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In this research, we have proposed a new technique to solve two-dimensional (2D) 

viscous fluid flow among slowly expanding or contracting walls. The new technique 

depends on combining the algorithms of Yang transform and the homotopy perturbation 

methods. The results, obtained from the first iteration and by using the new method, 

show the accuracy and efficiency of this method compared to the other methods, used 

to find the analytical approximate solution for the problem caused by the 2D viscous 

fluid flow. Moreover, the graphs of the new solutions show the validity, usefulness and 

necessity of the new method. 
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1. INTRODUCTION

One of the most common problems of the fluid flow and 

which has interested many researchers is the laminar flow of 

viscous fluid through a porous channel or pipe with 

contracting or expanding permeable walls. This great interest 

is due to its biological applications, like the conveyance of 

biological fluids through expanding or contracting receptacles, 

nomination in the lungs and kidneys, flow inside the 

lymphatic's, and many others besides. Many scientists and 

researchers have attempted to find solutions for these 

equations using different methods; for example, the first 

scientists who found a solution to the two-dimensional laminar 

flow of a viscous fluid problem in a parallel-walled channel is 

Berman [1]. He found the solution to this problem by using the 

perturbation method. He utilized the Reynolds number as a 

perturbation parameter, where the solution is valid for small 

values of the Reynolds number. Ganji et al. [2] applied the 

homotopy perturbation method (HPM) to solve 2D viscous 

fluid flow problem between slowly expanding or contracting 

walls. Comparing their results with the numerical method 

(NM), they noted that HPM is efficacious and simple and can 

be used to solve nonlinear problems. Moreover, their results 

demonstrate that HPM is capable to solve this problem with 

quickly convergence approximations without any restrictive 

supposition or transformations, which lead to changes in the 

physical definition of the problem. Dinarvand [3] found a 

solution for the viscous fluid flow through slowly expanding 

or contracting walls by using the differential transform method. 

He compared between his results and the ones obtained from 

the numerical method to find that his results exhibit the 

marked accuracy. Moreover, from these results, he noticed that 

the differential transform method does not demand small 

parameters in the equations, therefor, this method can be 

applied to many nonlinear differential and integral equations 

without perturbation, linearization, or discretization. 

Dinarvand et al. [4] used the homotopy analysis method 

(HAM) to find the solutions for the viscous fluid flow with 

expanding or contracting gaps. They compared the obtained 

results with the numerical method and the results demonstrate 

a remarkable accuracy. This method (HAM) differs from 

perturbation methods in that it does not rely on small 

parameters. So, it is valid for both mighty and weak nonlinear 

problems. Sushila et al. [5] used the Sumudu transform 

homotopy perturbation method (HPSTM) to solve the problem 

of the viscous fluid flowing between slowly expanding or 

contracting walls. Numerical results have shown that these 

methods are very effective and able to solve this problem. 

Moreover, they observed that this method was able to find the 

solution without any restrictive suppositions to the rise of 

changes in the physical definition of the problem. They also 

noted that the advantage of this method is that it solves 

nonlinear problems without utilizing Adomian’s polynomials. 

Ledari et al. [6] solved the viscous fluid flow problem by 

slowly expanding or contracting walls by using Akbari Ganji’s 

Method (AGM). They compared the results of AGM with 

those of the Ruge-Kutta method, the Adomian decomposition 

method, the homotopy perturbation method and variational 

iteration method; the results show that this method is 

efficacious and has enough accuracy.  

Despite all these advantages of the methods, used by 

researchers to solve the current problem (as illustrated in 

available literature), there are some disadvantages to these 

methods, for example, some of these methods require high 

iterations to obtain an accurate solution to the current problem. 

Also, some of these methods require a great deal of time and 

effort to solve the problem. 

There are many analytical methods, some of which need a 

perturbation parameter and others do not need one. One of 

these methods that do not need perturbation parameters is the 

Yang transform method (YT), which is a new integral 

transform proposed in 2016 by Yang [7]. It was first applied 

to the heat transfer equation in the steady-state. Note that this 

method is precise and efficacious in finding the analytical 

solutions to linear differential equations (partial), and it is used 

by many researchers to solve different problems [7, 8]. In 2018, 
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Dattu [9] illustrated the fundamental properties of YT and he 

utilized this method to solve differential equations with 

constant coefficients, and he also defined the Laplace-Yang 

dual property.  

One of the analytical methods that depended on the small 

perturbation parameter is the new homotopy perturbation 

method, which is a new shape, derived from the homotopy 

perturbation method (HPM). It was discovered in 2010 by 

Aminikhah and Hemmatnezhad [10] while they were trying to 

find an analytical approximate solution to partial and ordinary 

differential equations. In this method, the solution is assumed 

to be an infinite series which converges readily to the exact 

solution. Many researchers used this method to solve various 

equations [11, 12] and they noted that it's a powerful, effective, 

easy and accurate tool to solve linear and nonlinear differential 

equations, compared to the standard homotopy perturbation 

method.  

From the scientific research, conducted by researchers using 

these two methods (YT & HPM), it is found that they are 

powerful and effective for finding approximate analytical 

solutions to the non-linear and linear differential equations 

(partial/ordinary). Despite the above positive points, there are 

some negative points to these two methods (depending on the 

literature review above and to the best of our knowledge) such 

as, the HPM mostly requires high iterations to obtain an 

approximate analytical solution as well as the Yang's method 

may not succeed in finding the exact solution, especially to 

non-linear problems that are similar to the current problem. 

All these reasons led us to suggest a new method to 

overcome these negatives points and reduce the number of 

iterations in finding analytical approximate solutions, and as 

well as saving time and effort spent in solving the nonlinear 

problem. 

The main purpose of this paper is to introduce a newly 

developed method to solve the two- dimensional viscous fluid 

flow problem among slowly expanding or contracting walls. 

The new method is based on combining the Yang transform 

[7] and the new homotopy perturbation method [10] named the 

Yang transform-homotopy perturbation method (YTHPM). 

The numerical results, obtained by using the new method, 

prove that the efficiency, activity, and high accuracy of this 

method in comparison with other methods. 

 

 

2. THE YTHPM ALGORITHM 
 

The basic ideas of YTHPM depend on the algorithms of YT 

and HPM, which will be discussed in this section.  

 

2.1 Yang transform method  
 

Integrative transformations such as the transformations of 

Laplace, Sumudu, and Elzaki and others, have wide 

applications in different fields of science and engineering like 

fluid mechanics, viscosity, physics, finance and chemistry [13] 

etc. Because many operations and phenomena of science, 

engineering and real-life can be expressed mathematically and 

solved by using integral transforms. The problems (fluid 

mechanics, viscosity, ...) arising in these fields can be readily 

treated with the assistance of integral transforms by converting 

them into a mathematical form. In the course of time, 

researchers have become more attentive to solving the 

problems of science, space, engineering by presenting new 

integral transforms. In 2016, Yang [7] proposed a new integral 

transform called Yang Transform that was first applied to the 

heat transfer equation in the steady-state. Note that this method 

is accurate and effective for finding analytical solutions to 

linear differential equations (partial or ordinary), which is 

defined by the function g(t) and denoted by Y{g(t)} or T(s) as 

follows: 
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The YT has many properties, among which are the ones 
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2.1.1 Essential notion of the Yang transform 

To clarify the essential notion of the Yang transform, we 

meditate the linear equation in the differential operator form 

as follows: 

 

qvRvL  )()(1
 (2a) 

 

where, the linear terms L1(v)+R(v), and q are functions. If we 

assume that 𝐿1 =
𝜕

𝜕𝑡
, and then take the Yang transforms for 

both sides of Equation (2a), we have: 𝑌(𝐿1(𝑣) + 𝑅(𝑣)) =

𝑌(𝑞), from the derivative property of YT [9], we get: 
1

𝑠
𝑌(𝑣) −

𝑣(0) = 𝑌(𝑞 − 𝑅(𝑣)) , the rearrangement of the above 

equation, yields:  

 

    )0()( vvRqYsvY   (2b) 

 

By taking the inverse Yang transform for both sides of Eq. 

(2b), we have the solution in the form: 
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An illustrative example of YT for differential equation 

appears as follows [9]: 
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Consider the 2nd order ordinary differential equation as:

   

0)()(''  tyty , 

with 1)0(')0(  yy  
(2d) 

 

By taking YT for both sides of Eq. (2d), we have: 
𝑇(𝑠)

𝑠2
−

𝑦(0)

𝑠
− 𝑦′(0) + 𝑇(𝑠) = 0 , Then: 𝑇(𝑠) =

𝑠2

1+𝑠2
+

𝑠

1+𝑠2
. Taking 

YT inverse and from the property of YT, we get: 

y(t)=sin(t)+cos(t). 

 

2.2 Homotopy perturbation method (HPM) 

 

A new format of the homotopy perturbation method was 

discovered in (2010) by Aminikhah and Hemmatnezhad [10] 

in their attempt to solve ordinary and partial differential 

equations. They imposed the form of a solution that results 

from using this method as an infinite series. The researchers' 

use of this method proves that it is a powerful and effective 

method to find the solutions to nonlinear differential equations, 

compared to the standard homotopy method. 

 

2.2.1 Fundamental idea of the HPM: [10, 11] 

To clarify the fundamental idea of HPM, lets contemplate 

the general nonlinear equation in the differential operators 

forms as: 

 

1 1
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Together with the conditions of the boundary: 
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where, Β1 is the operator of the boundary; q(r) is the known 

function and Γ1 is the boundary of the domain Ω1; and A1 is a 

differential operator which can be divided into two parts: N1 

nonlinear and L1 linear operator. So, Eq. (3) can be written as 

follows: 
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By the technique of the homotopy, we build a homotopy 

𝑢(𝑟, 𝛽): 𝛺1 × [0,1]  → ℝ, which achieves: 
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Or 
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where, 𝛽 ∈ [0,1]  is an embedding parameter, and v0 is an 

initial condition of Eq. (3). Clearly, from Eqns. (6) and (7), we 

have: 
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Suppose that the solutions of Eqns. (6) and (7) as a force 

chain in β as: 
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Now, we rewrite Eq. (7) in the form of:  
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By taking the 𝐿1
−1 of Eq. (11) to both sides, we get: 
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Postulate that the initial approximation of Eq. (3) as follows: 
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where, a0, a1, a2,… are the coefficients which are unknown and 

p0, p1, p2,… are special functions that rely on the problem. 

Through putting (10) and (13) into Eq. (12), we get: 
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Comparing the coefficients which have the same powers of 

β leads to: 
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Now, if we assume that u1=0, then Eq. (15) results in u2= 

u3=...=0. Then, the exact solution can be found as follows: 
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2.3 Fundamental notion of YTHPM 

 

Now, to demonstrate the fundamental notion of the new 

technique for Eq. (5) with the initial condition v(x, 0), firstly 

we apply the HPM property, then take the YT of both sides of 

the equation and apply its properties. Then, we take the inverse 

of the YT. Finally, we apply the HPM property to the function 
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and conditions and find the solution, which can be summarized 

in the following steps: 

Step 1: By the HPM, we have: 
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Step 2: Taking the Yang transform for both sides of Eq. (17), 

we get: 
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Step 3: Postulate that 𝐿1 =
𝜕

𝜕𝑡
, then by the differential 

property of Yang transform, we obtain: 
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The rearrangement of Eq. (19), yields: 
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Step 4: Taking the Yang inverse for both sides of Eq. (20), 

we get: 
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Step 5: Via the NHPM, we suppose that 𝑢 = ∑ 𝛽𝑛𝑢𝑛
∞
𝑛=0 , 

𝑣0 = ∑ 𝑎𝑛 𝑝𝑛
∞
𝑛=0  , 𝑢(0) = 𝑣(𝑥, 0), then, Eq. (21) becomes: 
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Step 6: By equalizing the terms that have the same power 

of β, we have: 
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Step 7: The analytical approximate solution can be found 

by putting β=1, 𝑣 = 𝑙𝑖𝑚
𝛽→1

𝑢 = 𝑢0 + 𝑢1 + 𝑢2 +⋯. 

 

3. GOVERNING EQUATIONS 
 

Consider laminar, incompressible and viscous fluid flow in 

a rectangular domain bounded by two permeable surfaces that 

allow to the viscous fluid to come in or way out through the 

consecutive expansions or contractions, as illustrated in Figure 

1 [4]. 

 

 
 

Figure 1. The pattern of a rectangular domain with extended 

or contracted walls 

 

Walls contract or expand orderly at a time-dependent rate 

a*(t). At the wall, the fluid flow velocity Uw is assumed to be 

independent of a locus. Beneath these presumptions, the 

continuity and motion equations are: 
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where, 𝑢, 𝑣  indicate the components for velocity in the 𝑥, 𝑦 

trends, t the time, ρ its density, 𝑃  the pressure dimensional 

term, and 𝜐 is the kinematic viscosity.  

The boundary conditions are given as: 
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where, 𝑧 =
𝑎∗

𝑈𝑤
 is the permeance of the wall or the coefficient 

of suction/ injection, which is a gauge for wall permeability. 

The vorticity and stream functions can be presented by setting 

𝑢 =
𝜕�⃛�

𝜕𝑦
  and 𝑣 = −

𝜕�⃛�

𝜕𝑥
: 
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By putting (26a) into (26b), we get: 
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Because of the mass conservation, an analogous solution 

can be advanced with respect to 𝑥 [14]. Let: 
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From Eqns. (27) and (28), we possess: 
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For solving Eq. (29), the chain rule is used to get: 
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(30) 

 

Together with the conditions of boundary: 

 

when ζ=0 then 0 0,h h


   (31a) 

 

when ζ=1 then 0Re,h h


   (31b) 

 

where, 𝛼(𝑡) =
𝑎𝑎∗(𝑡)

𝜐
 is the dimensionless dilation rate of the 

wall, which is negative for contraction and positive for 

expansion. 𝑅𝑒 =
𝑎𝑈𝑤

𝜐
 is the Reynolds number, which is 

negative for suction and positive for injection.  

If the dimensionless set is defined, Eqns. (28, 30, 31) can be 

normalized as follows: 𝑢 =
�⃛�
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,  𝑣 =

−ℎ

𝑧
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Thus, Eq. (30) becomes: 
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And boundary conditions are:  
 

0 0,h h


   when 0  

And 1 0,h h


   when 1  
(33) 

 

If α=0 in Eq. (32), then Berman’s model [1] is obtained. 

 

 

4. APPLICATION OF YTHPM 
 

Now, we apply the algorithm of YTHPM for Eq. (32) with 

the boundary condition (33). The basic steps of the new 

technique are illustrated as follows: 

Step 1: By HPM, we obtain:  
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Step 2: Taking the Yang transform for both sides of the 

equation in step (1), we have: 
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since ℎ(0) = ℎ′′(0) = 0  and ℎ′(0) = 𝑎, ℎ′′′(0) = 𝑏  to be 

specified from the boundary conditions; by rearranging this 

equation, we get: 
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Step 3: Take inverse YT for both sides of Eq. (34), to get: 
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 Step 4: From the assumption of the NHPM that put ℎ =
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where, 
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Step 5: By equalizing the terms that have the same power 

of β, we possess: 
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Step 6: The analytical approximate solution can be acquired 

by putting β=1, ℎ = 𝑙𝑖𝑚
𝛽→1

ℎ = ℎ0 + ℎ1 + ℎ2 +⋯. 
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Now the numerical analysis of YTHPM which is done in 

the above steps is applied here to find the semi-analytical 

solution for the Eq. (32), which represents the two-

dimensional viscous flow as follows: 
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Now, to calculate the constants coefficient a0, a1, a2, ..., a10, 

we assume that h1=0, and then equalize the terms that have the 

same power of ζ, to get: 
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Then the solution is: 
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(35) 

 

 

5. RESULTS AND DISCUSSION 

 

Figures 2, 3 show the effect of various values of α on the 

derivative of velocity h'(ζ) at Re=-5,5. These figures illustrate 

the expanding wall (α>0) and contracting wall (α<0) for the 

suction case (Re=-5) and injection case (Re=5), respectively. 

Figure 4 explains the effect of different values of α on h'(ζ) at 

Re=0. Moreover, Figures 5, 6 demonstrate h'(ζ) at α=1, Re=5 

and α=-1, Re=-5, and explain the state of expansion combined 

with injection and the state of contraction combined with 

suction, respectively. Figure 7 shows the comparison of results 

between the new method and VPM [15] at Re=5 and α=0.5 for 

h(ζ) and h'(ζ), respectively for the state of expansion combined 

with injection. On another note, Figure 8 explains the 

comparison of the results between, YTHPM, RK-4th order, and 

HPM [16] for α=0.5 and Re=1 for h(ζ) and h'(ζ), respectively. 

 

 
Figure 2. The influence of various values of α on the 

derivative of velocity h'(ζ) at Re=-5 

 
 

Figure 3. The influence of various values of α on the 

derivative of velocity h'(ζ) at Re=5 
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Figure 4. The influence of various values of α on the 

derivative of velocity h'(ζ) at Re=0 

 
 

Figure 5. h'(ζ) at α=1 and Re=5 

 
 

Figure 6. h'(ζ) at α=-1 and Re=-5 

 

 

 
 

Figure 7. Comparison of results between YTHPM and VPM 

[15] of flow when α=0.5 and Re=5 for h(ζ) and h'(ζ) 

respectively 
 

 

 
 

Figure 8. Comparison of results between YTHPM, HPM 

[16], and RK-4th when α=0.5 and Re=1 for h(ζ) and h'(ζ) 

respectively 

 

After we find the flow field, the remaining important 

properties of the flow like the pressure and shear stress can be 

found as follows: The gradient of pressure can be found by 

putting the components of velocity in Eq. (24). Then: 
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The normal distribution of pressure can be found through 

integrating Eq. (36). The pressure distributions are plots for 

different values of Re, as illustrated in Figure 9. Also, we 

observe that the pressure term changes for each level of 

suction or injection and becomes the lowest level near the 

central part. 

The shear stress is the other important quantity, which can 

be specified from Newton’s law for viscosity: 
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The non-dimensional shear stress is defined as: 
2
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then: 
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The wall shear stress 
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)1(


hx  is plotted at various 

values of Re and α, as shown in Figure 10. It should be noted 

that the shear stress increases over the length of the wall 

surface. Moreover, when α decreases, the wall shear stress 

increases as the wall is expanding (α>0), but it increases as α 

increases as the wall is contracting (α<0). 

 

 

 
(a)                                                                    (b) 

 

   
(c)                                                                   (d) 

 

Figure 9. The pressure distribution (a-d) at various values of Re over a rate of α 
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Figure 10. Shear stress over a range of α and different values of Re 

 

 

6. CONVERGE ANALYSIS OF YTHPM 

 

In this part, which is concerned with convergence analysis, 

we will study the convergence for the analytical approximate 

solution (35) obtained by using the new method (YTHPM) and 

as follows: 

Definition: Assume that X1 is the Banach space and 

𝑁:𝑋1 →ℝ is a nonlinear mapping where ℝ is the real numbers. 

Then, the sequence of the solutions can be written in the 

following form: 
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where, N satisfies the Lipschitz condition such that ∀𝛾 ∈ℝ. 
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Because N satisfies the Lipschitz condition and 
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From (41), we have: 
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By using the triangle inequality, we get: 
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when, 𝑛 → ∞ we have ‖𝑊𝑚 −𝑊𝑛‖ → 0 , then Wm is the 

Cauchy sequence in Banach space X1. 

Theorem (2): The solution by the new method (YTHPM) 
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khh   converges and is close to the solution problem 

(32-33) if the following property is achieved: 

 

   m
m

WNLhNL 11 lim 



  , where 





0

1 (*)(*) dL . 

 

Proof: For any 𝑊 ∈ 𝑋1 define an operator from X1 to X1, 

ℓ(𝑊) = 𝑊0 + 𝐿−1𝑁(𝑊).  
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Therefore, the mapping ℓ is contractive, and Banach fixed 

point theorem for contractive offers a unique solution for the 
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problem (32-33). Now, we prove that the series solution )(h  

satisfies problem (32-33): 
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From Theorems (1) and (2), the values of the parameter γm 

must be calculated to obtain convergence by using the 

following relationship: 
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Now, by using this definition, we find the convergence of 

the problem as follows: 
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7. CONCLUSIONS 

 

We have proposed in this research a new technique called 

the Yang transform homotopy perturbation method (YTHPM) 

to solve the two-dimensional (2D) incompressible viscous 

fluid flow problems among two slowly expand or contract 

walls. The results which we obtained by using Mathcad.15 to 

solve this problem show that YTHPM is an efficacious method 

with high accuracy to find analytical approximate solutions to 

this problem. Also, we noted that for each level of injection or 

suction, when the wall is expanding (α>0), an increase α lead 

up to the velocity becomes higher close to the center and lower 

near the wall. This happens because the flow becomes larger 

toward the center to compensate the area resulting from the 

expansion of the wall. As a result, the velocity also becomes 

larger close to the center. Also, for all levels of suction or 

injection, if the wall is contracting (α<0), increase α lead to the 

axial velocity becomes low close to the center and high near 

the wall, the reason that the velocity becomes larger close to 

the wall because the flow towards the wall becomes larger. 

Moreover, from the comparison between the new method [4, 

15, 16], we note that this method is effective and powerful, 

also its results agree well with the results of these methods. 

Although there is an agreement between the methods, the new 

technique is preferred. We obtained our results through the 1st 

iteration, but in ref. [4], the results are acquired by the 10th -

order approximation. In ref. [16], results are obtained from the 

4th iteration and in ref. [15] from the 15th iteration. Then, we 

conclude that the YTHPM is an efficient and highly accurate 

method for finding the analytical approximate solution of the 

two-dimensional viscous fluid flow problem among two 

slowly expanding or contracting walls and can be used as well 

to find the analytical approximate solutions for different fluid 

flow problems. 
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