. (4) has been considered. To deal with this issue, 

the constraint handling techniques have been modified here in 

our modified version. Other modifications are shown in the 

flow chart in Figure 2 in comparison with the flow chart 

presented in previous literature [33]. 

Like all other genetic algorithm, this algorithm has also 

been used population and maximum number of generation. For 

a defined number of iteration, this algorithm has been started 

from generation of initial population according to the limit of 

each power generator and applying random matrix function to 

produce random initial solution matrices. Using our defined 

multi objective function, this initial population has been 

evaluated and saved in matrices according to the serial number 

of best solution and accuracy. After normalising the errors 

with a user defined normalisation function, this initial 

population has gone through non domination sorting and 

crowding distance evaluation through another user defined 

function. After that the generation count starts inside a loop 

where the last population has gone through tournamnt 

selection, crossover and polynomial mutation to create child 

offspring. After that this child offspring has gone through the 

objective evaluation function mentioned earlier again to 

determine the accuracy and fitness with the multi-objective 

functions to build intermediate population. This intermediate 

population then gone through the non dominated sorting and 

according to the fitness rank and accuracy, new population has 

been built by replacing the previous intermediate population. 

Finally this new population has been combined with the pareto 

solution obtained in each run and the rank one solution is saved 

with a front number. These steps continued untill the 

maximum generation number reached and all of these steps 

continued for the defined number of iteration. 

After the number of iteration reached to its maximum value, 

all the highest rank solutions are plotted and the pareto optimal 

front is obtained as shown in Figure 3. These procedures have 

been repeated for all the multi-objective pairs and for both case 

1 and 2. In the user defined objective function we have 

considered reliability (EENS) as an objective function in case-

1; for case 2, the same reliability parameter EENS has been 

used as a constraint. 

 

 
 

Figure 3. Pareto-optimal front of solutions for cost and 

emission 

 

 

5. SIMULATION RESULT 

 

The proposed non-dominated sorting genetic algorithm-II 

(NSGA- II) models are designed using MATLAB simulation 

software. The proposed algorithm is designed to optimize two 

objective functions at a time, and for this reason, pairwise 

objective functions among fuel cost, emission, and reliability 

(expected energy not served -EENS) are considered. The 

proposed algorithms have been run 30 times and the best 

performance of each run of each algorithm is reported. The 

parameter setting of the proposed algorithms are as follows: 

Population size = 100, maximum number of generations =500, 

distribution index for crossover=20, distribution index for 

mutation/mutation constant=100 and Mutation 

Probability=0.16667. For multi-objective optimization, two 

different cases have been considered. 

 

Case 1: the power balance equation given in Eq. (4) is taken 

as constraint to optimize:  

a) Eq. (1) and Eq. (2) to find the optimized values or trade-

offs between fule cost and emission  

b) Eq. (1) and Eq. (3) to find the optimized values or trade-

offs between fule cost and reliability (expected energy not 

served -EENS) 

c) Eq. (2) and Eq. (3) to find the optimized values and 

dispatch parameters for emission and reliability (expected 

energy not served -EENS) 

 

The capacity of the fossil-fuel-run generators and the cost 

coefficients of emission function are necessary for analyzing 

the cost and emission function, and the co-efficient values are 

listed in Table 1 [24, 25]. In Table 1. α, β, γ represents the cost 

coefficients and a,b,c,d,e are the emission coefficients.  

 

Table 1. Cost and emission coefficients of the distributed 

generators [24, 25] 

 

  G1 G2 G3 G4 G5 G6 

C
o

st
 α 10 10 10 20 20 10 

β 150 150 100 180 180 200 

γ 120 100 60 40 40 100 

E
m

is
si

o
n

 

a 2.543 6.131 5.426 4.258 4.258 4.091 

b -6.04 -5.55 -3.55 -5.09 -5.09 -5.55 

c 5.638 5.151 3.38 4.586 4.586 6.49 

d 5E- 4 1E- 5 2E- 3 1E- 6 1E- 6 2E- 4 

e 3.333 6.667 2.000 8.000 8.000 2.857 

 

The modified reliability parameters expressed in Eq. (9) are 

presented in Table 2. In both Table 1 and Table 2, G1, G2, ..., 

G6 refers to the generator 1, 2, ..., 6 respectively. FOR is the 

forced outage rates, λ is the outage rate per year and ‘r’ 

represents the outage duration. 

For case 1, at first, the fuel cost of generators and emissions 

from each generator are minimized with the proposed multi-

objective optimization algorithm for the microgrid considered 

in Figure 1. The best economic fuel cost and the lowest 

emission objectives have been optimized separately by the 

proposed approach in order to find the lowest possible cost and 

emission points in solution space. The diversity of the solution 

space can also be evaluated by this method. The results of the 

best fuel cost and lowest emission are given in Table 3. The 

paprameters G1, G2, ..., G6 represents the power dispatch in 

mega-watts for generators 1, 2, ..., 6 respectively.  

In order to validate the accuracy of the applied NSGA- II, 

the results are compared with another multi-objective 

optimization model based on the strength pareto evolutionary 

algorithm (SPEA). The comparison between NSGA- II and 
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SPEA is demonstrated in Table 4. The Pareto-optimal front of 

solutions for cost and emission is shown in Figure 3. From 

Table 4 and Figure 3, it can be stated that the proposed NSGA- 

II algorithm is a good choice for minimizing the fuel cost and 

emission. The results are very close to each other with small 

differences in values in comparison with SPEA but pareto 

optimal front (shown in Figure 3) proves that the proposed 

algorithm can also perform the multi-objective optimization 

very effectively. Therefore, the designed algorithm is capable 

of performing optimization for other multi-objective 

optimization processes as well. 

 

Table 2. Modified reliability parameters 

 
Reliability information 

Component 

Number 

Component  

name 
λ 

[f/year] 

r 

[h] 

Unavailability  

or FOR 

1.  G1 6.05 45 0.03 

2.  G2 6.05 45 0.03 

3.  G3 12.45 45 0.06 

4.  G4 10.25 45 0.05 

5.  G5 10.25 45 0.05 

6.  G6 4 45 0.02 

7.  Load 1 -1 0 0 

8.  Load 2 -1 0 0 

9.  Load 3 -1 0 0 

10.  Load 4 -1 0 0 

11.  Load 5 -1 0 0 

12.  Line 1 1.5 10 0.0011 

13.  Line 2 5 10 0.0011 

14.  Line 3 4 10 0.0011 

15.  Line 4 1 10 0.0011 

16.  Line 5 1 10 0.0011 

17.  Line 6 1.5 10 0.0011 

18.  Line 7 5 10 0.0011 

19.  Line 8 1 10 0.0011 

20.  Line 9 1 10 0.0011 

 

Table 3. Fuel cost and emission optimized for case 1 

 
 Fuel Cost Emission 

G1(MW) 27.25 46.22 

G2(MW) 34.14 47.80 

G3(MW) 100.77 37.38 

G4(MW) 42.51 59.21 

G5(MW) 64.37 59.44 

G6(MW) 17.04 36.32 

Cost($/hr) 607.51 --- 

Emission(ton/hr) --- 0.19465 

 

Table 4. Optimized results for fuel cost and emission for 

case1 

 

Parameters 

Fuel Cost Emission 

SPEA 

[25] 
NSGA-II 

SPEA 

[25] 
NSGA-II 

G1(MW) 30.56 20.51 45.25 54.06 

G2(MW) 35.84 35.34 50.05 49.98 

G3(MW) 98.46 102.56 40.79 37.20 

G4(MW) 58.18 57.84 55.25 60.53 

G5(MW) 52.88 62.28 54.68 47.37 

G6(MW) 10.86 7.86 40.43 36.98 

Cost ($/hr) 607.807 608.413 642.603 647.101 

Emission(ton/hr) 0.22015 0.2271 0.19422 0.19516 

 

In the next stage, the cost function and EENS function (as a 

measurement of reliability) are considered for double 

objective optimization. Both the fuel cost and EENS are set as 

a minimization function in this scenario. The best results 

obtained after performing the optimization with the proposed 

algorithm are presented in Table 5.  

 

Table 5. Optimized results for fuel cost and reliability for 

case 1 

 

Parameters 
Best Cost Most Reliable 

Dispatch (MW) Dispatch (MW) 

G1 23.70 42.86 

G2 21.75 19.09 

G3 115.03 88.42 

G4 37.10 24.67 

G5 59.22 63.30 

G6 28.79 46.18 

Cost ($/hr) 612.8253 624.4329 

EENS(MWhr/yr) 122603 95427 

EDNS(MW) 13.99 10.89 

 

In Table 5, EDNS refers to the expected demand not 

supplied. From Table 5, it can be seen that in order to have the 

most economic dispatch for the microgrid, the generation 

system needs to reserve 3.1 more MW generation capacity 

than the most reliable dispatch. On the other hand, for 

maintaining the most reliable dispatch for the microgrid, 11.60 

more USD needs to be spent on the fuel every hour. 

Lastly for case 1, the emission objective function of the 

generators in equation Eq. (2) is considered along with the 

EENS function shown in Eq. (3). The proposed algorithm has 

been tried to minimize both of them remaining in the boundary 

of power balance or subjecting to the constraint of power 

balance alone. The simulation results have been presented in 

Table 6. Table 6, presents the dispatch values of all the six 

generators for achieving the least emission and least EENS (in 

other words highest reliability). 

 

Table 6. Optimized results for emission and reliability 

objectives for case 1 

 
Parameters Dispatch (MW) 

G1 33.60 

G2 36.34 

G3 70.57 

G4 59.93 

G5 49.03 

G6 36.58 

Least Emission(ton/hr) 0.20146 

Least EENS(MWhr/yr) 87499.62 

Least EDNS(MW) 9.989 

 

Case 2: The fuel cost function in Eq. (1) and the emission 

function in Eq. (2) have been considered for a multi-objective 

optimization process taking the power balance, generation 

capacity, and reliability constraints into account. In case 1, 

reliability is considered as an objective in terms of EENS. But, 

in this case, the EENS factor is applied as a constraint in order 

to optimize cost and emission. The maximum EENS allowed 

in this case, is 1.165% (50000 MWhr/yr) of the total energy 

supplying capacity of the generators. The best results for cost 

and emission are presented in Table 7. 

From Table 7, it can be observed that by keeping the EENS 

within a certain limit to ensure higher system reliability, 

saving fuel cost will cause more environmental pollution, 

while saving the environment by keeping the system highly 

reliable will cost 27.1 USD more per hour. 
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Table 7. Optimized results for cost and emission for 

achieving highest reliability for case 2 

 

 
Best Cost Best Emission 

Dispatch (MW) Dispatch (MW) 

G1 19 48 

G2 56 56 

G3 119 73 

G4 27 47 

G5 43 15.4 

G6 22.4 47 

Cost($/hr) 614.8901 641.9970 

Emission(ton/hr) 0.2375 0.2073 

 

 

6. CONCLUSIONS 

 

In this paper, a non-dominated sorting genetic algorithm- II 

is applied to a modified 6-bus RBTS system consisting of 6 

distributed generators to optimize generation cost, emission of 

toxic gases, and system reliability. The NSGA- II has been 

employed to optimize two objective functions at a time and 

that is why objective functions among fuel cost, emission, and 

EENS (as a measurement of reliability) are considered as a 

pair. The simulation data of cost and emission optimization 

process are then compared with another model based on 

strength pareto evolutionary algorithm (SPEA) in order to 

validate the accuracy of the taken approach. After the 

verification, the generation cost and emission of toxic gases 

are optimized again but in that time the EENS function is 

applied as a constraint in order to keep the reliability at a 

certain high level. According to the data, it can be concluded 

that the taken research approach and the modified NSGA- II 

algorithm performs well in both the multi-objective and multi-

constraints environment and provides optimized values of 

generation cost, emission quantity of toxic gases and reliability 

for a microgrid. 
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NOMENCLATURE 

 

AFS artificial fish swarm 

AIMD additive-increase-multiplicative-decrease 

BES battery energy storage 

DER distributed energy resource 

DG distributed generator 

DSM direct search method 

EDNS expected demand not supplied 

EENS expected energy not served 

FOR forced outage rates 

GHG greenhouse gas 

HESS hybrid energy storage system 

hr hour 

LOLP loss of load probability 

MCS monte carlo simulation 

MW mega watt 

NSGA-II non-dominated sorting genetic algorithm- 

II 

PV photovoltaic 

PSO particle swarm optimization 

 RBTS roy bilinton test system 

RES renewable energy source 

SC supercapacitor 

SPEA strength pareto evolutionary algorithm 

SM system minutes 

 

Greek symbols 

 

 cost coefficient 

 cost coefficient 

ϒ cost coefficient 

λ outage rate per year 

 

Subscripts 

 

cf constriction factor 

d Load demand 

gi i th distributed generator 

w inertia weight 
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