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The reported studies on mixed convection flow problems have been solved purely by 

method of similarity studies. Scaling analysis is an alternate method that can give better 

engineering insight of the problem being investigated. Integral solutions are 

mathematically simpler to handle as the engineering requirement is that of accurate 

solutions only close to the wall. In the present work, scaling and integral solutions are 

discussed for a typical mixed convection flow problem already discussed in literature 

by similarity technique. Scaling method has been demonstrated and is found in good 

agreement with the results obtained from similarity method. The integral solution is 

obtained by deriving the integral form of governing equation and solution is discussed 

for specific case of Prandtl number = 1. The solution obtained by Integral formulations 

is in good agreement with that of similarity method.  
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1. INTRODUCTION

The effect of heat transfer by developing boundary layer of 

a continuous stretching sheet with respect to a given 

temperature, moving in a quiescent fluid medium has been 

more enticed during the last few decades due to its wide 

applications in many manufacturing processes. The 

technologies like hot rolling, wire drawing, glass-fiber, and 

paper production and polymer extrusion and metal spinning. 

The raw material in red hot condition passed through a 

different die and extruded to sheet or wires. The stretching 

thickness and diameter of the wire depend upon the velocity 

of red-hot raw material moving under the die as well as the 

pressure applied, on moving red hot raw material. After the 

desired thickness or diameter obtained, the next set of 

operation is to cool the hot product to get the desired 

characteristics. The outcome product feature mainly depends 

on the factors like heat transfer rate at the continuous 

stretching surface, exponential changing of stretching velocity 

and also the temperature distribution. Extruding the wires or 

thin sheets in a conducting fluid induces a magnetic field. 

Magneto hydrodynamic fluid (MHD) stabilizes the 

temperature distribution to maintain the desired characteristics 

of extruded wire or sheets. Prime importance is the kinematics 

of stretching, and the process of cooling or heating have a 

significant effect on the quality of the final product. After the 

first investigation of Sakiadis [1], several types of research 

examining the cause of flow induced by a surface moving with 

fixed velocity [2, 3] have done. Ali [4] investigated the 

development of a thermal boundary layer based on power-law 

on the stretched surface with suction and injection. Magyari 

and Keller [5] carried out their work based on the exponential 

stretching surface by similarity solutions and compared the 

results with the power-law model. The effect of radiation on 

steady MHD boundary layer flow over an exponentially 

stretching sheet has been carried out by Ishak [6], and found 

that the heat transfer rate enhances with Prandtl number, but 

decline with both magnetic parameter and radiation effect. An 

analysis carried out by Patil et al. [7] to study the unsteady 

mixed convection flow over a moving vertical surface, 

considering heat generation or absorption and concluded that 

unsteadiness is caused due to time-dependent free stream 

velocity as well as stretching velocity and also buoyancy force 

enhances the skin-friction coefficient and local Nusselt 

number. 

The MHD fluid discovers applications in many types of 

stretching sheet issues. However, the study of the magnetic 

effect on the heat transfer process is more important. Devi and 

Thiagarajan [8] performed similarity solutions to investigate 

the flow and heat transfer behavior over a stretching plate 

under the impact of a non–linear transverse magnetic field. 

Mukhopadhya [9, 10] studied the characteristics of boundary 

layer flow and heat transfer on a porous exponential stretching 

surface in the effect of the magnetic field by considering 

velocity slip and thermal and concluded that horizontal 

velocity decreases with increasing slip parameter as well as 

with increasing magnetic effect and temperature increasing 

with increasing value of the magnetic effect. Costa [11] 

performed a time scale-based analysis for studying laminar 

convective phenomena and concluded that the method is very 

effective to compare the studied situation and obtained 

momentum and thermal boundary layer thickness. 

Pal [12] has been carried out a similarity solution to 

investigate the mixed convection heat transfer on an 

exponentially stretching sheet with an exponential temperature 

distribution under the influence of the magnetic field and 

internal heat generation or absorption. The application of 

powerful analytical techniques like scaling and integral 

approach has not been reported so far. This study deals with 

the application of scaling and integral approach for mixed 

convection heat transfer [13] on an exponential stretching 

surface and the obtained results comparing with similarity 

solutions reported by Pal [12]. The phenomenon of laminar 

convective flow can be solved using analytical methods such 
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as scale analysis, similarity analysis and integral analysis. 

While the similarity solution is purely mathematical, the scale 

analysis and integral solutions are based on physical reasoning 

and mathematical approximations [13]. 

 

 

2. PROBLEM DESCRIPTION 

 

A two-dimensional steady flow of an electrically 

conducting with MHD and incompressible viscous fluid over 

an impermeable vertical surface shown in Figure 1 is 

stretching with velocity uw varying exponentially with 

reference velocity uo and a given temperature distribution Tw. 

The X-axis is considered alongside the elongating of the plane 

wall and as well as towards the direction of motion. The Y-

axis is perpendicular to the X-axis and it is along the direction 

of applied magnetic field Bo. It is assumed that the induced 

magnetic field of the flow is small in comparison with the 

applied magnetic field which correlates to negligible magnetic 

reynolds number.  

 

 
 

Figure 1. Schematic representation of heat transfer over an 

exponential stretching sheet with mixed convection boundary 

condition 

 

The general continuity, energy and momentum equation 

with the consideration of Boussinesq approximation can be 

expressed as [12]: 
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The boundary condition are considered as follows [12]: 

 

( ), 0, ( ),   0w wu u x v T T x at y= = = =   (4) 

 

0,  as u T T y= → →   (5) 

 

The stretching velocity uw(x) and the exponential wall 

temperature distribution Tw(x) are defined as [12]: 
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where ‘To’ and ‘a’ denotes the temperature distribution 

parameters on the exponentially stretching wall. 

The parameters are non-dimensionalized as below [12]: 
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3. SCALING ANALYSIS 

 

Applying Scaling transformation to the Eq. (1) and 

considering along 𝑥 → 𝐿 and 𝑦 → 𝛿 or 𝛿𝑇. 
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For two dimensional flows the x and y convective time 

scales are of same order of magnitude. Eq. (9) will be utilized 

for the flow analysis in the present work. 
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3.1 Forced Convection 

 

3.1.1 Velocity Boundary layer 

Moving magnetic force term to left hand side and neglecting 

the effect of buoyancy the momentum Eq. (3) can be written 

as: 
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Referring to the mass continuity scaling Eq. (9) we conclude 

that the two inertia term are of same order of magnitude. 
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Using scaling rule and scaling transformation Eq. (11) 

becomes: 
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Dividing the Eq. (13) through friction scale 
𝜈𝑢𝑤(𝑥)

𝛿2  and using 

scaling rule, inertia ~ friction force. 
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~ L Re e
−

  (15) 

 

where, 𝑅𝑒 =
𝑢0𝐿

𝜈
 is Reynolds number. 

For purely forced convection exponential induced magnetic 

force as stretching surface passing through electrical 

conducting quiescent fluid is balanced by frictional force due 

to viscous shear between stretching surface and quiescent fluid. 

(Induced magnetic field ~ friction force). 
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where, 𝐻𝑎 = (
𝜎𝐵0

2𝐿2

𝜈𝜌
)

1

2
 is Hartmann number. 

Comparing the Eq. (15) and Eq. (19): 
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where, M is effect of magnetic field: 

 
2 Hartmann number

Reynold 
M= =

number

Ha

Re
 

 

From the Figure 1 W.K.T δT<<δ or Pr >>1 and it is mixed 

convection problem. So both natural and forced convection 

took place. 

 

3.1.2 Thermal boundary formation by forced convection i.e. 

(𝛿𝑇)F.C 

For thin thermal boundary layer δT<<δ of considerably 

greater scope for fluid in the class of Prandtl number of order 

1(example: air) or greater than 1(example: water or oil). 

Thermal boundary layer thickness is assumed smaller than the 

velocity boundary layer thickness. Velocity inside the thermal 

boundary layer is less than stretching velocity of wall surface 

uw(x). 
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Once again referring to the mass continuity, scaling Eq. (9) 

becomes: 
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For δT<<δ, the Nusselt number vary as: 

 
1 1

23 2 eX /

uN ~ Pr Re  (𝑃𝑟 ≫ 1) (26) 

 

3.2 Free convection 

 

3.2.1 Thermal boundary layer formation by natural convection 

Consider the governing equations of continuity, momentum, 

and energy. In the steady-state, the heat conducted from the 

wall surface into the fluid is swept and move upwards as an 

enthalpy stream. Eq. (27) signifies a balance between 

longitudinal convection and transverse conduction (dominant 

terms for free convection from energy Eq. (3)). 

 

2

.
,

T T

conductionconvection

T T T
u v

L



 

  
  

(27) 

 

where, oΔT=T -T is the scale of the variable T-T . 

In the expression (14) ( ) ( )Tu ΔT and v ΔT δL  same order 

of magnitude, by scaling rule [10] we can write it as, 
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By considering Boussinesq approximation and retaining the 

dominant term for free convection in the momentum Eq. (2). 

After applying the scaling rule and scaling transformation [13] 
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Referring to mass conservation scaling (4) signifies that the 

two inertia terms are of order, 2 ( )wu x L the buoyancy force is 

the dominant term because, without it, there would be no free 

convection. Dividing the expression (30) through the 

buoyancy scale ( ) 2

0g.β T -T eaX


and substituting Eq. (29) to 

eliminate vertical velocity scale ( )wu x , we can write: 
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where, 
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For higher Pr fluid, i.e., Pr 1 . 
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The velocity boundary layer (δ) is driven by a much thinner 

thermal boundary layer (δT), and its inertia constrains it. Thus 

momentum Eq. (2) signifies a balance of inertia and friction 

force in the layer of thickness δ, 
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After eliminating the vertical velocity scale 𝑢𝑤(𝑥)between Eq. 

(37) and (35) yields 
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3.2.2 Mixed convection heat transfer 

If the medium is natural convection, the thermal layer 

thickness between heat-exchange entities is of order as 

quiescent fluid provision the buoyant wall jet of thermal 

boundary(𝛿𝑇)𝑁.𝐶 then from Eq. (34). 
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On the contrary if the medium is forced convection the wall 

and fluid reservoir are serrated by a thermal layer thickness of 

order (Eq. (24)). 
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The smaller of the two distances decides the type of 

convection mechanism. Because the wall dissipate heat to the 

nearby heat sink (faster mixing), the criterion for 

transformation from forced to free convection is  

If (𝛿𝑇)N.C>(𝛿𝑇)F.C governed by natural convection. 

If (𝛿𝑇)N.C<(𝛿𝑇)F.C governed by forced convection. 

 

For Pr> 1 
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where, 
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To establish the Buoyancy effects on a forced convection 

flow, the main parameter to be considered is the term 
2

1Gr Re . This term is essentially the ratio of buoyancy scale 

to the inertia scale. The buoyancy force arises from the density 

difference as a result of a temperature gradient in the fluid 

( )2 22
1 

-ax
X

eGr Gr .e .e R= . The problem of ascertaining the 

forced-convection effect on a purely free-convection flow, on 

the contrary, is found to depend upon the parameter 2

1

1Re Gr  

[14]. It is worth knowing that the significant governing 

parameter changes when proceeding from the purely forced 

convection flow as counter approaching from the purely 

natural convection flow. For the forced convection process, 

the parameter is 2

1Gr Re  in contrast for the free convection 

mechanism, the parameter is 2

1

1Re Gr  [14]. The purpose of 

this scaling approach is to know how the heat transfer and skin 

friction effected by mixed flow regime. 

Applying scaling transformation, we can write energy Eq. 

(3) as: 
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Claiming flow kinetic energy is balanced by enthalpy 

difference: 
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Substituting exponential varying of parameters like 

temperature and velocity with the reference temperature and 

velocity in the Eq. (42) and simplifying: 
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where, 2

0 0 ( ) / ( ( - ))PEc u c T T= is Eckert number, further 

simplifying the Eq. (44). 
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We can substitute the value of 2
aX

e  from Eq. (8) into Eq. 

(46): 
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  (47) 

 

The Internal heat generation/absorption by stretching 

surface lead to a change in enthalpy of quiescent fluid. In the 

Eq. (41) Claiming internal heat generation/absorption and 

enthalpy change are of same order of magnitude [13]. 
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where, 
2

λ= 
p

QL

c Re
 dimensionless heat generation/absorption 

parameter [15]. 

By substituting the value of ex from the Eq. (8) into the the 

Eq. (51), we can write: 
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The Eq. (52) signifies heat generation/absorption parameter 

is a function of stretching velocity of vertical plate. The 

physical insight of this study is the local skin friction acting on 

the surface in contact with the ambient fluid of constant 

density [15], by scaling transformation [13], which can be 

defined as: 
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Substituting the Eq. (14) in the Eq. (54) and simplifying: 

 

( )
2

2 1 2

2

/

wx w x~ u x Re
L


   (55) 

 

Now using the Eq. (15) we can further simplify the Eq. (55): 
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The non-dimensional skin friction coefficient Cf, can be 

written as: 
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Now substituting the Eq. (56) in the Eq. (57) and 

simplifying by scaling transformation, the new Eq. (58) 

signifies non-dimensional skin friction coefficient same scale 

of magnitude of local Reynolds number based on surface 

velocity. 
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4. INTEGRAL SOLUTION 

 

As a part of this work, an attempt to solve a mixed 

convection boundary layer flow problem having a constant 

magnetic field, internal heat generation/absorption, viscous 

dissipation and buoyancy effect is made. The problem is 

solved using an integral technique [15]. The thermo-physical 

properties of the fluid in the flow domain are assumed to be 

constant except density. The conduction in axial direction is 

neglected. By applying the first principle the momentum and 

energy equations can be derived using integral approach.  

 

4.1 Integral formulation of momentum equation 

 

Considering an element of dimension dx×δ across the 

boundary layer along x-direction. Figure 2 depicts total forces 

acting on a differential fluid element. 

 

 
 

Figure 2. Forces acting on a differential element dx×δ 

 

The applying Newton’s second law to the differential 

element yields, ( ) ( )x x xF M out M in = − .  

where,  

∑Fx = sum of all the x-direction (Fx) forces acting externally 

on the element 

Mx(in) = momentum of entering fluid element in x-direction  

Mx(out) = momentum of leaving fluid element in x-direction 

Shear stress at the wall, 
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Magnetic force on the fluid, 
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Momentum of entering fluid element in x-direction, 
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By substituting Eq. (59), (60), (61) & (62) into Eq. (63), 

gives: 
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Using Boussinesq approximation for a relation between 

temperature and density changes, the final integral form of the 

momentum equation is expressed as follows: 
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4.2 Integral formulation of energy equation 

 

The energy balance on the differential element is shown in 

Figure 3. 

 

 
 

Figure 3. Energy balance on the differential element dx×δ 
 

22
'''

0 0 0

+    dx
T T T

c e

x

j u
dE dE q dy dx dy dx dy

y

dE
dx

dx

  




  
 + + + −     

=

  
  (66) 

where, energy entering the element due to conduction, 

 

( ,0)
c

T x
dE k

y


= −


  

(67) 

 

Energy entering the outer edge of the boundary layer, 

 

0

 dy dx
T

e p

d
dE C T u

dx



=    (68) 

 

Current density, 

 

0j B u=   (69) 

 

Energy entering the control volume,  

 

0

 dy
T

x pE C uT



=    (70) 

 

Therefore, the integral form of energy equation is 

 
22

20

0 0 0

0

( )( ,0)

( )

T T T

T

p p p

BQ T TT x u
dy u dy dy

y C C C y

d
u T T dy

dx

  



 


  




  − 
 − + + −      

= −

  



  (71) 

 

4.3 Integral solution 

 

Consider the problem stated in section scaling part. In this 

section, both the linear as well as quadratic profiles are 

considered for both velocity and temperature. In this mixed 

convection problem, the thermal boundary layer is assumed to 

be equal to the hydrodynamic boundary layer for simplicity. 

However, the momentum and energy equations are solved 

separately.  

 

4.3.1 Linear velocity and temperature profile 

Boundary conditions considered for a case of linear velocity 

profile are as follows, 0( ,0)
x

L
wu x U U e= = , ( , ) 0u x   .  

On simplifying, linear velocity profile is given by: 
 

0 1
x

L
y

u U e


 
= − 

 
  (72) 

 

Boundary conditions considered for a case of linear 

temperature profile are as follows: 

 

( ) 2
0( ,0)

ax
LT x T T T e = + − , ( , )TT x T  . 

 

On simplifying, linear temperature profile is given by: 

 

2
0( ) 1

ax
L

T

y
T T T T e


 

 
= + − − 

 
  (73) 

 

Upon substituting the linear temperature and velocity 

profiles into the Eqns. (64) and (71) and integrating, 
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2
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0

( )
2 2

3

x ax x
L L L

x
L

B
U e g T T e U e

d
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  
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 





 
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 

 
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  (74) 

 

02 2
0

2 2 2
2 2

0 0 0

1
2

0 0

( )
( )

2

1

3

( )
3

ax ax
TL L

T p

x x
TL L

p p T

x a
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Q T T
T T e e

C

B U U
e e
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d
U T T e
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

 

 

  







 
+ 

 


− 
− + 

 
 
 + −
 
 

 
= −  

 
 

  (75) 

 

Required non-dimensional numbers are given as follows: 

Hartmann Number, 

1
2 2 2
0B L

Ha




 
=  
 

. 

Eckert Number, 
2

0

0( )

U
Ec

Cp T T

=
−

. 

Grashoff Number, 
3

0

2

( )g T T L
Gr




−

= . 

Reynolds Number, 0U L
Re


= . 

Prandtl Number, Pr



= . 

Dimensionless heat generation or absorption parameter, 
2

Rep

QL

C



= . 

Non-dimensional hydrodynamic boundary layer, 
L


 = . 

Non-dimensional thermal boundary layer, T

T
L


 = .  

Dimensional less parameters, 
x

x
L

= , 
y

y
L

= .  

On simplification using Eqns. (74) and (75) and the 

following ordinary differential equations (ODE) are obtained, 

 

( )
2

22
2

2

3 3 3
2

2 2

a xx xd Ha Gr
e e e

Re ReRed x


 

−− − 
+ − − = 
 

  (76) 

 

( ) ( )

( )

2
21 1

2 2

1
2

3
1

2 2

3 3

a ax xT

T T

a xx

d a Ha Ec
e e

Red x

Ec
e e

Pr Re Re


  

− −

−−

  
+ + − −   
  

 
= − 
 

  (77) 

 

4.3.2 Quadratic velocity and temperature profile 

Boundary conditions considered for a case of quadratic 

velocity profile are as follows: 

 

0( ,0)
x

L
wu x U U e= = , ( , ) 0u x   , 

( , )
0

u x

y





. 

 

On simplifying, the quadratic velocity profile is given by, 

 

2

0 2
1 2

x
L

y y
u U e

 

 
= − + 

 
  (78) 

 

Boundary conditions considered for a case of quadratic 

temperature profile are as follows: 
 

( ) 2
0( ,0)

ax
LT x T T T e = + − , ( , )TT x T  , 

( , )
0TT x

y





. 

 

On simplifying, the quadratic temperature profile is given 

by, 

 
2

2
0 2

( ) 1 2
ax

L

T T

y y
T T T T e

 
 

 
= + − − + 

 
  (79) 

 

After substituting the quadratic velocity and temperature 

profiles into the Eq. (64) and Eq. (71) and integrating, 

 
2

02
0 0 0

2
2

0

( )
3 3

5

x ax x
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x
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 

 
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  (80) 
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
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  







 
+ 

 


− 
− + 

 
 
 + −
 
 

 
= −  

 
 

  (81) 

 

On further manipulating Eq. (80) and Eq. (81), we obtain 

the following ODEs in non-dimensional form, 

 

( )
2

22
2

5 5 10
2

3 3

a xx xd Ha Gr
e e e

Re Red x


 

−− − 
+ − − = 
 

  (82) 

 

( ) ( )

( )

2
21 1

2 2

1
2

5
1

2 3

10 4

a ax xT

T T

a xx

d a Ha Ec
e e

Red x

Ec
e e

Pr Re Re


  

− −

−−

 
+ + − − 
 

 
= − 
 

  (83) 

 

By substituting 2 2 or Tz z = = , Eqns. (76), (77), (82) and 

(71) are further simplified into following form: 

 

dz
Pz Q

dx
+ =   (84) 

 

where, P and Q are functions of ‘x’. 

The general solution to Eq. (83) is given by: 

 

 .  . .   z I F Q I F dx C = +   (85) 

 

where, 
 dx

I.F =e
P . 

The solution for both non-dimensional hydrodynamic 

boundary layer and thermal boundary layer over the 
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exponentially stretching surface can be expressed as an infinite 

series. The series solutions are given by: 

 

( )
( )

( )
( )

2
2

2

2
2

2
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3

2
2
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3
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 
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 
 −
 

 
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 
 −
 

 
 
 +
 =
 
 
 
 
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  (86) 
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( )

( )
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2
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2

2
2
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 
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    
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(88) 
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( )( ) ( )( )

1
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4
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2
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e

Ha Ec
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 
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 =

 
 
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    
− −    
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

  
(89) 

 

The integrations in the Eqns. (86)-(89) have been performed 

after doing a series expansion of the exponential term/s and the 

same is computed using a computer code. The integration 

constants have been evaluated using the following boundary 

conditions. 

 

(0, ) 0y = , (0, ) 0T y = . 

 

 

5. RESULTS AND DISCUSSION 

 

5.1 Scaling analysis 

 

The following are the comparison of results obtained in the 

present study (scaling analysis) and similarity solutions 

reported by Pal [12]. 

1. Velocity distribution decreases with increasing value of 

Hartmann number [12]. 

i.e. Scaling analysis approach predict, similar variation from 

Eq. (10): 
-1~ ~w

w w

uv v v
Ha

L u L u




= = . 

2. Decreases in velocity as X value increment in the 

boundary layer however, significant nearby the stretching wall 

[12]. 

i.e. Scaling analysis approach outcome, the same relation 

from Eq. (9): 
1

2 2 
- - X

w

w

uv v
 ~ ~ Re e

L u
= .  

3. The value of Eckert number (𝐸𝑐) is directly influence to 

upsurge the temperature in flow region [12]. 

i.e Scaling analysis approach concludes the same relation 

from Eq. (47), as Eckert number (Ec) increases the 

temperature in the flow region increases. 

( ) 2

0

w X
T x -T Ha

~ Ec e
T -T Re





  

4. The thermal boundary layer thickness inverse function of 

𝑎, X and Gr [12]. 

i.e Scaling analysis approach concludes the same relation 

from Eq. (34): 
1 1

8 84 4
1   

-aX -aX- -

T LRa e L( Gr Pr) e . 

5. The effect of Hartmann number (𝐻𝑎) is direct function of 

the temperature distribution [12]. 

i.e Scaling analysis approach concludes the same relation 

from Eq. (47): 
( ) 2

0

w X
T x -T Ha

~ Ec e
T -T Re





. 

6. Skin friction coefficient directly proportional to the 

temperature distribution parameter (𝑎) [12]. 

Form scaling analysis approach concludes the same relation 

from Eqns. (46) and (58):  
2

2aX XHa
 e ~ Ec e

Re
, 

1
2

xf ReC
−

, 
1

2 2
aX

xRe e
−

 , 2~
aX

fC e . 

7. The local Nusselt number increases with increment the 

magnetic field force [12].  

From scaling analysis approach concludes the same relation 

from Eqns. (21) and (26): 

1 1
23 2 eX /

uN ~ Pr Re , 
2

XHa
e

Re
= , 

1
3 Nu ~ Ha Pr . 

8. The result of increasing the scale of Prandtl number (Pr) 

is to increase Nusselt number (Nu) [12].  

Scaling analysis approach concludes the same relation from 

Eq. (26): 
1 1

23 2
X

Nu Pr R ee .  

 

5.2 Integral solution 

 

 
 

Figure 4. Comparison of local Nusselt number variation 

along non-dimensional ‘x’ with different ‘a’ value 

 

An analytical study of the convective heat transfer 

coefficient for an exponentially continuous stretching surface 

in a steady flow region with exponential temperature variation 

at the wall is carried out. The study has been conducted by 

considering the influence of buoyancy force, magnetic field, 

internal heat generation/absorption and viscous dissipation 

effects. The analysis is restricted to Pr=1. Effect of parameters 

such as Grashoff number, Ha2/Re, Eckert number and ‘a’ on 
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local Nusselt number and coefficient of friction (Eq. (66)) over 

the exponentially stretching surface has been analyzed. A 

comparative study of the effect of ‘a’ on local Nusselt number 

have been shown in Figure 4. 

The Nusselt number obtained from the present integral 

method and similarity solution results of Dulal Pal [12] are 

compared in Figure 4. There is an exponential upsurge in the 

Nusselt number along the non-dimensional distance is 

observed from the present method. At any ‘x’, with the 

increase in ‘a’ shows, there is a heat transfer from the surface 

to the ambient. The difference in the Nusselt number from the 

present method with that of Dulal Pal [12] can be attributed to 

the solution method used in the corresponding study. 

 

2

4

1

2

x

wx

f

L
w

e
C

Re
U





−−
= =   

(90) 

 

Skin friction coefficient results presented in Table 1 shows 

better agreement with the results of Dulal Pal [12] for all ‘a’ 

value. Quadratic velocity and temperature profile assumption 

result in less error in the calculation of skin friction coefficient 

that the linear profile assumption. 

 

Table 1. Comparison of coefficient of friction variation with ‘a’ at Pr=1, Gr=0.5×Re2, Ha=0.2, and 𝑥=0.5 

 

a 
Cf×Re0.5 % Error 

Pal [9] Quadratic profile Linear profile Quadratic profile Linear profile 

-1.5 -1.14 -1.19 -1.10 4.31 -3.24 

-1.1 -1.16 -1.18 -1.09 1.69 -5.95 

-0.5 -1.17 -1.16 -1.08 -0.75 -8.38 

0.0 -1.17 -1.14 -1.07 -2.24 -9.80 

1.0 -1.16 -1.11 -1.03 -4.46 -11.74 

 

 

6. CONCLUSION 

 

Scaling and Integral solutions have been applied to the 

problem of flow over a flat vertical plate with mixed 

convection boundary condition. It has been demonstrated via 

scaling that the mathematical rigor required is less and also 

gives better engineering insight into the problem. The solution 

obtained by scaling analysis is in good agreement with that of 

similarity method reported in the literature. Integral 

formulation of the mixed convection problem is derived and 

the solution is obtained for a specific case of Pr = 1. 

Perturbation analysis was used to get solution of this problem. 

The results obtained from the integral solution are in good 

agreement with that of similarity solution. The advantage of 

using the integral solution is the reduction in mathematical 

rigor required to solve the problem. 
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NOMENCLATURE 

 

a 
Temperature distribution parameter in the stretching 

wall 

B0 Applied magnetic field perpendicular to the sheet 

Cf Local skin friction coefficient 

cp Specific heat of fluid  

Ec Eckert number 

Gr Grashoff number 

g Gravitational acceleration 

Ha Hartmann number 

L Characteristic length of the vertical sheet 

Nu Nusselt number 

Pr Prandtl number 

Q Internal heat generation or absorption  

Rex Local Reynolds number 

T Fluid temperature 

T∞ Ambient temperature 

T0 Reference temperature 

Tw Wall temperature 

u Fluid axial velocity 

u0 Reference velocity 

uw Vertical surface velocity 

V Fluid transverse velocity 

X Non-dimensional co-ordinate along the sheet 

x,y 
Co-ordinates alongside and perpendicular to the sheet 

respectively 

 

Greek symbols 

 

α Thermal diffusivity 

β Thermal expansion coefficient 

δ Hydrodynamic boundary layer thickness 

δT Thermal boundary layer thickness 

𝛿  
Non-dimensional hydrodynamic boundary layer 

thickness 

𝛿𝑇  Non-dimensional thermal boundary layer thickness 

λ 
Non-dimensional heat generation or absorption 

parameter 

μ Fluid viscosity 

v Kinematic viscosity 

ρ Fluid density 

𝜏𝑤𝑥  Local shear stress 

σ Electrical conductivity of fluid 

 

Subscripts 

 

x Local 

w Condition on stretching surface 

o Reference 

∞ Ambient condition 
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