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 In this paper the stretch function resulting from solving the fractional-order Bloch 

equations using fractional calculus was discussed. This function has promising results 

to represent diffusion signal decay from MRI images. Conventional analyses of (DWI) 

measurements resolve the normalized magnetization decay profiles in terms of discrete 

and mono-exponential components with distinct lifetimes. In complex, heterogeneous 

biological and biophysical samples such as tissue, multi-exponential decay functions 

can appear to provide truer representation to normalized magnetization decay profile 

than the assumption of a mono-exponential decay, but the assumption of multiple 

discrete components is arbitrary and is often erroneous. Moreover, interactions, 

between both normalized magnetization and with their environment, can result in 

complex normalized magnetization decay profiles that represent a continuous 

distribution of lifetimes. The purpose in this paper is to study different factors that 

influence the stretch function strength, clarity, and contrast of MRI magnetization signal 

relaxation by manipulating the anomalous diffusion parameters ∆, δ, Gz, β and µ. of 

Bloch equations. Through this study, it was found that complex normalized 

magnetization decay profiles behave like stretch exponential function inside power 

law. Further developments of this study may be useful in optimizing anomalous 

diffusion in tissues with neurodegenerative, and ischemic diseases.  
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1. INTRODUCTION 

 

MRI and NMR application in Fractional calculus attract the 

attention of scientists, engineers, and researchers for a long 

time ago, Solving Bloch equations for various combinations of 

applied static, radio frequency, and gradient magnetic fields is 

the starting point for NMR and diffusion MRI. Significant 

amounts of anomalous diffusion studies have been carried out 

in a variety of biophysical, biological, and bioengineering 

complex systems for optimal sensitivity, clarity, and contrast 

[1-5]. 

An important challenge in fractional calculus science is to 

give a physical meaning to the fractional derivative and the 

resulting complex normalized magnetization decay profiles. A 

better way to develop this physical meaning is by studying the 

behavior of complex systems under known parameters like ∆, 

δ, Gz, β and µ. Here the dynamic anomalous diffusion models 

with ∆, δ, Gz, β and µ parameters resulting from solving the 

generalize fractional-order Bloch equations using fractional 

calculus become more complex as they attempt to correlate 

data with a multiplicity of tissue compartments, complexity, 

heterogeneous structure, and function [6-11]. So we expand 

the analysis using the Bloch equation from single exponential 

to multi-exponential behavior, or even to stretch exponential 

and power law function and from single parameter diffusion 

to multicompartmental diffusion and diffusion tensor imaging 

as well as the resulting fractional derivative related diffusion 

parameters [12-16].  

The stretch function Figure 1 is frequently used as a purely 

empirical decay law in studies of the relaxation of complex 

biological and biophysical systems. The stretch function can 

be used to describe magnetization relaxation in NMR and 

written as: 

 

𝐼(𝑡) = 𝑒
−(

𝑡
𝜏0

)
𝛽

 (1) 

 

where, 0 < β≤ 1, and 𝜏0 is a parameter with the dimensions of 

time. This simple and relatively flexible function has been 

indeed successfully used in various complex biological, 

biophysical and biomedical fields, and it deserves thus special 

attention. 

 

 
 

Figure 1. Plot of I (t) verses (t τ0⁄ ) The stretched exponential 

decay function for several values of β (0.1(bottom curve), 

0.2, ..., 0.9, 1) 
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The resulting solution to the Bloch-Torrey equation for the 

magnetization in the transverse plane derived from Magin et 

al. [1] can be written in the form of stretch function as: 

 

𝑀𝑥𝑦 = 𝑀0 𝑒
−(𝐷 µ2(𝛽−1) (𝛾𝐺𝑧𝛿)2𝛽 (∆− 

2𝛽−1
2𝛽+1

 𝛿))
 

(2) 

 

By manipulating with the parameter, we can write this 

function as: 

 

Mxy = M0 e
− (

Dβ

βμβ
2  (γGzδβμβ)

2β
 (∆ − 

2β−1
2β+1

 δ))

 
(3) 

 

where, 0.5 < β < 1, 𝐷𝛽 = 𝐷 𝛽⁄ , µ𝛽 = µ 𝛽⁄ , And Dβ has unit 

of 𝑚2 s⁄ , (
meter2

second
), µβ  has unit of 𝑚, (𝑚𝑒𝑡𝑒𝑟), ∆, 𝛿 has unit 

of s, (second) , 𝛾  has unit of Hz T⁄  (
Hartes

Tasla
) , 𝐺𝑧  has unit 

of 𝑇 𝑚𝑒𝑡𝑒𝑟⁄ , (
Tasla

meter
) . 

For 𝐒factor =  (𝛾𝐺𝑧𝛿𝛽𝜇𝛽)
2
 this function is unitless and we 

can write this function as: 

 

Mxy = M0 e
− (

Dβ

βμβ
2  (𝐒factor)β (∆ − 

2β−1
2β+1

 δ))

 
(4) 

 

For 𝐛′factor =  (γGzδβμβ)
2β

 (∆  − 
2β−1

2β+1
 δ) this function 

has unit of s , (second) and we can write this function as:  

 

Mxy = M0 e
− (

Dβ

βμβ
2  × b′factor)

 
(5) 

 

For 𝐛 ⃗⃗  ⃗factor =  
1

βμβ
2  (γGzδβμβ)

2β
 (∆  −  

2β−1

2β+1
 δ)  this 

function has unit of s m2⁄ , (
second

meter2
)  and we can write this 

function as:  

 

Mxy = M0 e
− ( Dβ × 𝐛 ⃗⃗  ⃗factor) (6) 

 

For 𝐛factor = (γGzδ)
2 ∆ and ∆ ≫  𝛿 this function has unit 

of s m2⁄ , (
second

meter2
) and we can write this function as:  

 

Mxy = M0 e
− (

Dβ

βμβ
2  (γGzδβμβ)

2β
 ∆ (

𝐛factor
(γGzδ)2 ∆

))

 
(7) 

 

Mxy = M0 e
− (

Dβ

βμβ
2  (γGzδ)2β−2 (βμβ)

2β
 × 𝐛factor)

 
(8) 

 

For 𝐛∗ factor = (γGzδ)
2  (∆  −  

2β−1

2β+1
 δ)  this function has 

unit of s m2⁄ , (
second

meter2
) and we can write this function as:  

 

Mxy = M0 e
− (

Dβ

βμβ
2  (γGzδ)2β−2 (βμβ)

2β
 × 𝐛∗ factor)

 
(9) 

 

However, the closest form to stretched function is the first 

one where 𝐒factor =  (𝛾𝐺𝑧𝛿𝛽𝜇𝛽)
2

 this function is unitless 

and if 𝐗factor =  
Dβ

βμβ
2 (∆  − 

2β−1

2β+1
 δ)  this function is also 

unitless and we can write this function as: 

 

Mxy = M0 e
− (𝐗factor (𝐒factor)β) (10) 

 

Then; 

  

Mxy = M0  (e− (𝐒factor)β)
𝐗factor

 (11) 

 

 

2. DISCUSSION AND RESULTS  

 

The stretched exponential function results from solving the 

Bloch–Torrey equation using fractional calculus provides a 

mechanism for introducing stretched function dynamics 

“tissue heterogeneity”. In this section we present theoretical 

results for stretched-exponential function that can be applied 

to diffusion-weighted images. In the theoretical study, the 

derived magnetization attenuation curves are compared with 

the classical result and a more recent expression derived using 

stretched function models.  

 

 
 

Figure 2. 2 Stejskal/Tanner diffusion preparation: Initial 90° 

RF pulse, followed by first diffusion lobe, 180° refocusing 

RF pulse, then second diffusion lobe. Leading edges of 

diffusion lobes are separated by ∆. Each lobe has duration δ 

 

The theoretical curves were plotted versus the gradient 

parameter,  𝐛factor,  𝐛′factor,  𝐛 ⃗⃗⃗⃗ factor, 𝐒factor, 𝐛∗ factor 

and 𝑮𝑧 for selected values of ∆, δ, 𝑮𝑧 , β and µ Figure 2. As 

an example of the behavior expected, the decay of the 

normalized magnetization (
𝑀𝑥𝑦

𝑀0
), as given in Eq. (2), is plotted 

in Figure 3 versus 𝑏factor
∗  where 𝑏factor

∗ = 0 to 180 𝑠 𝑚𝑚2⁄  

and 𝑏factor
∗ = (γGzδ)

2  (∆  −  
2β−1

2β+1
 δ) for different values of 

D𝛽  in the range from D𝛽  = 0.8333 × 10−3𝑚𝑚2 /s (bottom 

curve) to D𝛽  = 3.333 × 10−3𝑚𝑚2 /s in steps of 0.8333 ×

10−3𝑚𝑚2/s (∆ = 40× 10−3𝑠, µ = 5µm, β= 0.6, δ=1× 10−3s, 

γ= 42.58 MHz/T). We observed that as D𝛽  increases the 

normalized magnetization curve change from heavy tailed 

decay to a straight line which strongly resembles the behavior 

recorded in restricted diffusion. In Figure 4 normalized 

magnetization 𝑀𝑥𝑦   𝑀0⁄  is plotted versus 𝑏factor
∗  where 17 

= 0 to 180 𝑠 𝑚𝑚2⁄  and 𝑏factor
∗  for different values of µ𝛽in 

the range from µ𝛽  = 3.333µm (bottom curve) to µ𝛽 = 

16.6667µm in steps of 3.333µm (∆ = 40 × 10−3 s, D = 

1× 10−3mm2/s, 𝐺𝑧 = 0 𝑡𝑜 1.5 T/m ,δ = 1× 10−3s, β=0.6, γ= 

42.58 MHz/T). In Figure 5 normalized magnetization 

𝑀𝑥𝑦   𝑀0⁄  is plotted versus 𝑏factor where 𝑏factor = 0 to 1800 

𝑠 𝑚𝑚2⁄  and  𝑏factor = (γGzδ)
2 ∆  and ∆ ≫  𝛿 for different 

values of D𝛽  in the range from D𝛽  = 0.8333× 10−3𝑚𝑚2 /s 

(bottom curve) to D𝛽  = 3.333 × 10−3𝑚𝑚2 /s in steps of 

0.8333× 10−3𝑚𝑚2 /s (∆ = 40× 10−3𝑠 , µ = 5µm, β= 0.6, 
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δ=1 × 10−3 s, γ= 42.58 MHz/T). In Figure 6 normalized 

magnetization 𝑀𝑥𝑦   𝑀0⁄  is plotted versus 𝑏factor  where 

𝑏factor = 0 to 1800 𝑠 𝑚𝑚2⁄  and  𝑏factor  and ∆ ≫  𝛿 for 

different values of µ𝛽in the range from µ𝛽 = 3.333µm (bottom 

curve) to µ𝛽= 16.6667µm in steps of 3.333µm (∆ = 40× 10−3s, 

D = 1× 10−3mm2/s, 𝐺𝑧 = 0 𝑡𝑜 1.5 T/m ,δ = 1× 10−3s, β=0.6, 

γ= 42.58 MHz/T).  

In this part we observe that as the value of µ𝛽increases the 

contribution of restricted diffusion increase for a fixed value 

of β. We can see this behavior when Eq. (2) is written either in 

terms of a single exponential decay, 𝑒−𝑏𝐷𝑎𝑝𝐼, where: 𝐷𝑎𝑝𝐼 =
𝐷

((𝛾𝐺𝑧𝛿)µ)
2(1−𝛽) ; or when Eq. (2) is written as a stretched 

exponential, 𝑒−(𝑏𝐷𝐹)𝛽, where 𝐷𝐹
𝛽

= 𝐷(∆ µ2⁄ )1−𝛽. Also when 

µ =  √𝐷∆  it can be shown that the exponential form is 

‘‘stretched exponential’’ result,𝑒−(𝑏𝐷)𝛽 considered by Bennett 

[12, 17-20]. In Figure 5 when µ𝛽= 7.07/0.6 µm, we observed 

a decrease in the apparent diffusion coefficient  D𝛽  as the 

values of β decrease and µ𝛽  increase.  
 

 
 

Figure 3. Stretched exponential model curves plot: 

Mxy   M0⁄  Versus bfactor
∗  where bfactor

∗ = 0 to 18 × 107 s m2⁄  

and bfactor
∗ = (γGzδ)

2  (∆  −  
2β−1

2β+1
 δ) for different values of 

Dβ in the range from Dβ = 0.8333× 10−3mm2/s (bottom 

curve) to Dβ = 3.333× 10−3mm2/s in steps of 0.8333×

10−3mm2/s (∆ = 40× 10−3s, µ = 5µm, β= 0.6, δ=1× 10−3s, 

γ= 42.58 MHz/T) 
 

 
 

Figure 4. Stretched exponential model curves plot: 

Mxy   M0⁄  versus bfactor
∗  where bfactor

∗ = 0 to 18 × 107 s m2⁄  

and bfactor
∗ = (γGzδ)

2  (∆  −  
2β−1

2β+1
 δ) for different values of 

µβin the range from µβ = 3.333µm (bottom curve) to µβ= 

16.6667µm in steps of 3.333µm (∆ = 40× 10−3s, D = 

1× 10−3mm2/s, Gz = 0 to 1.5 T/m ,δ = 1× 10−3s, β=0.6, γ= 

42.58 MHz/T) 

 
 

Figure 5. Stretched exponential model curves plot: 

Mxy   M0⁄  Versus bfactor where bfactor = 0 to 18 × 108 s m2⁄  

and bfactor = (γGzδ)
2 ∆ and ∆ ≫  δ for different values of 

Dβ in the range from Dβ = 0.8333× 10−3mm2/s (bottom 

curve) to Dβ = 3.333× 10−3mm2/s in steps of 0.8333×

10−3mm2/s (∆ = 40× 10−3s, µ = 5µm, β= 0.6, δ=1× 10−3s, 

γ= 42.58 MHz/T) 

 

 
 

Figure 6. Stretched exponential model curves plot: 

Mxy   M0⁄  versus bfactor where bfactor = 0 to 18 × 107 s m2⁄  

and bfactor = (γGzδ)
2 ∆ and ∆ ≫  δ for different values of 

µβin the range from µβ = 3.333µm (bottom curve) to µβ= 

16.6667µm in steps of 3.333µm (∆ = 40× 10−3s, D = 

1× 10−3mm2/s, Gz = 0 to 1.5 T/m, δ = 1× 10−3s, β=0.6, γ= 

42.58 MHz/T) 

 

 
 

Figure 7. Stretched Exponential Model Curves Plot: 

Mxy   M0⁄  Versus Gz where Gz = 0 to 1.5 T/m for different 

values of Dβ in the range from Dβ = 0.8333× 10−3mm2/s 

(bottom curve) to Dβ = 3.333× 10−3mm2/s in steps of 

0.8333× 10−3mm2/s (∆ = 40× 10−3s, µ = 5µm, β= 0.6, 

δ=1× 10−3s, γ= 42.58 MHz/T) 
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Figure 8. Stretched exponential model curves plot: 

Mxy   M0⁄  Versus Gz where Gz = 0 to 1.5 T/m for different 

values of µ in the range from µβ = 3.333µm (bottom curve) 

to µβ= 16.6667µm in steps of 3.333µm (∆ = 40× 10−3s, D = 

1× 10−3mm2/s , Gz = 0 to 1.5 T/m, δ = 1× 10−3s, β=0.6, 

γ= 42.58 MHz/T) 
 

 
 

Figure 9. Stretched exponential model curves plot: 

Mxy   M0⁄  Versus b factor where b factor = 0 to 2.5 × 108 

s m2⁄  and b factor =  
1

βμβ
2  (γGzδβμβ)

2β
 (∆  − 

2β−1

2β+1
 δ) for 

different values of Dβ in the range from Dβ = 0.8333×

10−3mm2/s (bottom curve) to Dβ = 3.333× 10−3mm2/s in 

steps of 0.8333× 10−3mm2/s (∆ = 40× 10−3s, µ = 5µm, β= 

0.6, δ=1× 10−3s, γ= 42.58 MHz/T) 
 

 
 

Figure 10. Stretched exponential model curves plot: 

Mxy   M0⁄  Versus bfactor
′  where bfactor

′ = 0 to 0.01 second and 

bfactor
′ =  (γGzδβμβ)

2β
 (∆ −  

2β−1

2β+1
 δ) for different values of 

Dβ in the range from Dβ = 0.8333× 10−3mm2/s (bottom 

curve) to Dβ = 3.333× 10−3mm2/s in steps of 0.8333×

10−3mm2/s (∆ = 40× 10−3s, µ = 5µm, β= 0.6, δ=1× 10−3s, 

γ= 42.58 MHz/T) 

 
 

Figure 11. Stretched exponential model curves plot: 

Mxy   M0⁄  versus bfactor
′  where bfactor

′ = 0 to 0.025 second 

and bfactor
′ = (γGzδβμβ)

2β
 (∆ −  

2β−1

2β+1
 δ) for different 

values of µβin the range from µβ = 3.333µm (bottom curve) 

to µβ= 16.6667µm in steps of 3.333µm (∆ = 40× 10−3s, D = 

1× 10−3mm2/s , Gz = 0 to 1.5 T/m, δ = 1× 10−3s, β=0.6, 

γ= 42.58 MHz/T) 

 

 
 

Figure 12. Stretched exponential model curves plot: 

Mxy   M0⁄  Versus Sfactor where Sfactor= 0 to 0.1 and Sfactor =

 (γGzδβμβ)
2
 for different values of Dβ in the range from Dβ 

= 0.8333× 10−3mm2/s (bottom curve) to Dβ = 3.333×

10−3mm2/s in steps of 0.8333× 10−3mm2/s (∆ = 40×
10−3s, µ = 5µm, β= 0.6, δ=1× 10−3s, γ= 42.58 MHz/T) 

 

 
 

Figure 13. Stretched exponential model curves plot: 

Mxy   M0⁄  versus Sfactor where Sfactor= 0 to 0.45 and 

Sfactor = (γGzδβμβ)
2
 for different values of µβin the range 

from µβ = 3.333µm (bottom curve) to µβ= 16.6667µm in 

steps of 3.333µm (∆ = 40× 10−3s, D = 1× 10−3mm2/s, 

Gz = 0 to 1.5 T/m ,δ = 1× 10−3s, β=0.6, γ= 42.58 MHz/T) 
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Figure 14. Stretched exponential model curves plot: 

Mxy   M0⁄  Versus b factor where b factor = 0 to 2.5 × 108 

s m2⁄  and b factor =  
1

βμβ
2  (γGzδβμβ)

2β
 (∆ −  

2β−1

2β+1
 δ) for 

different values of β in the range from β = 0.6 (bottom curve) 

to β = 0.9 in steps of 0.1 (D = 1*10−3mm2/s, µ = 5µm, Gz =
0 to 1.5 T/m, δ = 1× 10−3s, ∆=40 × 10−3s, γ= 42.58 

MHz/T) 
 

In Figure 7 normalized magnetization 𝑀𝑥𝑦   𝑀0⁄  is plotted 

versus 𝐺𝑧 where 𝐺𝑧 = 0 to 1.5 T/m for different values of D𝛽 

in the range from D𝛽 = 0.8333× 10−3𝑚𝑚2/s (bottom curve) 

to D𝛽 = 3.333× 10−3𝑚𝑚2/s in steps of 0.8333× 10−3𝑚𝑚2/s 

(∆ = 40× 10−3𝑠, µ = 5µm, β= 0.6, δ=1× 10−3s, γ= 42.58 

MHz/T). In Figure 8 normalized magnetization 𝑀𝑥𝑦   𝑀0⁄  is 

plotted versus  𝐺𝑧 where 𝐺𝑧 = 0 to 1.5 T/m for different values 

of µ𝛽  in the range from µ𝛽 = 3.333µm (bottom curve) to µ𝛽= 

16.6667µm in steps of 3.333µm (∆ = 40 × 10−3 s, D = 

1× 10−3mm2/s, 𝐺𝑧 = 0 𝑡𝑜 1.5 T/m ,δ = 1× 10−3s, β=0.6, γ= 

42.58 MHz/T). In Figure 9 normalized magnetization 

𝑀𝑥𝑦   𝑀0⁄  is plotted versus b factor where b factor = 0 to 250 

𝑠 𝑚𝑚2⁄  and b factor =  
1

βμβ
2  (γGzδβμβ)

2β
 (∆  −  

2β−1

2β+1
 δ) for 

different values of D𝛽  in the range from D𝛽  = 0.8333 ×

10−3𝑚𝑚2 /s (bottom curve) to D𝛽  = 3.333× 10−3𝑚𝑚2 /s in 

steps of 0.8333× 10−3𝑚𝑚2/s (∆ = 40× 10−3𝑠, µ = 5µm, β= 

0.6, δ=1× 10−3s, γ= 42.58 MHz/T). In Figure 10 normalized 

magnetization 𝑀𝑥𝑦   𝑀0⁄  is plotted versus  b𝑓𝑎𝑐𝑡𝑜𝑟
′  where 

b𝑓𝑎𝑐𝑡𝑜𝑟
′ = 0 to 0.01 second and b𝑓𝑎𝑐𝑡𝑜𝑟

′ = (γGzδβμβ)
2β

 (∆  −

 
2β−1

2β+1
 δ)  for different values of D𝛽  in the range from D𝛽  = 

0.8333 × 10−3𝑚𝑚2 /s (bottom curve) to D𝛽  = 3.333 ×

10−3𝑚𝑚2/s in steps of 0.8333× 10−3𝑚𝑚2/s (∆ = 40× 10−3𝑠, 

µ = 5µm, β= 0.6, δ=1× 10−3s, γ= 42.58 MHz/T). In Figure 1 

stretched exponential model curves plot, 𝐌𝐱𝐲   𝐌𝟎⁄  versus 

𝐛𝐟𝐚𝐜𝐭𝐨𝐫
′  where 𝐛𝐟𝐚𝐜𝐭𝐨𝐫

′ = 0 to 0.025 second and 𝐛𝐟𝐚𝐜𝐭𝐨𝐫
′ =

 (𝛄𝐆𝐳𝛅𝛃𝛍𝛃)
𝟐𝛃

 (∆  −  
𝟐𝛃−𝟏

𝟐𝛃+𝟏
 𝛅) for different values of µ𝛃 in the 

range from µ𝛃 = 3.333µm (bottom curve) to µ𝛃= 16.6667µm 

in steps of 3.333µm (∆ = 40× 𝟏𝟎−𝟑s, D = 1× 𝟏𝟎−𝟑𝐦𝐦𝟐/𝐬, 

𝐆𝐳 = 𝟎 𝐭𝐨 𝟏. 𝟓 T/m ,δ = 1× 𝟏𝟎−𝟑s, β=0.6, γ= 42.58 MHz/T). 

In Figure 13 normalized magnetization 𝑀𝑥𝑦  𝑀0⁄  is plotted 

versus b𝑓𝑎𝑐𝑡𝑜𝑟
′  where b𝑓𝑎𝑐𝑡𝑜𝑟

′ = 0 to 0.025 second for different 

values of µ𝛽in the range from µ𝛽 = 3.333µm (bottom curve) 

to µ𝛽= 16.6667µm in steps of 3.333µm (∆ = 40× 10−3s, D = 

1× 10−3mm2/s, 𝐺𝑧 = 0 𝑡𝑜 1.5 T/m, δ = 1× 10−3s, β=0.6, γ= 

42.58 MHz/T). In Figure 12 normalized magnetization 

𝑀𝑥𝑦   𝑀0⁄  is plotted versus 𝑆𝑓𝑎𝑐𝑡𝑜𝑟  where 𝑆𝑓𝑎𝑐𝑡𝑜𝑟 = 0 to 0.1 

and 𝑆𝑓𝑎𝑐𝑡𝑜𝑟 = (𝛾𝐺𝑧𝛿𝛽𝜇𝛽)
2
 for different values of D𝛽  in the 

range from D𝛽 = 0.8333× 10−3𝑚𝑚2/s (bottom curve) to D𝛽 = 

3.333× 10−3𝑚𝑚2 /s in steps of 0.8333× 10−3𝑚𝑚2 /s (∆ = 

40× 10−3𝑠, µ = 5µm, β= 0.6, δ=1× 10−3s, γ= 42.58 MHz/T). 

In Figure 13 normalized magnetization 𝑀𝑥𝑦   𝑀0⁄  is plotted 

versus Sfactor where Sfactor= 0 to 0.45 for different values of μβ 

in the range from μβ= 3.333µm (bottom curve) to μβ= 

16.6667µm in steps of 3.333µm (∆ = 40 × 10−3 s, D = 

1× 10−3mm2/s , 𝐺𝑧 = 0 𝑡𝑜 1.5 T/m, δ = 1× 10−3s, β=0.6, γ= 

42.58 MHz/T). We observed that the normalized 

magnetization curve change from heavy tailed decay to a 

straight line as D𝛽 increases and µ𝛽 increases. Which strongly 

resembles the behavior of restricted diffusion. 

 
 

Figure 15. Stretched exponential model surface plot: 

Mxy Mo⁄  Versus Gz where Gz = 0 to 1.5 T/m and µ where µ = 

2 to 10 µm. (D = 1× 10−3mm2/s, β = 0.6, δ = 1× 10−3s, ∆= 

40× 10−3s, γ= 42.58 MHz/T) 

 
 

Figure 16. Stretched exponential model surface plot: 

Mxy Mo⁄  Versus β where β = 0.5 to 1 and µ where µ = 2 to 

10 µm. (D = 1× 10−3mm2/s, Gz = 1.5 T/m, δ = 1× 10−3s, 

∆= 40× 10−3s, γ= 42.58 MHz/T) 

 
 

Figure 17. Stretched exponential model surface plot: 

Mxy Mo⁄  Versus D where D = 1 × 10−3to 10 × 10−3 mm2/s 

and µ where µ = 2 to 10 µm. (β = 0.6, Gz = 1.5 T/m, δ = 

1× 10−3s, ∆= 40× 10−3s, γ= 42.58 MHz/T) 
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Figure 18. Stretched exponential model surface plot: 

Mxy Mo⁄  Versus β where β = 0.5 to 1 and D where D = 1 

× 10−3to 10 × 10−3 mm2/s. (µ = 2× 10−6m, Gz = 1.5 T/m, 

δ = 1× 10−3s, ∆= 40× 10−3s, γ= 42.58 MHz/T) 

 
 

Figure 19. Stretched exponential model surface plot: 

Mxy Mo⁄  Versus β where β = 0.5 to 1 and ∆ where ∆ = 40 

× 10−3to 400 × 10−3 s. (µ = 2× 10−6m, Gz = 1.5 T/m, δ = 

1× 10−3s, D = 1× 10−3mm2/s, γ= 42.58 MHz/T) 

 
 

Figure 20. Stretched exponential model surface plot: 

Mxy Mo⁄  Versus β where β = 0.5 to 1 and δ where δ = 1 

× 10−3to 10 × 10−3 s. (µ = 2× 10−6m, Gz = 1.5 T/m, ∆ = 

40× 10−3s, D = 1× 10−3mm2/s, γ= 42.58 MHz/T) 

 
 

Figure 21. Stretched exponential model surface plot: 

Mxy Mo⁄  Versus ∆ where ∆ = 40× 10−3 to 400 × 10−3s and 

δ where δ = 1 × 10−3to 10 × 10−3 s. (µ = 2× 10−6m, Gz = 

1.5 T/m, β = 0.6, D = 1× 10−3mm2/s, γ= 42.58 MHz/T) 

 
 

Figure 22. Stretched exponential model surface plot 

Mxy Mo⁄  Versus Gz where Gz = 0 to 1.5 T/m and β where β = 

0.5 to 1. (µ = 2× 10−6m, ∆ = 40× 10−3 s, δ= 1× 10−3 s, D = 

1× 10−3mm2/s, γ= 42.58 MHz/T) 

 
Figure 23. Stretched exponential model surface plot: 

Mxy Mo⁄  Versus Gz where Gz = 0 to 1.5 T/m and ∆ where ∆ 

= 40× 10−3 to 40× 10−3 s. (µ = 2× 10−6m, β = 0.6, δ= 

1× 10−3 s, D = 1× 10−3mm2/s, γ= 42.58 MHz/T) 

 
Figure 24. Stretched exponential model surface plot: 

Mxy Mo⁄  Versus Gz where Gz = 0 to 1.5 T/m and δ where δ = 

1× 10−3 to 10× 10−3 s . (µ = 2× 10−6m, β = 0.6, ∆ = 

40× 10−3 s, D = 1× 10−3mm2/s, γ= 42.58 MHz/T) 

 
 

Figure 25. Stretched exponential model surface plot: 

Mxy Mo⁄  Versus Gz where Gz = 0 to 1.5 T/m and D where D 

= 1× 10−3 to 10× 10−3mm2/s. (µ = 2× 10−6m, β = 0.6, ∆ = 

40× 10−3 s, δ = 1× 10−3s, γ= 42.58 MHz/T) 
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Figure 26. Stretched exponential model surface plot: 

Mxy Mo⁄  Versus δ where δ = 1× 10−3 to 10 × 10−3 s and D 

where D = 1× 10−3 to 10× 10−3mm2/s. (µ = 2× 10−6m, β = 

0.6, ∆ = 40× 10−3 s, Gz = 1.5 T/m, γ= 42.58 MHz/T) 

 
Figure 27. Stretched exponential model surface plot: 

Mxy Mo⁄  Versus δ where ∆ = 40× 10−3 to 400× 10−3 s and 

D where D = 1× 10−3 to 10× 10−3mm2/s. (µ = 2× 10−6m, 

β = 0.6, δ = 1× 10−3 s, Gz = 1.5 T/m, γ= 42.58 MHz/T) 

 
 

Figure 28. Stretched exponential model surface plot: 

Mxy Mo⁄  Versus δ where δ = 1× 10−3 to 10× 10−3 s and µ 

where µ =2 to 10 µm. (D = 1× 10−3mm2/s, β = 0.6, ∆ = 

40× 10−3 s, Gz = 1.5 T/m, γ= 42.58 MHz/T) 

 
Figure 29. Stretched exponential model surface plot: 

Mxy Mo⁄  Versus ∆ where ∆ = 40× 10−3 to 400× 10−3 s and 

µ where µ =2 to 10 µm. (D = 1× 10−3mm2/s, β = 0.6, δ = 

1× 10−3 s, Gz = 1.5 T/m, γ= 42.58 MHz/T) 

 
Figure 30. Stretched exponential model surface plot: 

Mxy Mo⁄  Versus Gz where Gz = 0 to 1.5 T/m and µβ where 

µβ =0.333× 10−5 to 1.67 × 10−5m. (D = 1× 10−3mm2/s, β 

= 0.6, δ = 1× 10−3 s, ∆ = 40× 10−3 s, γ= 42.58 MHz/T) 

 
Figure 31. Stretched exponential model surface plot: 

Mxy Mo⁄  Versus β where β = 0.5 to 1 and µβ where µβ 

=0.333× 10−5 to 1.67 × 10−5m. (D = 1× 10−3mm2/s, Gz = 

1.5 T/m, δ = 1× 10−3 s, ∆ = 40× 10−3 s, γ= 42.58 MHz/T) 

 
Figure 32. Stretched exponential model surface plot: 

Mxy Mo⁄  Versus Dβ where Dβ = 1.7 × 10−3 to 16.7×

10−3 mm2/s, and µβ where µβ =3.33× 10−5 to 1.67 

× 10−5m. (β = 0.6, Gz = 1.5 T/m, δ = 1× 10−3 s, ∆ = 

40× 10−3 s, γ= 42.58 MHz/T) 

 
Figure 33. Stretched exponential model surface plot: 

Mxy Mo⁄  Versus Dβ where Dβ = 1.7 × 10−3 to 16.7×

10−3 mm2/s, and β where β =0.5 to 1. (µ = 2µm, Gz = 1.5 

T/m, δ = 1× 10−3 s, ∆ = 40× 10−3 s, γ= 42.58 MHz/T) 
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Figure 34. Stretched exponential model surface plot: 

Mxy Mo⁄  Versus Dβ where Dβ = 1.7 × 10−3 to 16.7×

10−3 mm2/s, and Gz where Gz =0 to 1.5 T/m. (µ = 2µm, β= 

0.6, δ = 1× 10−3 s, ∆ = 40× 10−3 s, γ= 42.58 MHz/T) 

 
Figure 35. Stretched exponential model surface plot: 

Mxy Mo⁄  Versus Dβ where Dβ = 1.7 × 10−3 to 16.7×

10−3 mm2/s, and δ where δ =1× 10−3 to 10 × 10−3s. (µ = 

2µm, β= 0.6, Gz = 1.5 T/m, ∆ = 40× 10−3 s, γ= 42.58 

MHz/T) 

 
Figure 36. Stretched exponential model surface plot: 

Mxy Mo⁄  Versus Dβ where Dβ = 1.7 × 10−3 to 16.7×

10−3 mm2/s, and ∆ where ∆ =40× 10−3 to 400× 10−3s. (µ 

= 2µm, β= 0.6, Gz = 1.5 T/m, δ = 1× 10−3 s, γ= 42.58 

MHz/T) 

 

Another example of the behavior expected, the decay of the 

normalized magnetization (𝑀𝑥𝑦/𝑀0), is plotted in Figure 14 

versus b factor  where b factor  = 0 to 250 𝑠 𝑚𝑚2⁄  and 

b factor =  
1

βμβ
2  (γGzδβμβ)

2β
 (∆  − 

2β−1

2β+1
 δ)  for different 

values of β in the range from β = 0.6 (bottom curve) to β = 0.9 

in steps of 0.1 (D = 1* 10−3𝑚𝑚2 /s, µ = 5µm, 𝐺𝑧 =
0 𝑡𝑜 1.5 T/m, δ = 1× 10−3s, ∆=40 × 10−3s, γ= 42.58 MHz/T).  

In Figure 15, Eq. (2) normalized magnetization Mxy Mo⁄  

versus Gz was plotted where Gz = 0 to 1.5 T/m and µ where µ 

= 2 to 10 µm. (D = 1× 10−3mm2/s, β = 0.6, δ = 1× 10−3s, ∆= 

40 ×  10−3 s, γ= 42.58 MHz/T). In Figure 16, Eq. (2) 

normalized magnetization Mxy Mo⁄  versus β  was plotted 

where, β  = 0.5 to 1 and µ where µ = 2 to 10 µm. (D = 

1× 10−3mm2/s, Gz = 1.5 T/m, δ = 1× 10−3s, ∆= 40× 10−3s, 

γ= 42.58 MHz/T). In Figure 17, Eq. (2) normalized 

magnetization Mxy Mo⁄  Versus D was plotted where D = 1 

× 10−3to 10 × 10−3 mm2/s and µ where µ = 2 to 10 µm. (β = 

0.6, Gz = 1.5 T/m, δ = 1× 10−3s, ∆= 40× 10−3s, γ= 42.58 

MHz/T). In Figure 18, Eq. (2) normalized magnetization 

Mxy Mo⁄  versus β was plotted where β = 0.5 to 1 and D where 

D = 1 × 10−3to 10 × 10−3  mm2/s. (µ = 2× 10−6m, Gz = 1.5 

T/m, δ = 1× 10−3s, ∆= 40× 10−3s, γ= 42.58 MHz/T). In 

Figure 19, Eq. (2) normalized magnetization Mxy Mo⁄  versus 

β was plotted where β = 0.5 to 1 and ∆ where ∆ = 40 × 10−3to 

400 × 10−3 s. (µ = 2× 10−6m, Gz = 1.5 T/m, δ = 1× 10−3s, 

D = 1× 10−3mm2/s, γ= 42.58 MHz/T). In Figure 20, Eq. (2) 

normalized magnetization Mxy Mo⁄  versus β  was plotted 

where β = 0.5 to 1 and δ where δ = 1 × 10−3to 10 × 10−3 s. 

(µ = 2× 10−6m , Gz  = 1.5 T/m, ∆ = 40× 10−3 s, D = 1× 

10−3mm2 /s, γ= 42.58 MHz/T). In Figure 21, Eq. (2) 

normalized magnetization Mxy Mo⁄  versus ∆ was plotted 

where ∆ = 40× 10−3  to 400 × 10−3 s and δ where δ = 1 

× 10−3to 10 × 10−3 s. (µ = 2× 10−6m, Gz = 1.5 T/m, β = 0.6, 

D = 1× 10−3mm2/s, γ= 42.58 MHz/T). In Figure 22 Eq. (2) 

normalized magnetization Mxy Mo⁄  versus Gz  was plotted 

where Gz  = 0 to 1.5 T/m and β where β = 0.5 to 1. (µ = 

2 × 10−6m , ∆  = 40 × 10−3 s , δ= 1 × 10−3 s , D = 1 × 

10−3mm2 /s, γ= 42.58 MHz/T). In Figure 23 Eq. (2) 

normalized magnetization Mxy Mo⁄  versus Gz  was plotted 

where Gz  = 0 to 1.5 T/m and ∆  where ∆  = 40× 10−3 to 

40× 10−3 s. (µ = 2× 10−6m, β = 0.6, δ= 1× 10−3 s, D = 1× 

10−3mm2 /s, γ= 42.58 MHz/T). In Figure 24 Eq. (2) 

normalized magnetization Mxy Mo⁄  versus Gz  was plotted 

where Gz  = 0 to 1.5 T/m and δ where δ = 1 × 10−3 to 

10× 10−3 s. (µ = 2× 10−6m, β = 0.6, ∆ = 40× 10−3 s, D = 1× 

10−3mm2 /s, γ= 42.58 MHz/T). In Figure 25 Eq. (2) 

normalized magnetization Mxy Mo⁄  versus Gz  was plotted 

where Gz  = 0 to 1.5 T/m and D where D = 1 × 10−3 to 

10× 10−3mm2/s. (µ = 2× 10−6m, β = 0.6, ∆ = 40× 10−3 s, δ 

= 1 ×  10−3 s, γ= 42.58 MHz/T). In Figure 26 Eq. (2) 

normalized magnetization Mxy Mo⁄  versus δ was plotted 

where δ = 1 ×  10−3  to 1 0 ×  10−3 s and D where D = 

1× 10−3 to 10× 10−3mm2 /s. (µ = 2× 10−6m, β = 0.6, ∆ = 

40× 10−3 s, Gz = 1.5 T/m, γ= 42.58 MHz/T). In Figure 27 Eq. 

(2) normalized magnetization Mxy Mo⁄  versus δ was plotted 

where ∆  = 40×  10−3  to 400×  10−3 s and D where D = 

1× 10−3 to 10× 10−3mm2 /s. (µ = 2× 10−6m, β = 0.6, δ = 

1× 10−3 s, Gz = 1.5 T/m, γ= 42.58 MHz/T). In Figure 28 Eq. 

(2) normalized magnetization Mxy Mo⁄  versus δ was plotted 

where δ = 1× 10−3 to 10× 10−3 s and µ where µ =2 to 10 µm. 

(D = 1× 10−3mm2/s, β = 0.6, ∆ = 40× 10−3 s, Gz = 1.5 T/m, 

γ= 42.58 MHz/T). In Figure 29 Eq. (2) normalized 

magnetization Mxy Mo⁄  versus ∆ was plotted where ∆ = 40× 

10−3  to 400×  10−3 s and µ where µ =2 to 10 µm. (D = 

1× 10−3mm2 /s, β = 0.6, δ = 1× 10−3 s , Gz  = 1.5 T/m, γ= 

42.58 MHz/T). In Figure 30 Eq. (2) normalized magnetization 

Mxy Mo⁄  versus Gz was plotted where Gz = 0 to 1.5 T/m and 

µβ  where µβ  =0.333 × 10−5  to 1.67 × 10−5 m. (D = 1 ×

10−3mm2 /s, β  = 0.6, δ = 1× 10−3 s , ∆  = 40× 10−3 s , γ= 

42.58 MHz/T). In Figure 31 Eq. (2) normalized magnetization 

Mxy Mo⁄  versus β  was plotted where β  = 0.5 to 1 and µβ 

where µβ  =0.333 × 10−5  to 1.67 × 10−5 m. (D = 1 ×

10−3mm2/s, Gz = 1.5 T/m, δ = 1× 10−3 s, ∆ = 40× 10−3 s, 
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γ= 42.58 MHz/T). In Figure 32 Eq. (2) normalized 

magnetization Mxy Mo⁄  versus Dβ  was plotted where Dβ  = 

1.7 × 10−3  to 16.7× 10−3 mm2/s, and µβ  where µβ  =3.33×

10−5 to 1.67 × 10−5m. (β = 0.6, Gz = 1.5 T/m, δ = 1× 10−3 s, 

∆  = 40× 10−3 s , γ= 42.58 MHz/T). In Figure 33 Eq. (2) 

normalized magnetization Mxy Mo⁄  versus Dβ  was plotted 

where Dβ = 1.7 × 10−3 to 16.7× 10−3 mm2/s, and β where β 

=0.5 to 1. (µ = 2µm, Gz  = 1.5 T/m, δ = 1× 10−3 s , ∆  = 

40 × 10−3 s , γ= 42.58 MHz/T). In Figure 34 Eq. (2) 

normalized magnetization Mxy Mo⁄  versus Dβ  was plotted 

where Dβ = 1.7 × 10−3 to 16.7× 10−3 mm2/s, and Gz where 

Gz  =0 to 1.5 T/m. (µ = 2µm, β= 0.6, δ = 1× 10−3 s , ∆  = 

40 × 10−3 s , γ= 42.58 MHz/T). In Figure 35 Eq. (2) 

normalized magnetization Mxy Mo⁄  versus Dβ  was plotted 

where Dβ = 1.7 × 10−3 to 16.7× 10−3 mm2/s, and δ where δ 

=1× 10−3 to 10 × 10−3s. (µ = 2µm, β= 0.6, Gz = 1.5 T/m, ∆ 

= 40 × 10−3 s , γ= 42.58 MHz/T). In Figure 36 Eq. (2) 

normalized magnetization Mxy Mo⁄  versus Dβ  was plotted 

where Dβ  = 1.7 × 10−3  to 16.7× 10−3 mm2/s, and ∆ where 

∆ =40× 10−3 to 400× 10−3s. (µ = 2µm, β= 0.6, Gz = 1.5 T/m, 

δ  = 1 × 10−3 s , γ= 42.58 MHz/T). In Figure 37 Eq. (2) 

normalized magnetization Mxy Mo⁄  versus δ  was plotted 

where δ= 1× 10−3to 10 × 10−3 s and µβ where µβ =0.333×

10−5 to 1.67 × 10−5m. (D = 1× 10−3mm2/s, Gz = 1.5 T/m, 

β = 0.6, ∆ = 40× 10−3 s, γ= 42.58 MHz/T). Finally, in Figure 

38 Eq. (2) the normalized magnetization Mxy Mo⁄  versus ∆ 

was plotted where ∆= 40× 10−3to 400× 10−3 s and µβ where 

µβ =0.333× 10−5 to 1.67 × 10−5m. (D = 1× 10−3mm2/s, Gz 

= 1.5 T/m, β = 0.6, δ = 1× 10−3 s, γ= 42.58 MHz/T). 

 
Figure 37. Stretched exponential model surface plot: 

Mxy Mo⁄  Versus δ where δ= 1× 10−3to 10 × 10−3 s and µβ 

where µβ =0.333× 10−5 to 1.67 × 10−5m. (D = 1×

10−3mm2/s, Gz = 1.5 T/m, β = 0.6, ∆ = 40× 10−3 s, γ= 42.58 

MHz/T) 

 
Figure 38. Stretched exponential model surface plot: 

Mxy Mo⁄  Versus ∆ where ∆= 40× 10−3to 400× 10−3 s and 

µβ where µβ =0.333× 10−5 to 1.67 × 10−5m. (D = 

1× 10−3mm2/s, Gz = 1.5 T/m, β = 0.6, δ = 1× 10−3 s, γ= 

42.58 MHz/T) 

3. CONCLUSION  
 

In this paper we discuss the stretch function resulting from 

solving the generalize fractional-order Bloch equations using 

fractional calculus in details. The theoretical curves were 

plotted versus the gradient parameter ,
bfactor,  b′factor ,  b ̅̅ ̅factor, Sfactor , b∗ factor and Gz for 

selected values of ∆, δ, Gz , β and µ. Stretched exponential 

function surface plot were also plotted, different shapes of 

decays were observed versus different values of ,
bfactor ,  b′factor , b ̅factor, Sfactor , b∗ factor and Gz  for 

selected values of ∆, δ, Gz , β and µ. 

We observe that the stretch function resulting from solving 

the generalize fractional-order Bloch equations behaves like 

pure exponential function with rats Dβ when we use 𝑏 ̅factor, 

and behaves like stretch exponential function inside power law 

when we use S factor and X factor. Further developments of 

this study may be useful in optimizing anomalous diffusion in 

tissues with neurodegenerative, and ischemic diseases.  
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