
  

  

Numerical Study of Fractional Mathieu Differential Equation Using Radial Basis Functions  
 

Hojjat Ghorbani, Yaghoub Mahmoudi*, Farhad Dastmalchi Saei 

 

 

Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran 

 

Corresponding Author Email: mahmoudi@iaut.ac.ir 

 

https://doi.org/10.18280/mmep.070409 

  

ABSTRACT 

   

Received: 2 September 2020 

Accepted: 3 December 2020 

 In this paper, we introduce a method based on Radial Basis Functions (RBFs) for the 

numerical approximation of Mathieu differential equation with two fractional 

derivatives in the Caputo sense. For this, we suggest a numerical integration method for 

approximating the improper integrals with a singularity point at the right end of the 

integration domain, which appear in the fractional computations. We study numerically 

the affects of characteristic parameters and damping factor on the behavior of solution 

for fractional Mathieu differential equation. Some examples are presented to illustrate 

applicability and accuracy of the proposed method. The fractional derivatives order and 

the parameters of the Mathieu equation are changed to study the convergency of the 

numerical solutions. 
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1. INTRODUCTION 

 

Differential equations explain mathematically most of 

physical phenomena such as electromagnetic, elastic wave 

equations, frequency modulation, parametric oscillators, 

mirror trap for neutral particles, motion of a quantum particles 

in a periodic potential [1], and a lot more. Mathieu differential 

equation 

 
2 ( ) [ 2 cos(2 )] ( ) = 0,  

(0) = ,  '(0) =

D y t a q t y t

y y y y

+ −
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is a famous differential equation which appears to describe 

such phenomena [2]. In Eq. (1) a  is the characteristic number 

and q is the characteristic parameter of the equation. The 

French mathematician Mile Lonard Mathieu introduced this 

equation for the first time and lately this equation was named 

in his honor the Mathieu equation [3]. The equation was 

formulated to describe the vibration modes of an elliptical 

membrane [2], but it has been applied to quadrupole ion traps 

theory in chemistry [4, 5], ultra cold atoms [6], models of 

quantum rotor [7], inverted pendulum, vibrations in an elliptic 

drum, stability of a floating body and Paul trap for charged 

particles [8, 9].  

A simple harmonic oscillator obtains in Eq. (1) when we put 

q=0, It is well known that this oscillator performs free 

vibrations around the stable equilibrium position y=0. For 

0q the Mathieu Eq. (1) may have a stable solution (when 

the motion is bounded) or unstable solution (when the motion 

is unbounded). The occurrence of one of these two outcomes 

depends on the combination of the parameters q and a . When 

presented graphically, this gives the so-called stability chart 

with regions of stability and regions of instability separated by 

the so-called transition curves, enabling one to clearly 

determine the resulting behavior and the stability property 

mentioned. This was extensively studied by Rand et al. [10] 

for classical damped Mathieu equation and fractional Mathieu 

equation with one fractional derivative. 

The asymptotic solutions and transition curves for the 

generalized form of the non-homogeneous Mathieu 

differential equation are investigated in the paper [11]. An 

efficient numerical scheme is proposed for obtaining the 

stability charts for Mathieu equation by authors [12]. The 

existence of periodic and quasiperiodic solutions for 

generalized Van der Pol-Mathieu differential equation is 

proved using the averaging method in the paper [13]. Kovacic 

et al. provided a systematic overview of the methods to 

determine the corresponding stability chart of the classical 

Mathieu’s equation [14].  

Mathieu equation is especially important to the theory of 

Josephson junctions, where it is equivalent to Schrödinger’s 

equation. Recently Wilkinson et al. [15] collected various 

approximations which appear throughout the physics and 

mathematics literature and examined their accuracy and 

regimes of applicability.  

The fractional calculus is very popular and applicable tool 

to describe different phenomena these days. The memory and 

hereditary properties of various materials and processes were 

considered by the models based on fractional derivatives, 

where as in integer order models, such types of aspects are not 

considered. These leads fractional calculus to become an 

increasingly important topic in the literature of applied 

mathematics, engineering and other fields. For detailed 

definitions and theorems on fractional calculus and 

applications, the readers are referred to the Ref. [16]. 

Adding the term )(tyDC   in (1), which denotes the Caputo 

fractional derivative of function y of order  , we obtain the 

fractional Mathieu differential equation as follows [10]: 
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where,  is a constant. The general fractional form of Mathieu 
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Eq. (2) is as follows: 

 

),(=)()](2cos2[)()( tftytqatyDtyD CC −++    (3) 

 

where, 1<0   and 2<1  , are fractional derivatives. 

Setting 1=  and 2=  in (3), leads to the familiar damped 

Mathieu equation. 

Fractional Mathieu equation is solved numerically by many 

scientists. For example, authors [10] have used the harmonic 

balance method. The Adomian decomposition and the series 

method were used in the paper [17] for fractional Mathieu 

equation with damped term. Najafi et al. have used the 

generalized differential transform method [18]. The dynamics 

of Mathieu equation with two kinds of van der Pol (VDP) 

fractional-order terms is investigated by Wen et al. [19]. 

Recently the Block-Pulse wavelets approximation method 

[20] was used by Pirmohabbati et al. for numerical solution of 

fractional Mathieu equation. 

The Radial Basis Functions (RBF) method was introduced 

by Hardy [21] in 1971. At first, it was popular in multivariate 

interpolation [22]. In 1990, Kansa introduced a new method to 

use RBFs for solving parabolic, hyperbolic, and elliptic partial 

differential equations [23]. After that, radial basis functions 

have been widely applied in different fields of computational 

science. 

In this paper, we use Radial Basis Functions (RBFs) to solve 

numerically the general fractional Mathieu differential Eq. (3). 

The results of this paper are compatible with those in the 

papers [10, 20] and other literatures. The rest of this paper is 

organized as follows. In Section 2, we review some basic 

definitions of fractional calculus and Radial Basis Functions. 

We also introduce a composite Simpson's numerical scheme 

for the improper integrals with a singularity at the right 

endpoint of the integration domain. In Section 3, we present 

the new numerical algorithm for solving fractional Mathieu 

equation. In Section 4, some examples are presented to 

illustrate the numerical method. Finally, we give conclusions 

in Section 5. 

 

 

2. PRELIMINARIES 

 

2.1 Fractional calculus 

 

In this part a brief description of Riemann-Liouville and 

Caputo fractional integrals and derivatives are presented. 

 

Definition 2.1: 1 The Riemann-Liouville fractional 

integration of order )( +R  is expressed by [16],  

 












−



−



0,=),(=)(

0,>,)()(
)(

1
=)(

0
0

1

0
0








xfxfI

dfxxfI

x

x

x

 
(4) 

 

where, 1

0
( ) = e xx dx


− −   is the well-known gamma function. 

This to end for simplicity we omit 0 and x in the fractional 

integration notation.   

The operator I  satisfies the following relations, 
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Definition 2.2: 2 The Riemann-Liouville fractional derivative 

of order   of f(x) is defined as [16],  
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where, nn − <1 , Nn .  

 

Definition 2.3: 3 The Caputo fractional derivative so that 

nn <<1 −  are expressed as [16],  
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The main properties of the operator 
x

C D0  are [16],  
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where, }{0,1,2,...=0N . The Caputo fractional derivative (6) is 

determined by Riemann-Liouville fractional derivative (5) as 

follows [16], 
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Accordingly, if ,10,1,...,=0,=(0))( −nif i  then 

)(0 xfDx
C   and )(0 xfDx

RL   are equivalent. 

 

2.2 Review of interpolation by RBFs 

 

In this subsection, we briefly introduce the Radial Basis 

Functions. We state the relevant basic definitions and refer to 

the literatures (for example [24, 25]) for more details. 

A function RRRK dd →:  is symmetric, if

),(=),( xyKyxK  holds for all dRyx  , . For scattered 

nodes 
d

n Rxx ,,1  , the translates ),(=)( xxKxK jj  are 

called the trial functions. 

Radial kernel is defined as: 

 

,,  ,=  ),(=),( dRyxyxrryxK −  (11) 
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where, ,)[0,: R→ is a scalar function. The function   is 

called a radial basis function. One can scale the kernels on Rd 

by a positive factor c which is called shape parameter. The 

accuracy of numerical solution and the condition number of 

collocation matrix are affected by the shape parameter c. There 

are some numerical methods for finding an appropriate 

parameter c to control the accuracy of the solution as well as 

conditioning of the collocation matrix. By importing the shape 

parameter c, the new scaled kernel is given by: 

 

.,  ),,(=),( d
c Ryx

c

y

c

x
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The scaled radial kernels on Rd is defined as 
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r
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Table 1 represents the most commonly used global RBFs 

)(r , where  ,n  are RBF parameters and c is shape 

parameter. 

 

Table 1. Global RBFs 

 

Name )(r  Condition 

Gaussian(GS) 
2)(cre−   

Multi quadric(MQ) 
/22 ))((1 cr+  N2 0,    

Inverse quadric(IQ) 
12))((1 −+ cr   

Powers r  
N20    

Thin-plate splines )(ln2 rr n
 Nn  

 

Yoon [24] showed that applying RBFs in Sobolov space has 

exponential convergence. Fornberg et al. [25] proved the 

spectral convergence of the method in the limit of flat RBFs. 

Madych has proved in the paper [26] that under certain 

conditions the interpolation error is )(= /hcO   where h is the 

mesh size, and 1<<0   is a constant. He presented that, there 

are two ways to improve the approximation, by reducing the 

size of h and by increasing the size of c. It means that if →c  

then 0→ . While reducing h leads to the heavy 

computations, increasing c is without the extra computational 

cost, but it was proven in the paper [26] that as the error 

becomes smaller, the matrix becomes more ill-conditioned; 

hence the solution will break down as c  becomes too large. 

So, if the ill-conditioned system could be solved, h could be 

increased to obtain the best approximation.  

Selecting the appropriate c affects the accuracy and 

convergence properties of RBFs. Optimal choice of c is still 

an open problem and lots of papers have been published in this 

area. We refer the readers to the papers [26-30] for more 

details. 

In this study, we select c through our numerical observation 

such that the stability of the proposed method is achieved. 

 

2.3 Composite rule for singular integrals  

 

In this subsection a composite Simpson's numerical scheme 

is provided for integrals with a singularity at the right endpoint 

of the integration domain [31]. 

The improper integral with a singularity at the right 

endpoint, 
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converges if and only if 1<<0 q , and in this case, one defines, 
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Let g is continuous on ],[ ba , then the improper integral 
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exists, where 1<<0 q . This integral can be approximated 

with Composite Simpson’s rule. For this we assume that 

],[5 baCg . In this case, the fourth order Taylor polynomial, 

)(4 tP , for g about b is constructed as: 

 

.)(
4!

)(
)(

3!

)(

)(
2!

)(
))(()(=)(

4
(4)

3
(3)

2
4

tb
bg

tb
bg

tb
bg

tbbgbgtP

−+−−

−


+−−
 (17) 

 

Then we can write, 
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P4(x) is a polynomial, then the first integral in (18) can be 

exactly determined by: 
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When the Taylor polynomial P4(t) is too close to g(x) 

throughout the interval ],[ ba , (19) is the dominant part of the 

approximation. We must add to this value the following 

approximation,  
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To this, we first define the function )(tG  as follows 
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G(t) is a continuous function on ],[ ba . Because, 1<<0 q  

and )(=)( )()(
4 bgbP kk  for 0,1,2,3,4=k , so ],[4 baCG . 

Therefore, we can use the Composite Simpson’s rule to 
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approximate the integral of G on ],[ ba . Adding this to the 

value in Eq. (19) gives an approximation to the improper 

integral (18), with the accuracy of the Composite Simpson’s 

rule approximation (which is of order )( 4hO for any given step 

length (h). The function ),,,,( qbagSINGSIMP

approximates (16) with the accuracy of   (see Appendix 1). 

 
 

 

3. METHOD OF SOLUTION 

 

To solve the general Mathieu Eq. (3) with the initial 

conditions yyyy =(0) ,=(0)   on the interval ][0,T , we set: 
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where, 
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are RBF basis vector and coefficients vector respectively and 

Njttt jj ,1,2,=  |),(|=)( −  are RBF basis functions and 

Nttt ,,, 21   are arbitrary (not necessary equally spaced) 

points of ][0,T . Differentiating (20) of order  and 𝛽 in the 

fractional Caputo scene, we get  
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Substituting (20), (22) and (23) in (3) we get: 
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Now we choose 2−N  distinct collocation points 

][0,,,, 221 Txxx N −  and collocate (24) as follows: 
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Finally, we summarize (25) as the following matrix form: 
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for 2,1,2,= −Ni  , Nj ,1,2,=  . (26) is a system of 

NN − 2)(  linear equations. Together with two initial 

conditions, 

 

(0) =y y  (28) 

 

(0) =y y  (29) 

 

we get a system of N linear equations of N unknown 

coefficients Nyyy ,,, 21  . In (29) )(1 t  denotes the first 

derivative of vector function ).(t
 

Now we write the final linear equation as follows: 
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Here we must emphasize that the matrix components ijA  

and ijB  are as follows 
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Since 1<<0   and 2<<1   then both improper 

integrals (33) and (34) are convergent and can be 

approximated by composite Simpson's method as mentioned 

in section 2. 

The algorithm of this method is given as follows: 
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Algorithm 1. 

1. choose  ,,),( NTt  

2. set )1/( −= NTh  

3. set Njhjt j ,...,2,1,)1( =−=  

4. set Njttt jj ,...,2,1|),(|)( =−=  

5. set 1,...,2,1,)2/1( −=−= Nkhkxk  

6. for 2:1 −= Ni  

for Nj :1=

 )2(/),1,,0),(''(  −−= ijij xtSINGSIMPA

 
)1(/),,,0),('(  −= ijij xtSINGSIMPB

 )()2cos2(= ijiij xxqaC −  

ijijijij CBAM ++=  

end 

)(= ii xfZ  

end 

7. for Nj :1=  

(0)1 jjNM =−

 (0)' jNjM =  

end 

8. yZN =−1  

yZN =  

9. solve MY=Z 

10. set )( =)(

1=

tyty jj

N

j

  

 

 

4. ILLUSTRATIONS 

 

In this section, in order to test the numerical method, we 

present some illustrative examples. We use different values of 

aq  , , , ,   and f and plot the achieved numerical solutions 

and compare them with each other and the results obtained by 

Pirmohabbati et al. [20]. When 1<<0   and 2<<1  , the 

Mathieu equation is of fractional order. In this case there is no 

known analytic solution for Mathieu equation so the results are 

compared with the case that the orders are integer. By 

numerical experiments we choose the shape parameter c=h, 

where c is RBF parameter and hare the mesh size. The 

computations are performed by Maple 16 with 40 digits of 

computation. The Condition number of coefficient matrix are 

often in the domain ],10[10 2010 . We study (3) in three different 

cases. 

Case A: In (3), we set 1= , 1=a  and q=0, with initial 

values 1=(0)y  and 1=(0) −y and tetf −=)( where the exact 

solution is tety −=)( .  

Table 2 presents the numerical results for different RBFs 

with 2=,1 =T , 1=  and hc = . As we see in Table 2, the 

error norms highly affected by increasing N. 

In Table 3 we fixed h=0.1 and changed c=kh. The results 

for different RBFs show that L2 norm decreases as c increases. 

The numerical solution with 2= , 1=  and the exact 

solution tety −=)(  are plotted in Figure 1. The graph of 

absolute error with 2= , 1=  is represented in Figure 2. 

Table 2. The L and L2 norm for different values of N 

 

RBFs N L  L2 

GS 

5 1.2367e-2 2.6761e-3 

10 3.1366e-8 3.1028e-9 

20 1.7318e-14 2.4091e-16 

40 5.4396e-21 2.7160e-23 

MQ 

5 4.7986e-3 1.0433e-3 

10 8.0846e-9 7.9907e-10 

20 1.1441e-20 4.7918e-22 

40 4.7918e-25 4.3043e-27 

IQ 

5 1.0182e-2 2.1988e-3 

10 1.5795e-8 1.5603e-9 

20 1.6640e-21 7.2423e-23 

40 4.2156e-26 2.2128e-28 

 

Table 3. The affects of c=kh on L2 for h=0.1 

 

k  GS
 

MQ
 

IQ 

8 2.8127e-6 9.1934e-5 8.5498e-4 

4 2.1802e-7 1.1431e-6 6.1748e-6 

2 2.1937e-8 1.8897e-8 5.9586e-8 

1 3.1028e-9 7.9907e-10 1.5603e-9 

1/2 6.5205e-10 1.1637e-10 1.5880e-10 

1/4 2.0685e-10 4.9421e-11 5.5103e-11 

1/8 9.5615e-11 3.7367e-11 3.8537e-11 

1/16 5.9532e-11 3.4397e-11 3.4898e-11 

 

 

 
 

Figure 1. The graph of exact and approximate solution 

( 1= 2,=  ) with 20=N  for Case A 

 

 
 

Figure 2. The graph of absolute error ( 1= 2,=  ) with 

20=N  for Case A 
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Now we keep 2=  fixed and change 1=  to 0.75=  and 

0.5= . Then we keep 1=  and change 2=  to 1.9=  

and 1.75=  respectively, which the results are plotted in 

Figures 3 and 4. The results show that the numerical solution 

converges in all the cases when   and   are integer or 

rational numbers. To show the convergency of the 

approximate solution we plotted the exact and numerical 

solution with 2=  and 1=  on the interval [0,50] in Figure 

5. 
 

 

 
 

Figure 3. The graph of approximate solution for 2=  and 

0.5 0.75, 1,=  with 20=N  for Case A. 

 

 

 
 

Figure 4. The graph of approximate solution for 

1.75 1.9, 2,=  and 1=  with 20=N  for Case A.  

 

 

Figure 5. The graph of exact solution 
tety −=)(  and 

approximate solution with 200=N  for Case A. 

Case B: In (3), suppose 0=)(tf , 0= , 1=a  and 

0.1=q , with initial values 0=(0)y  and 0.5=(0)y . The 

numerical solution with 1= , 2=  is plotted as follows as 

Figure 6. In fact, in this case we solve the Mathieu equation 

without damping term ( 0= ). It is clear from Figure 6 that 

the solution diverges in this case. Our numerical solution is 

compatible with the results of the paper [20].  

 

 
 

Figure 6. The graph of approximate solution for 2= , 

1=  and 200=N  for Case B. 

 

 

 
 

Figure 7. The graph of approximate solution for 

1.95 1.97, 2,=  and 1=  for Case B. 

 

 

 
 

Figure 8. The graph of approximate solution for 

1.7 1.8, 1.9,=  and 1=  for Case B.  
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For the next attempt we keep 1=  and the other 

coefficients fixed and then change   from 2 to 1.97 and 1.95 

(see Figure 7). The numerical results show that the solution is 

divergent. It is obvious from Figure 7 that when the derivatives 

occur with fractional order, the solution diverges faster and the 

divergency rate decreases as   decreases. 

Now we continue with 1=  and other coefficients fixed 

and change   from 2 to 1.9, 1.8 and 1.7. The results which 

were plotted in Figure 8 show that for these values of   the 

behavior of numerical solution changes to convergency. Then 

we conclude that in the absence of damping term the solution 

of the Mathieu equations diverges for large values of   (   

near to 2) and converges for smaller values of  .  

 

Case C: In (3), suppose 0=)(tf , 0.15= 1=a  and 

0.1=q , with initial values 0=(0)y  and 0.5=(0)y . The 

numerical solution with 1= , 2=  is plotted in Figure 9. 

The numerical results of our method, which are compatible 

with those on the paper [20], show the convergency of the 

solution in this case.  

 

Figure 9. The graph of approximate solution ( 1,2= = ) 

for Case C.  

 

 
 

Figure 10. The graph of approximate solution for 2=  and 

0.8 0.9,=  for Case C.  

 

 
 

Figure 11. The graph of approximate solution for 

1.95 1.97, 2,=  and 1=  for Case C.  

 

 

 
 

Figure 12. The graph of approximate solution with fractional 

order of derivatives for Case C.  

 

We keep 2=  and fix the other coefficients and change 

  from 1  to 0.9 and 0.8 . The results plotted in Figure 10 

show that the solution converges faster than the case that 

1= . If we keep 1=  fixed and change   from 2  to 1.97  

and then 1.95 , the plots of results in Figure 11 show the 

convergency of the results which decays with decreasing of 
 .  

For the last attempt we change 2=  and 1=  to 

1.95=  and 0.8=  first and then to 1.9=  and 0.7=  

which the graph is plotted in Figure 12. 

 

 

5. CONCLUSION 

 

In this work, the fractional Mathieu differential Eq. (3), 

including fractional order damping factor, was solved by using 

radial basis functions. Three classes of radial basis functions, 

the Gaussian (GS), multi quadric (MQ) and inverse quadric 

(IQ), have been used. Numerical results in all three classes 

converge to the solution of the equation. But the MQ and IQ 

classes are a little more accurate than GS. As N  the number 

of radial basis functions increases, the approximation error 
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decreases rapidly in all three cases, but the condition number 

of the required linear system increases rapidly. This requires 

that double accuracy of computation to be used. 

By changing the characteristic parameters of the equation, 

the resulting numerical solutions in both stability and 

instability states converge to the exact solution of the Mathieu 

equation, which are compatible with the analytical and 

numerical results of other studies. 

 

 

REFERENCES  

 

[1] Slater, J. (1952). A soluble problem in energy bands. 

Phys. Rev., 87(5): 807. 

[2] Mathieu, E. (1868). Memoire sur le movement vibratoire 

dune membrance de forme elliptique. Journal de 

Mathematiques Pures Appliqués, 13: 137-203. 

[3] Duhem, P. (1892). Emile Mathieu, his life and works. 

Bull. Amer. Math., Soc., 1(7): 156-168. 

https://projecteuclid.org/euclid.bams/1183407338 

[4] March, R. (1997). An introduction to quadrupole ion trap 

mass spectrometry. Journal of Mass Spectrometry, 1(7): 

351-369. arXiv:1211.0050. 

[5] Baranov, V. (2003). Analytical approach for description 

of ion motion in quadrupole mass spectrometer. Journal 

of the American Society for Mass Spectrometry, 14(8): 

818-824. https://doi.org/10.1016/S1044-0305(03)00325-

8 

[6] Rey, A., Pupillo, G., Clark, C., Williams, C. (2005). 

Ultracold atoms confined in an optical lattice plus 

parabolic potential: A closed form approach. Phys. Rev., 

72(3): 033616. 

https://doi.org/10.1103/PhysRevA.72.033616 

[7] Ayub, M., Naseer, K., Ali, M., Saif, F. (2009). Atom 

optics quantum pendulum. J. Russ. Laser Res., 30(3): 

205-223. https://doi.org/10.1007/s10946-009-9078-x 

[8] Nwamba, J. (2013). Delayed Mathieu equation with 

fractional order damping an approximate analytical 

solution. International Journal of Mechanics and 

Applications, 3(4): 70-75. 

https://doi.org/10.5923/j.mechanics.20130304.02 

[9] Stoker, J. (1950). Nonlinear Vibrations in Mechanical 

and Electrical Systems. Interscience Publishers, New 

York. 

[10] Rand, R., Sah, S., Suchorsky, M. (2010). Fractional 

mathieu equation. Communications in Nonlinear Science 

and Numerical Simulation, 15(11): 3254-3262. 

https://doi.org/10.1016/j.cnsns.2009.12.009 

[11] Younesian, D., Esmailzadeh, E., Sedaghati, R. (2007). 

Asymptotic solutions and stability analysis for 

generalized non-homogeneous Mathieu equation. 

Communications in Nonlinear Science and Numerical 

Simulation, 12(1): 58-71. 

https://doi.org/10.1016/j.cnsns.2006.01.005 

[12] Bobryk, R.V., Chrzeszczyk, A. (2009). Stability regions 

for Mathieu equation with imperfect periodicity. Physics 

Letters A, 373(39): 3532-3535. 

https://doi.org/10.1016/j.physleta.2009.07.069 

[13] Kalas, J., Kaderabek, K. (2014). Periodic solutions of a 

generalized Van der Pol-Mathieu differential equation. 

Applied Mathematics and Computation, 234: 192-202. 

https://doi.org/10.1016/j.amc.2014.01.161 

[14] Kovacic, I., Rand, R., Sah, S.M. (2018). Mathieu’s 

equation and its generalizations: Overview of stability 

charts and their features. Applied Mechanics Reviews, 

70(2): 020802. https://doi.org/10.1115/1.4039144 

[15] Wilkinson, S.A., Vogt, N., Golubev, D.S., Cole, J.H. 

(2018). Approximate solutions to Mathieu’s equation. 

Physica E: Low-dimensional Systems and 

Nanostructures, 100: 24-30. 

https://doi.org/10.1016/j.physe.2018.02.019 

[16] Podlubny, I. (1990). Fractional Differential Equations. 

San Diego, Academic Press. 

[17] Abdelhalim, E., Elsayed, D.M., Aljoufi, M.D. (2012). 

Fractional calculus model for damped Mathieu equation: 

Approximate analytical solution. Applied Mathematical 

Science, 6(82): 4075-4080. 

[18] Najafi, H., Mirshafaei, S., Toroqi, E. (2012). An 

approximate solution of the Mathieu fractional equation 

by using the generalized differential transform method 

(GDTM). Applications and Applied Mathematics, 7(1): 

347-384. 

[19] Wen, S., Shen, Y., Li, X., Yang, S. (2016). Dynamical 

analysis of Mathieu equation with two kinds of van der 

Pol fractional-order terms. International Journal of Non-

Linear Mechanics, 84: 130-138. 

https://doi.org/10.1016/j.ijnonlinmec.2016.05.001 

[20] Pirmohabbati, P., Sheikhani, A.R., Najafi, H.S., Ziabari, 

A.A. (2019). Numerical solution of fractional mathieu 

equations by using block-pulse wavelets. Journal of 

Ocean Engineering and Science, 4(4): 299-307. 

https://doi.org/10.1016/j.joes.2019.05.005 

[21] Hardy, R. (1971). Multiquadratic equation of topology 

and other irregular surface. Journal of Geophysical 

Research, 76(8): 1905-1915. 

https://doi.org/10.1029/JB076i008p01905 

[22] Buhmann, M. (1990). Multivariate interpolation in odd-

dimensional Euclidean spaces using multiquadrics. 

Constructive Approximation, 6(1): 21-34. 

https://doi.org/10.1007/BF01891407 

[23] Kansa, E. (1990). Multiquadricsa scattered data 

approximation scheme with applications to 

computational fluid-dynamics-II solutions to parabolic, 

hyperbolic and elliptic partial differential equations. 

Computers & Mathematics with Applications, 19(8-9): 

147-161. https://doi.org/10.1016/0898-1221(90)90271-

K 

[24] Yoon, J. (1999). Spectral approximation orders of radial 

basis function interpolation on the Sobolov space. SIAM 

J. Math. Anal., 33(4): 946-958. 

https://doi.org/10.1137/S0036141000373811 

[25] Fornberg, B., Wright, G., Larsson, E. (2004). Some 

observations regarding interpolants in the limit of flat 

radial basis functions. Comput. Math. Appl., 47(1): 37-

55. https://doi.org/10.1016/S0898-1221(04)90004-1 

[26] Madych, W. (1992). Miscellaneous error bounds for 

multiquadric and related interpolators. Computers & 

Mathematics with Applications, 24(12): 121-138. 

https://doi.org/10.1016/0898-1221(92)90175-H 

[27] Haq, S., Hussain, M. (2018). Selection of shape 

parameter in radial basis functions for solution of time-

fractional Black-Sholes models. Appl. Math. Comput., 

335: 248-263. https://doi.org/10.1016/j.amc.2018.04.045 

[28] Mongillo, M. (2011). Choosing basis functions and shape 

parameters for radial basis function methods. SIAM 

Undergrad. Res. Online, 190-209. 

[29] Fallah, A., Jabbari, E., Babaee, R. (2019). Development 

of the Kansa method for solving seepage problems using 

575



a new algorithm for the shape parameter optimization. 

Comput. Math. Appl., 77(3): 815-829. 

https://doi.org/10.1016/j.camwa.2018.10.021 

[30] Golbabai, A., Mohebianfar, E., Rabiei, H. (2015). On the

new variable shape parameter strategies for radial basis

functions. Computational and Applied Mathematics,

34(2): 691-704. https://doi.org/10.1007/s40314-014-

0132-0

[31] Burden, R.L., Faires, J.D. (2010). Numerical Analysis.

Richard Stratton Ninth Edition.

APPENDIX 

The function ),,,,( qbagSINGSIMP  approximates the 

singular integral, 
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