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Construction of appropriate mathematical model of plant (object to be modeled) has 

especially important meaning for designing controller. A reliable and good control 

performance requires more detailed model. Nevertheless, the latter must be established 

from at least two viewpoints of preciseness and compactness. In this paper, the 

considered plant is a self-excited induction generator (SEIG). In order to improve the 

accuracy, we take into consideration in the SEIG modeling: magnetic saturation 

phenomenon, cross saturation effect and iron losses. To our best knowledge, this is the 

first time that the three mentioned phenomena have been integrated into the same and 

single SEIG model which is presented in an inherent mathematical form. As we will 

see in the results, the contribution of these three phenomena in the accuracy 

improvement is really significant. In addition, to achieve compactness of the proposed 

model, a simpler configuration is obtained for the electrical equivalent circuit associated 

to the studied model by using Thevenin transformation. The proposed model is built in 

MATLAB-SIMULINK environment and used to study and analyze the performance of 

a SEIG under various operating point conditions. The obtained results are compared to 

measurements and also to the values obtained from models without the three discussed 

phenomena. 
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1. INTRODUCTION

The development of simple and accurate analytical models 

to study the dynamic behavior of induction machines, either in 

motor or generator operating, has generated a lot of work for 

several years. The simplest model includes only constant-

valued parameters. Such a model leads to relatively accurate 

results when the operating point studied is around the 

conditions of the model parameter identification; i.e. motor 

operating at rated voltage. However, it is well known that the 

air gap of induction machines is generally narrow, which leads 

to a non negligible saturation effect, i.e. the inductance values 

decrease as the flux increases. Therefore, the nonlinearity of 

the magnetic materials has to be taken into account in the 

machine model in order to improve the accuracy of simulation 

studies for a wide range of magnetic states. This condition is 

even necessary to study the voltage build up of an isolated 

induction generator, since the linear model is not able to 

describe the behavior of the system [1-3]. In this aim, more 

advanced machine models have been proposed. Commonly, 

the saturation phenomenon is modeled by adjusting the 

magnetizing inductance as a function of the magnetizing 

current, or as a function of the flux linkages, using different 

approaches such as power function [4, 5] or saturation degree 

function [6, 7]. But these methods need the knowledge of the 

linear and saturated components of the magnetizing flux, 

which complicates the identification procedure. A simple and 

accurate method consists in using polynomial approximation 

based on experimental data [1] which can also take into 

account the cross saturation effect. 

The accuracy of the model prediction can also be improved 

by including the effect of the iron losses which depend both on 

the magnetizing flux and frequency. Many works dealt with 

the study, calculation or identification of iron losses [8-12] and 

induction machine parameters [13-16]. In reference [8], a 

model which includes iron losses via an equivalent iron loss 

resistance is presented. However, the latter is considered 

constant which can cause detuning of torque and flux in the 

corresponding vector control system as reported by Levi et al. 

[9]. Ranta et al. [10] proposed a model in which iron losses are 

divided into two components, hysteresis and eddy current 

losses. The first component is proportional to the frequency 

while the second one is proportional to the square of the 

frequency. The dynamic model of a self excited induction 

generator (SEIG) presented by Bašić et al. [11] takes the iron 

losses into account through a non-linear resistance which 

depends on two dimensional parameters (magnetizing flux and 

synchronous frequency). Derived from the equivalent 

electrical circuit with the iron loss resistance placed in parallel 

to the magnetizing inductance, this model gives an accurate 

describing of the SEIG behavior. But, it leads to 2nd order 

differential equations which complicates the corresponding 

control design and implies high computational needs.  

The model presented by Shinnaka [12] includes iron loss 
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resistance connected in parallel to the stator inductance. This 

model supposes that the stator current is decomposed into two 

parts; iron loss current which represents purely stator iron 

losses and load current which is linked to the flux and torque 

generation. Such a representation leads to a relatively accurate 

model when compared to conventional model neglecting iron 

losses and also facilitates control design compared to the 

model with an iron loss resistance placed in parallel to the 

magnetizing inductance. Furthermore, it can be simplified 

resulting in an equivalent electrical circuit similar to the 

conventional one, i.e. without iron losses. This approach has 

been adopted by Bašić et al. [2] to model a SEIG system but 

without accounting for the cross saturation effect. The latter 

can be considered as a magnetic coupling between the 

windings of the diphase model, and it is reported that the cross 

saturation effect plays a significant role during the transient 

state of the electrical variables [17], and enable a very accurate 

prediction of the machine’s performance, especially on the 

voltage build-up of SEIG. 

In the present paper, an analytical model which combines 

simplicity and accuracy and aimed to the study of SEIG is 

proposed and analyzed. The proposed approach represents a 

coupling between two previously introduced approaches [1, 2]. 

The model presented by Idjdarene et al. [1] takes into 

consideration magnetic saturation and cross saturation effect 

but iron losses are omitted. While, the model presented by 

Bašić et al. [2] includes magnetic saturation phenomenon and 

iron losses but the cross saturation effect is neglected. So, we 

take the initiative to contribute to the accuracy improvement 

of the SEIG model prediction by including the three mentioned 

phenomena into account in the same and single model. As we 

will see below in this article, the inclusion of the magnetic 

saturation phenomenon is a crucial condition in the SEIG 

modeling. Cross saturation effect acts in the transient state and 

intervenes in the improvement of the SEIG voltage build-up. 

While, integration of iron losses intervenes in the accuracy 

improvement of the rotor electrical variables and 

electromagnetic torque. Concerning the methodology adopted 

in the construction of the proposed model; we used the 

mathematical model of Idjdarene et al. [1] (which includes 

only magnetic saturation and cross saturation effect) as a 

starting point. Then, we took advantage of the approach 

adopted by Bašić et al. [2] to include iron losses and also to 

obtain a more compact configuration of the electrical 

equivalent circuit of the induction machine (which operates as 

a generator) by using the Thevenin transformation. Finally, we 

end up with a mathematical model which combines simplicity 

and precision with inherent equations. Still, the SEIG model 

can gains more refinement by adding the rotor resistance 

variations with respect to temperature and also by including 

the skin effect of the rotor bars, but this is not within the scope 

of this paper. 

In the proposed model, the saturation effect and cross 

saturation effect are taken into account through a variable 

magnetizing inductance with respects to the magnetizing 

current while iron losses are modeled via a variable equivalent 

iron loss resistance with respect to two dimensional 

parameters (magnetizing flux and stator frequency). To 

validate the proposed model, the values of both components 

depending on the above variables are first identified 

experimentally for a 5.5 kW squirrel cage induction test 

machine. Then, using MATLAB®-SIMULINK® package, 

simulations are carried out to study the behavior of the test 

machine as a SEIG system for two different values of the 

capacitive bank (100μF and 120μF) under a wide speed range 

and different load states. The obtained results are compared to 

measurements for the same operating points. They are also 

compared to those obtained using conventional model, i.e. 

without iron losses and cross saturation effect, in order to 

highlight the accuracy of the proposed model. 

 

 

2. MATHEMATICAL MODEL OF THE INDUCTION 

MACHINE 
 

The mathematical model that we seek to obtain after 

development can be considered as an extension of that 

developed by Idjdarene et al. [1]. So, we will use the induction 

machine dynamic model of Idjdarene et al. [1] as the starting 

point. Using the Clarke transform, the rotor and stator electric 

equations, which are expressed in stationary reference frame, 

are given by Eq. (1): 
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(1) 

 

where, Rs, ls, Rr and lr are the stator and rotor phase resistances 

and leakage inductances respectively and r is the rotor 

electrical pulse. Besides, Vsα, isα, Vsβ and isβ are the α-β stator 

voltages and currents respectively and imα and imβ represent the 

magnetizing currents, along the α and β axis, such as: 
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where, irα and irβ are the rotor current components.  

In the model of Idjdarene et al. [1], only magnetic saturation 

phenomenon and cross saturation effect are included, 

respectively through the magnetizing inductance Lm and its 

derivative Lm’ as a function of the magnetising current im:  
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Tus, the other inductances introduced in the Eq. (1), Lmα, Lmβ 

and Lαβ can be expressed as follows: 

 

















=

+=

+=

m

mm

m

m

m

mmm

m

m

mmm

i

ii
LL

i

i
LLL

i

i
LLL













.
.

.

.

'

2

'

2

'

 

(4) 

 

where, Lm’ is the derivative of the magnetizing inductance with 

respect to the magnetizing current im. 

The mathematical model introduced above can be 

illustrated by the equivalent electrical circuit shown in Figure 

1 where the iron losses are neglected. 

This model is widely used to study machine behaviors or to 
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design control strategies. However, to reach more accurate and 

efficient torque response, iron losses cannot be neglected but 

this can lead to a more complex model. In the following, we 

introduce an analytical approach which constitutes an 

improvement of the above presented model by introducing a 

resistance Rf, parallel to ls+Lm, that accounts for iron losses as 

shown in Figure 2(a). 

 

 
 

Figure 1. Equivalent electrical circuit without iron losses 

 

 
 

Figure 2. Equivalent electrical circuit with iron losses, (a) 

model with Rf parallel to ls+Lm, (b) thevenin equivalent model 

 

Thus, the stator current is can be decomposed into two 

components; iron loss current iRf that represents purely stator 

iron losses and load current iL which is linked to the flux and 

torque generation. From the scheme shown in Figure 2(a), a 

simpler configuration can be obtained by transforming the 

“stator loss part” leading to the equivalent electrical circuit 

shown in Figure 2(b). VsT, isT, RsT are the thevenin variables 

whose relations are expressed in the diphase α-β frame as 

follows: 
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We can note that the equivalent electrical circuit models 

shown in Figure 1 and Figure 2(b) are similar. Thus, the 

mathematical equations of the conventional IM model 

introduced previously, i.e. Eq. (1) to Eq. (4), remain valid for 

the Thevenin equivalent model including the iron losses by 

considering the following substitutions: 

(1) Rs by RsT ; 

(2) isα by isTα and isβ by isTβ; 

(3) Vsα by VsTα and Vsβ by VsTβ; 

 

Therefore, the non-linear analytical model of the IM that 

includes both magnetic saturation and iron losses phenomenon 

can be expressed as follows: 
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(8) 

 

Besides, the flux, magnetizing current components and 

electromagnetic torque equations can be written, in the diphase 

frame, under the following forms: 
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where, Фsα, Фsβ and Фrα, Фrβ are the α and β-axis stator and 

rotor flux components respectively. Ls= ls+Lm and Lr=lr +Lm 

are the stator and rotor self inductances, p is the machine pole 

pair number. 

The model developed above can be used to study the 

behavior of the machine either in motor or generator operating. 

However, as the effects of saturation phenomenon, cross 

saturation effect and iron losses are more crucial in generator 

operating, we use it to study the behavior of a SEIG system 

whose accurate results are mainly dependant of the model. 

 

 

3. MAGNETIC SATURATION AND IRON LOSSES 
 

This section deals with the extraction of the non-linear 

behavior of both magnetic material and stator iron losses of a 

5.5kW squirrel cage induction test machine whose rated values 

are given in appendix (1). A Digital wattmeter and a 

programmable AC supply which can deliver a voltage with 

variable magnitude and frequency are used for this purpose, 

see Figure 3.  

We identified the IM iron losses and magnetizing curve 

experimentaly at no load testing for différent voltage and 
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frequency values. Then, we used method described by Bašić 

et al. [2] and Boldea et al. [18] to calculate the iron loss 

resistance ans also the magnetizing inductance based on the 

electrical equivalent circuit of Figure 2(a). 

 

 
 

Figure 3. Experimental bench 

 

3.1 Magnetic saturation and cross saturation effect 

 

From experimental measures, the values of the magnetizing 

inductance are identified for different frequencies and 

magnetizing current magnitudes as shown in Figure 4.  

As expected, Lm is frequency independent. Thus, the 

magnetic saturation is modeled by expressing the magnetizing 

inductance with respects to the magnetizing current im. To do 

that, we use the simplest way, i.e. a polynomial approximation. 
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The comparison between measurements and approximated 

values of Lm(im) shows a very good agreement (Figure 5). In 

the simulation, the unsaturated part of the characteristic Lm(im) 

for im<1.2A is approximated with a constant value of 0.105H. 

This is well justified since the steady state operating point of 

the SEIG is located in the saturated part, i.e. for im>1.2A. So, 

this choice will not affect the analysis conducted in this paper. 

 

 

 

Figure 4. Experimental determination of the magnetizing 

inductance curve 

 
 

Figure 5. Magnetizing inductance versus magnetizing 

current, obtained by polynomial approximation 

 

Cross saturation effect is taken into account through Lm’ 

which represents the derivative of the magnetizing inductance 

with respect to magnetizing current. The evolution of the 

polynomial derivative of the characteristic Lm(im) with respect 

to im is shown in Figure 6 below. 

 

 
 

Figure 6. Evolution of the magnetizing inductance derivative 

as a function of the magnetizing current 

 

3.2 Iron losses 

 

Iron losses are usually divided into hysteresis losses and 

eddy current losses. Hysteresis losses are proportional to the 

frequency while the eddy current losses are commonly 

modeled as proportional to the square of the frequency [10]. 

Iron losses obviously occur both in the stator and the rotor of 

the induction machine with the major part in the stator due to 

the stator frequency which is much higher than the slip one. In 

some works, iron losses are modeled by an equivalent iron loss 

resistance placed either in parallel to the magnetizing 

inductance [11] or in parallel to the stator inductance [2, 12]. 

Whatever its location, representing iron losses by an 

equivalent resistance is the simplest method as it leads to only 

one component to determine. Thus, the obtained model is not 

bulky and the identification process is quite simple. 

The values for Rf obtained from measures carried out on the 

induction test machine at no load and expressed with respects 

to the iron loss current iRf, shows that it depends both on iRf, 

which corresponds to the flux magnitude, and frequency 

(Figure 7).  

Where, iRf is calculated as follow: 
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Figure 7. Experimental values of the iron loss resistance with 

respect to iRf and frequency 

 

 
 

Figure 8. Iron loss resistance in function of two variables, 

iron loss current and frequency 

 

As for the magnetizing inductance, the iron loss resistance 

characteristic is approximated through a polynomial equation 

on frequency and on iRf (see appendix). Figure 8 shows the 

approximated surface along with the measures. The iron loss 

resistance characteristic Rf(iRf,fs) that is convenient for use in 

simulation is approximated with a constant value of 50Ω for 

iRf<0.05A.  

The point iRf =0.05A is situated at the left of the iron loss 

characteristic (Figure 7), which can be characterized as an 

unstable area where no self-excitation can occur. Therefore, 

this choice will not affect the analysis conducted in this paper. 

 

 

4. MODEL ADAPTATION TO STUDY A SELF-

EXCITED INDUCTION GENERATOR  

 

The system studied is shown in Figure 9. It is constituted of 

a self excited induction generator whose rotor is connected to 

a controlled DC motor. The stator windings are star connected 

to capacitor bank and to three phase resistive load. 

 

 
 

Figure 9. Self-excited induction generator system feeding 

resistive load 

The equations related to these parts have to be added to the 

IM relations to construct the SEIG model. In the case of no 

load operating, the stator voltages and currents are linked by 

the following matrix equation: 
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When the SEIG system is loaded, the load currents ila, ilb 

and ilc must be added to the above matrix equation that then 

takes the following form: 
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Finally, in the case of balanced load operating, three 

identical resistances are considered such as: 
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The capacitor-SEIG obtains its magnetizing current from 

capacitors connected across its output terminals. As the rotor 

is driven for a certain speed, IM residual magnetization 

induces a small EMF in the stator windings at a frequency 

proportional to rotation speed, circulating a current through 

capacitors. If capacitors are of sufficient value, the voltage 

builds-up, its final value being limited by the IM magnetic 

saturation [19]. The choice of the capacitor for self-excitation 

is very important. The latter must have its value within a 

certain range to sustain self-excitation. If its value is outside of 

this range, self excitation will not be possible. The minimum 

and maximum values of capacitor required for self-excitation 

of a three-phase induction generator have been analyzed 

previously [20-23]. 

In our case, for a given rotation speed, we used the 

approximate minimum capacitor Cm required for self 

excitation given by Seyoum [24] and calculated as: 
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(17) 

 

where, Ω in rd/s and Lmn is rated magnetizing inductance 

calculated at rated magnetizing level which corresponds for 

the used IM to the value 0.10474H. 

However, for economic and technical reasons, the use of 

excessive capacitor values is not recommended due to the fact 

that the current can greatly exceed its nominal value [24]. On 

the other hand, it is not advisable to use the minimum capacitor 

value either because any change in load or rotor speed may 

result in loss of excitation. Therefore, we have added a margin 
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of about 10% to 15% with respect to the minimum capacitor 

value. So, we carried out experiments and simulations for the 

following speeds and their corresponding capacitor value: 

(1)  For fixed rotation speeds: 780rpm and 790rpm, 

required minimum capacitor according to Eq. (17) is 

respectively 89μF and 87μF. By taking into account an 

additional margin of 15%, the value of the capacitor used for 

these two speeds is 100 μF. 

(2) For fixed rotation speed of 690rpm, the required 

minimum capacitor according to Eq. (17) is 115μF. With 

margin of about 10%, we used a capacitor of 120μF. 

 

 

5. MODEL VALIDATION 

 

5.1 No load operating 

 

A first step consists in validating the SEIG proposed model 

through comparisons, at no load, between simulation results 

and measurements obtained from the experimental bench 

shown in Figure 10. The latter is made up of the squirrel cage 

induction test machine mechanically coupled to a driven DC 

motor. The stator windings of the IM are star connected to a 

capacitor bank, and eventually, to a three phase variable 

resistive load. 

Different tests were performed for a wide speed range, two 

values of the capacitor bank (100μF and 120μF) and various 

resistive loads. 

The simulation results are compared to those obtained from 

the experimental bench and also to the results obtained by 

models without magnetic saturation, cross saturation effect 

and iron losses. 

 

 
 

Figure 10. Experimental bench of the SEIG system 
 

Note that, a transition from the Thevenin model to the model 

without iron losses can be obtained by taking an infinite value 

for Rf. In a practical point of view, Rf should take a very high 

value [2]. Generaly the space vectors of dynamic model have 

different angular frequencies in transient states. So in this 

paper the stator frequency, which is used for the calculation of 

Rf, is estimated via a PLL through the stator currents. To take 

account for the remnant EMF, a small value of 5V is assigned 

as an initial value to the simulated stator voltages for both 

models. 

In the following, we will study case by case the contribution 

of magnetic saturation, cross saturation effect and iron losses 

on the model accuracy predictions. Firstly, we will neglect 

magnetic saturation while including the two other phenomena 

(Figure 11). Secondly, we will neglect the cross saturation 

effect while including magnetic saturation and iron losses 

(Figure 12), and finally, we will neglect iron losses while 

including magnetic saturation and cross saturation effect 

(Figure 13). 

Figure 11(a) shows the phase voltage build-up obtained 

when magnetic saturation is neglected i.e. the magnetizing 

inductance takes a constant value (Lm = Lmn = 0.10474H, which 

is calculated at rated magnetization of the IM). It is obvious 

that having a constant magnetizing inductance, the derivative 

of the magnetizing inductance with respect to magnetizing 

current, which introduces the cross saturation effect, is 

automatically canceled (Lm’ = 0H/A). 

As observed in Figure 11(a), the induced voltage continues 

to rise without converging to an equilibrium state. So, the 

model without magnetic saturation is far from describing the 

behavior of the real SEIG system whose voltage build-up 

should be like measure shown in Figure 11(b). Thus, magnetic 

saturation in SEIG is the main factor in the dynamics of 

voltage build-up and stabilization, so it must be accounted for 

in the SEIG model. This statement is confirmed by the results 

of Figure 12 where magnetic saturation is not neglected, and it 

is clearly seen that the generated voltage stabilizes and reaches 

an equilibrium state. 

 

 
(a) 

 
(b) 

 

Figure 11. Phase voltage built up (100μF at 780rpm), 

comparison between simulation and measure (a) simulation 

without magnetic saturation, (b) measure 

 

Figure 12 also conveys information on the interest of taking 

into account the cross saturation effect. Indeed, we observe a 

remarkable difference in the transient state of the generated 

voltages in Figure 12(a) which shows a superposition between 

the experimental measure and the result obtained with the 

model which neglects the cross saturation effect. However, in 

Figure 12(b) which overlaps the experimental measure and 

result of the full saturated model (with cross saturation effect), 

extremely good correspondence is revealed. Thus, without a 
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shadow of a doubt, the full saturated SEIG model enables 

accurate simulation in the voltage build-up. After all, we 

would like to emphasize that concerning the cross saturation 

effect, the results obtained by the proposed model favorably 

agree with the results obtained by Levi [17], and this even if 

the models used are different. 

 

 

 
 

Figure 12. Phase voltage built up (100μF at 780rpm), 

comparison between measure and simulations, (a) without 

cross saturation, (b) with cross saturation 

 

 

 

 

Figure 13. Phase voltage built up (100μF at 780rpm), 

comparison between measure and simulations, (a) measure, 

(b) Simulation 

 
 

Figure 14. Zoom of the Phase voltage built up (100μF at 

780rpm), comparison between simulations 

 

Figure 13 shows the comparison of the no load voltage built 

up waveforms obtained by simulation and measurement in the 

case of a capacitive bank of 100μF and a speed of 780rpm. 

Figure 13(a) shows the phase voltage obtained by 

measurement, while Figure 13(b) shows a superposition of 

phase voltage obtained by the models with and without iron 

losses. As can be seen, the global waveforms obtained by both 

models are in good agreement with measurement. However, 

one can observe from the zoom of Figure 14 that, there is a 

small time delay as well as a slight difference in the estimation 

of the phase voltages during the transient. 

 

5.2 Operating at load 

 

Figures 15 and 16 show a comparison between 

measurement and simulation results of the models with and 

without iron losses for both phase voltage and phase current 

transient, respectively, when subjected to a step change in load 

(R= 136Ω) at t=2.5s. These results are obtained in the case of 

a capacitive bank of 100μF and a speed of 780rpm. 
 

 

 
 

Figure 15. Phase voltage transient (100μF at 780rpm), 

comparison between measure and simulation, (a) with iron 

losses, (b) without iron losses 

(a) 

(b) 

(a) 

(b) 

(a) 

(b) 
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From Figure 15(a), the Thevenin model with iron losses is 

slightly underestimating the magnitude of the phase voltage, 

while, the model without iron losses, overestimate them 

(Figure 15(b)).  

We also observe a small difference in frequency for t>2.5s 

in the case of the conventional model, without iron losses, 

while the proposed model is in good agreement with 

measurement. The same observation arises from the 

comparison of the stator currents shown in Figure 16.  

Nevertheless, the difference between both models 

concerning the stator variables predictions is close. But, it will 

be seen in the following that, the impact of iron losses is much 

important for the rotor variables predictions and the 

electromagnetic torque. 

 

 
 

Figure 16. Phase current transient (100μF at 780rpm), 

comparison between measure and simulation, (a) with iron 

losses, (b) without iron losses 

 

5.3 Steady state analysis 

 

While taking account of the load, various operating points 

are studied using the proposed model and compared to 

measures.  

For the sake of synthesis, simulations are performed with a 

resistive load whose value is changed at t=4s (from 385 to 

102) and at t=7s (from 102 to 58). These three values are 

similar to some ones used in the experimental tests. 

The RMS value of the stator phase voltage and stator current 

are presented in Figures 17 and 18 respectively where (a) 

depicts the results obtained at 790rpm and 100μF per phase 

and (b) the ones of 690rpm and 120μF. 

Figure 17 shows a comparison between the RMS value of 

the stator voltage obtained by both models and measures. The 

latter are represented by the continuous black line. 

As can be seen, the inclusion of iron losses in the IM model 

induces a slight underestimation of the generated stator 

voltage magnitude when compared to the results given by the 

classical model. This difference increases along with the load 

increase but the results given by both models are very close to 

the experimental values for all the studied operating points. 

The same observation arises from the comparison of the stator 

currents as shown in Figure 18. This difference can be linked 

to the magnetization level of the machine. 

 

 

 
 

Figure 17. RMS value of the stator voltage, comparison 

between experimental and simulations, (a) results obtained 

for 100μF at 790rpm, (b) results obtained for 120μF at 

690rpm 

 

 

 
 

Figure 18. RMS value of the stator current, comparison 

between experimental and simulations, (a) results obtained 

for 100μF at 790rpm, (b) results obtained for 120μF at 

690rpm 

(a) 

(b) 

(a) 

(b) 

(a) 

(b) 
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Indeed, as can be shown from the waveforms of the 

magnetizing inductance drawn in Figure 19 for the studied 

operating points, the classical model leads to a higher 

saturation level when compared to the results obtained by the 

model which takes the iron losses into account. This also 

shows that the difference is more significant in the case of high 

loads. 

 

 
 

Figure 19. Magnetizing inductance, results obtained for 

100μF at 790rpm 

 

 

 
 

Figure 20. Electromagnetic torque, comparison between 

experimental and simulations, (a) results obtained for 100μF 

at 790rpm, (b) results obtained for 120μF at 690rpm 

 

Figure 20 shows the electromagnetic torque waveform 

obtained for the studied operating points. The results from the 

proposed Thevenin model with iron losses are much more 

close to measures than the ones given by the model without 

iron losses. The latter underestimates the electromagnetic 

torque mainly for light loads, due to the important contribution 

of iron losses in this case. The values of the electromagnetic 

torque in Figure 20 obtained by simulations are calculated 

using Eq. (11) where isT and isT are replaced by is and is in 

the case of classical model without iron losses. Then, they are 

compared to the ones obtained from the experimental bench 

through the following relation: 

 



−−−
=

ironcoprcopsload

em

PPPP
T

__
 (18) 

 

where, Pload is the measured power supplied to the load, it is a 

negative value due to the motor convention used in the 

mathematical model. Ps_cop and Pr_cop are the stator and rotor 

copper losses respectively and Piron represents the iron losses. 

The latter is obviously taken equal to zero in the case of the 

classical model without iron losses. Mechanical losses are not 

considered as the SEIG is driven by the DC machine. Ω is the 

rotor rotation speed obtained from the control of the DC drive 

machine. 

Using the equivalent electrical circuit scheme, the rotor 

currents are calculated for both models. The equivalent 

experimental value of this current is also deduced from the 

electromagnetic torque using the well known following 

relation:  

 

( )sR

Ts
i

r

em

r
−


=

13
 (19) 

 

where, s is the slip value. 

Then, the obtained results are compared in Figure 21. As 

expected from the electromagnetic torque waveforms, the 

values given by the proposed model are in better agreement 

with the ones deduced from measures. 

 

 
 

Figure 21. Rotor current, comparison between experimental 

and simulations, (a) results obtained for 100μF at 790rpm, (b) 

results obtained for 120μF at 690rpm 

 

Finally, from the several operating points simulated and 

tested, Figure 22 shows the behavior of both iron losses and 

the global copper losses (stator and rotor copper losses), with 

(a) 

(b) 

(a) 

(b) 
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respect to electromagnetic torque, obtained by the proposed 

model and the measurements at 790rpm and 100μF. Both 

simulated waveforms are in very good agreement with the 

experimental results. It can be particularly noted that the iron 

losses are higher than the global copper losses at light loads. 

We also notice a significant decrease of iron losses with 

respect to the electromagnetic torque. Given that the rotor 

speed is kept constant at 790rpm, this can be only due to the 

significant decrease in magnetizing flux illustrated through the 

iron loss current iRf shown by the Figure 23.  

 

 
 

Figure 22. Iron losses and copper losses versus 

electromagnetic torque, comparison between experimental 

and simulation, results obtained for 100μF at 790rpm 

 

 
 

Figure 23. Iron loss current versus electromagnetic torque, 

simulation results obtained for 100μF at 790rpm 

 

The obtained results reflect very well the reality of the IM. 

Indeed, it is well known that when the IM is driven under light 

loads at high or rated magnetization level, the flux is higher 

than necessary to develop the required electromagnetic torque 

and, due to the unbalance between iron and copper losses; it 

results in the increase of the IM electrical losses which are 

referred to stator copper losses, rotor copper losses and iron 

losses. Moreover, this characteristic of the IM has given rise 

to a lot of works which seek to minimize IM electrical losses, 

working in generator or in motor mode, by adapting its 

magnetization level according to the load level. The higher the 

flux level is, the larger iron losses are. In the opposite, 

excessive decrease of the flux level causes higher copper 

losses. Then, the key to solve the problem of minimizing the 

IM losses is to obtain the optimum balance between copper 

and iron losses. 

Figure 24 shows the behavior the iron loss resistance Rf with 

respect to electromagnetic torque. It increases almost linearly 

with the electromagnetic torque. The Rf behvior is easy to 

explain: At light loads the generated voltages and currents are 

higher than when the SEIG operates at high loads (see Figures 

17 and 18), which means higher magnetization level and 

saturation level, and because irf is an image of the 

magnetization level explains why it is more important at light 

loads. As the SEIG works in the saturated region of the 

charactrestic Rf(irf, fs), then Rf takes low values when irf is high. 

When the load increases, the generated voltages and currents 

decreases (see Figures 17 and 18) which means the decreas of 

magnetization level and saturation level, this explain why irf 

takes low values at high loads, and as the SEIG works at the 

saturated part of the charactrestic Rf(irf, fs), therefore Rf takes 

high values. Thus we can say that a high value of the iron loss 

resistance means iron losses level is low, the reverse is true, 

low value of iron loss resistance means high level of iron 

losses. Of course, this statement is valid in the stable operating 

region of the SEIG (when the IM is saturated), this is natural 

since no self-excitation is possible in the unsaturated part of 

the characteristics Rf(irf, fs) and Lm(im). 

 

 
 

Figure 24. Iron loss resistance versus electromagnetic torque, 

simulation results obtained for 100μF at 790rpm 

 

 

6. CONCLUSION 

 

In this paper, a dynamic mathematical model including 

magnetic saturation, cross saturation effect and iron losses of 

a SEIG is developped. It is based on the equivalent electrical 

circuit in which the iron loss resistance is placed in parallel to 

the stator self inductance. The use of Thevenin transform leads 

to a compact configuration and a simple mathematical model 

similar to the well known classical model without iron losses.  

Several noticeable results have been obtained in this study 

through computer simulation and laboratory experiments. 

They are summarized below: 

(1) Magnetic saturation is the key factor in the voltage 

build-up of SEIG, it is mandatory to include this phenomenon 

in the SEIG modeling. 

(2) The full saturated SEIG model (with magnetic saturation 

and cross saturation effect) enables very accurate results in the 

transient of the voltage build-up. 

(3) We can put the proposed SEIG model and that one 

without iron losses at the same level concerning the accuracy 

prediction of the generated stator voltages and stator currents. 

(4) The results obtained by the proposed SEIG model, in 

terms of rotor current along with electromagnetic torque, are 

in a better agreement with the measurements than those given 

by that one without iron losses, more significantly at light 

loads. 

(5) The proposed SEIG model enables very accurate results 

in the prediction of ion losses and global copper losses. In 
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addition, it reproduces very well the physical reality of the IM 

about the existence of unbalance between iron losses and 

global copper losses depending on load level, magnetization 

level and frequency. So, it can be used as the basis to design 

loss minimization strategy for SEIG used in autonomous or 

isolated wind/hydro energy conversion systems where loads 

and speed can present randomly large variation range. 

(6) Due to the compactness of the proposed SEIG model and 

to its relative simplicity, it can be used to design vector control 

strategies leading to new outcomes with high-efficiency 

operating. 
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NOMENCLATURE 

 

Vsa stator voltage of phase a, V 

Vsb stator voltage of phase b, V 

Vsc stator voltage of phase c, V 

isa stator current of phase a, A 
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isb stator current of phase b, A 

isc stator current of phase c, A 

ila load current of phase a, A 

ilb load current of phase b, A 

ilc load current of phase c, A 

Vs -axis stator voltage, V 

Vs -axis stator voltage, V 

VsT Thevenin -axis stator voltage, V  

VsT Thevenin -axis stator voltage, V  

is -axis stator current, A 

is -axis stator current, A 

isT Thevenin -axis stator current, A  

isT Thevenin -axis stator current, A  

ir -axis rotor current, A 

ir -axis rotor current, A 

ir rotor current, A 

iRf iron loss current, A 

im -axis magnetizing current, A 

im -axis magnetizing current, A 

im magnetizing current, A 

L m -axis magnetizing inductance, H 

L m -axis magnetizing inductance, H 

L cross effect inductance, H 

L m magnetizing inductance, H 

L m
’ 

Lmn 

magnetizing inductance derivative 

 value of Lm at rated magnetization 

Ls stator self inductance, H 

Lr rotor self inductance, H 

ls stator leakage inductance, H 

lr rotor leakage inductance, H 

Rs stator resistance, ohms 

RsT Thevnin stator resistance, ohms 

Rr rotor resistance, ohms 

Rl load resistance, ohms 

Rf iron loss resistance, ohms 

C capacitor, F 

fs stator frequency, Hz 

p pole pair number 

Tem electromagnetic torque, Nm 

Pload measured power supplied to the load, W  

Ps-cop stator copper losses, W 

Pr-cop rotor copper losses, W 

Piron iron losses, W 

 

Greek symbols 

 

Ω mechanical rotor speed, rad/s 

ωr rotor electrical pulse, rad/s 

s -axis stator flux, Wb 

 s -axis stator flux, Wb 

 r -axis rotor flux, Wb 

 r -axis rotor flux, Wb 

 

Subscripts 

 

SEIG self-excited induction generator 

IM induction machine 

 

 

APPENDIX 

 

(1) Rated parameters of the used IM: PN=5.5kW, 

UN=230/400V, IN=23.8/13.7A, 50Hz, N=690rpm, 

J=0.230kg.m2, d=0.0025N.m/rads-1, Rs=1.07131, 

Rr=1.29511, p=4, Lmn=0.10474H. 

 

(2) Polynomial approximation of the iron loss resistance: 

 

Linear model Poly43:  

Sf(x,y) = p00 + p10*x + p01*y + p20*x^2 + p11*x*y + 

p02*y^2 + p30*x^3 + p21*x^2*y + p12*x*y^2 + p03*y^3 + 

p40*x^4 + p31*x^3*y + p22*x^2*y^2 + p13*x*y^3 

 

Coefficients: 

p00 = 4.269e+004, p10 =-3386, p01= -477.8, p20 =100.4, p11 

= 7.263, p02 = 168.8, p30 =-1.322, p21 = 0.3607, p12 =-4.983, 

p03 = -7.721, p40 = 0.006509, p31 = -0.003933, p22 = 0.02345, 

p13 = 0.153 
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