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An inverse problem for a stationary heat transfer process is studied for a totally isolated 

bar on its lateral surface, of negligible diameter, made up of two consecutive sections 

of different, isotropic and homogeneous materials. At the left boundary, a Dirichlet type 

condition is imposed that represents a constant temperature source while a Robin type 

condition that models the heat dissipation by convection is considered at the right one. 

Many articles in the literature focus on thermal and stress analysis at the interface but 

no one is dedicated to the estimation of the contact point location between the two 

materials. In this work, it is assumed that the interface position is unknown. A technique 

to determine it from a unique noisy flow measurement at the right boundary is 

introduced. Necessary and sufficient conditions are derived in order to obtain the 

estimation of the interface point from a heat flux measured at the right boundary. 

Numerical solutions are obtained together with an expression for the estimation error. 

Moreover, an elasticity analysis is included to study the influence of data errors. The 

results show that our approach is useful for determining the location of the materials 

interface. 
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1. INTRODUCTION

Heat transfer problems in multilayer or solid-solid interface 

materials have been studied in recent years due to the multiple 

and different applications that have been found in science and 

engineering [1].  

These problems have direct applications in different 

industries, among the most important, the metallurgical [2], 

the technological and electronic [3], the automotive [4], 

aerospace [5] and aviation [6].   

The advancement of technology requires materials with 

particular thermal, electrical, magnetic, acoustic and optical 

properties, for this reason the interface properties of different 

combinations of materials have been studied. Among the most 

studied are the following pairs Al-Cu [7], Cu-Cu [7, 8], Cu-Al 

[9], Pb-Al [2]. Other materials are considered [6, 8, 10-15]. 

These works focus on tension [7], the adhesion [16], thermal 

resistance [8, 17], the corrosion [6], electrical conductivity [2] 

and thermal conductivity [12]. Many properties have been 

studied at the interface of different materials but there are no 

techniques in the literature that allows to determine the contact 

point of perfectly joined materials when it is unknown.  

In this work, we consider the stationary problem of heat 

transfer of a bar of negligible diameter and known length, 

totally isolated on its lateral surface, composed of two 

different, isotropic and homogeneous materials. It is assumed 

that the temperature on the left boundary of the bar is 

controlled by a thermal source that is maintained at a constant 

temperature, the thermal resistance at the interface is neglected 

and the right edge is left free, giving rise to the phenomenon 

of convection. 

From the analytical solution of the forward problem, the 

interface position is estimated by means of a unique heat flux 

measurement at the right edge of the bar. Necessary and 

sufficient conditions are derived in order to obtain the 

estimation of the interface point. 

In order to study the local influence of the flow 

measurement in the estimation, an elasticity analysis is 

performed. 

Numerical examples considering different situations are 

included and commented to illustrate the results for the 

estimation technique proposed here. 

2. MATHEMATICAL MODEL

In this section, a mathematical model for the interface 

problem is stated and an analytical expression for the solution 

is found. Furthermore, the analytical solution is shown to be 

consistent with the one for a homogenous bar, and temperature 
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profiles are shown for particular cases.  

 

2.1 Model 

 

The steady-state heat transfer problem for a bar of known 

length, negligible diameter, fully insulated on its lateral 

surface, composed of two consecutive, different, isotropic and 

homogeneous materials, can be modeled by [18, 19]: 

 

'' 0,    0 ,u x l=  
 (1) 

 

'' 0,    ,u l x L=  
 (2) 

 

where, u (℃) represents the temperature of the bar, L (m) the 

length of the bar and l (m) the location of the contact point. It 

is assumed that the section of the bar made with a material A 

has length l and the section of the bar made with the material 

B has length L-l. 

Thermal resistance is assumed to be neglected; hence, 

conditions of equal temperature and flow are imposed at the 

interface [19], that is  

 

( ) ( ),u l u l
+ −
=

 
(3) 

 

'( ) '( ),
B A
u l u l 

+ −
=

 
(4) 

 

where, κA, κB (Wm-1℃-1) represent the thermal conductivities 

of the materials A and B, respectively.  

Boundary conditions are given by a source with constant 

temperature on the left boundary and convective condition on 

the right one [19]: 

 

( ) ,    0,u x F x= =
 (5) 

 

'( ) ( ( ) ),    ,
B a
u x h u x T x L = − − =

 
(6) 

 

where, F(℃) represents the source at constant temperature, 

Ta(℃) the room temperature and h (Wm-2℃-1) the convection 

heat transfer coefficient. In this work it is assumed that F>Ta. 

Figure 1 outlines the problem of interest.  

 

 
 

Figure 1. Scheme for the mathematical model 

 

2.2 Analytical solution of the forward problem 

 

The problem to be solved is described by Eqns. (1)-(6).  

From expressions (1)-(2) it follows that 

 

( ) ,    0 ,u x a bx x l= +  
 (7) 

 

( ) ,    ,u x c dx l x L= +  
 (8) 

 

where a, b, c and d are constants to be determined from the 

conditions given in (3)-(6) as follows: 

 

,a bl c dl+ = +  (9) 

,
B A
d b =

 (10) 

 
,a F=  (11) 

 

( ).
B a
d h c dL T = − + −

 
(12) 

 

Eqns. (9)-(12) leads to: 

 
,a F=  (13) 

 

( )
,B ah T F

b




−
=

 
(14) 

 

( )( )
,B A alh T F

c F
 



− −
= +

 
(15) 

 
( )

,A ah T F
d





−
=

 
(16) 

 

where, 

 

( ) .A B A B AhL hl     = + + −
 (17) 

 

Replacing expressions (13)-(17) in (7)-(8) the analytical 

solution of the problem of interest is obtained, which is given 

by: 

 

( )
( ) ,    0 ,B ah T F

u x F x x l




−
= +  

 
( )( ( ) )

( ) ,    .a B A Ah T F l x
u x F l x L

  



− − +
= +  

 

(18) 

 

2.3 Model consistency 

 

In the particular case where the bar is made of only one 

material (κA=κB=κ) the solutions given in Eqns. (18) are 

reduced to: 

 

( )
( ) ,    0 ,ah T F

u x F x x l




−
= +  

 
(19) 

 

( )
( ) ,    ,ah T F

u x F x l x L




−
= +  

 
(20) 

 

or, equivalently,  

 

( )
( ) ,    0 .ah T F

u x F x x L




−
= +  

 
(21) 

 

The solution given in (21) coincides with the solution to the 

stationary heat transfer problem with the same boundary 

conditions imposed for a homogeneous bar [19]. 

 

2.4 Examples 

 

In order to illustrate the temperature profiles for the problem 

described by (1)-(6), few examples are considered, where the 

materials involved and the contact points are different for each 

case. In all of them, it is assumed a bar of L=1 m with 

F=100 ℃, Ta=25℃ and h=10 Wm-2℃-1. The average thermal 
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conductivity values used for the examples were obtained from 

[4] and they are included in Table 1. 

 

Table 1. Thermal conductivity of different materials 

 
Material Symbol 𝜿 (Wm-1℃-1)   

Aluminium Al 204 

Cupper Cu 386 

Iron Fe 73 

Silver Ag 419 

Lead Pb 35 

Magnesium Mg 156 

 

In Figure 2, four plots are shown corresponding to Al-Cu 

(l=0.3m and l=0.5m) and Cu-Al (l=0.3m and l=0.5m) for a bar 

of length L=1m. When the interface is in the middle of the bar 

(l=0.5m) the relative location of the two materials (Al-Cu or 

Cu-Al) makes no difference on the temperature value reached 

on the right boundary, which, in this case, achieves 97.25℃. 

This observation is valid for any pair of materials whenever 

l=L/2.  

 

 
 

Figure 2. Temperature for different materials 

 

 
 

Figure 3. Temperature for different materials 

 

In Figure 3 you can see the differences in the temperature 

profiles in three particular cases: κA<κB (Fe-Cu), κA>κB (Ag-Pb) 

and similar values for κA y κB (Al-Mg). This results are 

consistent with the temperature gradients given in Eqns. (14) 

and (16). 

3. ESTIMATION OF THE POINT OF CONTACT 

 

In this section, the main objective of this work is developed. 

Under the conditions given by Eqns. (1)-(6) the contact point 

position (x=l) is estimated using a noisy flow data taken at x=L. 

In addition, the necessary and sufficient conditions for the 

estimation are provided and a bound is given for the estimation 

error.  

 

3.1 Estimation of the interface location 

 

By definition, the thermal flux q at x=L is given by the 

following expression [18]: 

 

'( ),    .Bq u x x L= − =
 (22) 

 

From Eq. (18) along with (22) the following expression of 

q is obtained for the particular problem addressed in this work.  

 

( )

( )

B A a

A B A B A

h F T
q

hL hl

 

    

−
=

+ + −
 

(23) 

 

then, the formula for the parameter l is obtained from Eq. (23) 

as: 

 

1aA B

B A B

F T L
l

q h

 

  

 −
= − − 

−   . 

(24) 

 

Therefore, the estimate 𝑙 of the contact point as a function 

of the flow measurement 𝑞
∧
 at x=L is expressed as: 

 

1ˆ ,
ˆ

aA B

B A B

F T L
l

q h

 

  

 −
= − − 

−    

(25) 

 

where, it is assumed that: 

 

ˆ ,q q − 
 

(26) 

 

where, ε represents the noise level in the data, which, in 

practice, it is easily determined from the error in the 

measurement instruments used. 

Note that the estimation of l only depends on the flow 

measurement and the parameters of the problem. 

 

3.2 Necessary and sufficient conditions 

 

There are necessary and sufficient conditions for the 

estimation of the interface point. Regardless of the noise in the 

measurement of q , the value of l̂ must satisfy 

 
ˆ0 ,l L   (27) 

 

or, equivalently, from Eq. (25) 

 

1
0 .

ˆ

aA B

B A B

F T L
L

q h

 

  

 −
 − −  

−    

(28) 

 

This expression imposes conditions on the values of q̂ . To 

find these conditions, two cases are studied. 
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Case 1 (κA>κB): Since 0<κB-κA, from (28) it results 

 

( ) ( )
ˆ ,A a B a

A B

h F T h F T
q

Lh Lh

 

 

− −
 

+ +
 

(29) 

 

Case 2 (κA<κB): Now, 0>κB-κA, and from (28) it results 

 

( ) ( )
ˆ .B a A a

B A

h F T h F T
q

Lh Lh

 

 

− −
 

+ +
 

(30) 

 

From Eqns. (29)-(30) arise the following necessary 

condition for the estimation of the contact point given by 

 

( ) ( )
ˆm a M a

m M

m M

h F T h F T
q q q

Lh Lh

 

 

− −
=   =

+ +
 

(31) 

 

where,  

 

   min , , max , .m A B M A B     = =
 

(32) 

 

Remark: Inequalities (31) give us a necessary and 

sufficient conditions for the estimation of the interface point 

l(0<l<L).  

 

3.3 Error estimate 

 

Assuming that the measured flow q̂  satisfies the conditions 

given by the expressions (26) and (31)-(32), an analytical 

bound for the error in the estimation of the contact point 

follows for 𝐾 = 𝐾(𝑞̂) such that: 

 

ˆ .l l K− 
 

(33) 

 

By replacing the expressions (24)-(25) in (33), the left side 

hand becomes: 

 

ˆ ˆ
ˆ

aA B

B A

F T
l l q q

qq

 

 

−
− = −

−
 

(34) 

 

From here and (26), it follows that a bound can be chosen 

according to  

 

.
ˆ

A B

B A

F Ta
K

qq

 


 

−
=

−
 

(35) 

 

Note that the bound K could becomes very large when the 

materials have similar thermal conductivities, i.e. κA-κB≈0  

 

 

4. LOCAL DEPENDENCE OF THE PARAMETER 

WITH RESPECT TO THE DATA 

 

Eq. (25) indicates that the estimated value for l depends on 

the parameters of the problem and on the measured flow 𝑞̂. 

There are some tools that helps to study the influence of data 

𝑞̂ on the estimated parameter l̂. Some of the most useful ones 

are the sensitivity [20] and the elasticity analysis [21]. In this 

work, the latter one is applied. 

 

4.1 Elasticity 

 

This technique is widely used in economics. It provides the 

percentage error in the estimated parameter for 1 % error in a 

measurement value. It is defined by   

 

( ) ,
q l

E q
l q


=


 

(36) 

 

hence, the expression (24) yields  

 

( )
( ) .

( ) ( )

a B

B B a

F T h
E q

q Lh h F T



 

−
=

+ − −
 

(37) 

 

4.2 Elasticity function analysis 

 

The elasticity function given by expression (37) has 

particularities that deserve to be highlighted. 

 

4.2.1 Vertical Asymptote 

The vertical asymptote for the function (37) is given by the 

expression 

 

( )
.B a

B

h F T
q

Lh





−
=

+
 

(38) 

 

Note that this should be analyzed for two different cases. 

From Eqns. (29)-(32), if κA<κB, then the elasticity has a vertical 

asymptote at q=qM. On the other hand, if κA>κB then the 

vertical asymptote is at q=qm. 

 

4.2.2 Sign 

Under the conditions studied here, the numerator of the 

elasticity function is always strictly positive, then the sign of 

the elasticity function depends on the denominator. 

From expressions (37), taking into account the expressions 

given by (29) and (30), it follows that: 

 

( )
( ) 0 ,B a

A B

B

h F T
E q q

Lh


 



−
    

+
 

(39) 

 

( )
( ) 0 .B a

A B

B

h F T
E q q

Lh


 



−
    

+
 

(40) 

 

In other word, κA<κB yield to a negative elasticity function 

in the interval [qm, qM], and conversely. Otherwise, if κA>κB the 

function turns out to be positive in the same interval, and 

reciprocally. 

 

4.2.3 Monotony 

Another important observation is that the elasticity function 

turns out to be decreasing. This fact can be easily seen by 

differentiating the expression (37) given by: 

 

 
2

( ) ( )( )
0

( ) ( )

a B B

B B a

F T h LhE q

q q Lh h F T

 

 

− +
= − 

 + − −
 

(41) 

 

Note that (41) implies that E(q) is a strictly decreasing 

function.  
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5. NUMERICAL EXAMPLES 

 

Numerical examples corresponding to the three cases: κA<κB, 

κA>κB, and similar values for κA and κB, are included.  

For all these numerical examples, the following values are 

imposed, L=10 m, F=100℃, Ta =25℃, h=10 Wm-2℃ -1.  

For this work, the value of q is calculated from the forward 

problem (1)-(6) together with Eq. (22). Noise is added to 

numerically simulate the experimental measurement 𝑞̂. Then, 

from Eq. (25), the estimate value for the contact point 𝑙  is 

found.  

 

5.1 Example 1  

 

In this example the case κA<κB is considered. In particular, 

a Fe-Cu bar is assumed to estimate the interface position 

l(κA=73Wm-10C-1<κB=386Wm-10C-1). 

For q=440.299W.m-2, the necessary and sufficient 

conditions (31) are verified since qm=316.474 W.m-2 and qM 

=595.679 W.m-2 and from equation (24) it follows that l=4m. 

Since usually data are noisy due to error measurements, we 

calculate the errors in the estimation of the location l for 

several heat flux values that satisfy the necessary and 

sufficient conditions (31), that is, for qm<q<qM. 

The Table 2 contains noisy value for flow measurements in 

a range around the actual value q, along the level noise ε, the 

corresponding estimates 𝑙 for l and the estimated error bound 

K defined in (35).  

 

Table 2. Estimate of l for Example 1 

 

𝒒̂ (W. m-2) 𝒍̂ (m) 𝜺 (W. m-2) K(m) 

436 4.151 4.299 0.151 

437 4.115 3.299 0.115 

438 4.080 2.299 0.080 

439 4.045 1.299 0.045 

440.299 4.000 0.000 0.000 

441 3.975 0.701 0.024 

442 3.941 1.701 0.059 

443 3.906 2.701 0.093 

444 3.872 3.701 0.127 

445 3.838 4.701 0.162 

 

 
 

Figure 4. Elasticity for Example 1 

 

In Figure 4 the elasticity is plotted for Example 1. Due to 

the fact κA<κB, the elasticity is a negative function as shown in 

(39), strictly decreasing (see (41)) with a vertical asymptote at 

q=qM. (see (38)). This function indicates that a measurement 

error of 1 % in the flow value 𝑞̂ translates into an error of 

around 4 % in the estimation value 𝑙 of the contact point. 

 

5.2 Example 2  

 

In this example we consider case κA>κB. In particular, a Ag-

Pb bar is assumed to estimate the interface length l 

(κA=419Wm-10C-1<κB=35Wm-10C-1). 

For q=266.927 W.m-2, the necessary and sufficient 

condition (31) are verified since that qm=194.444 W.m-2 and 

qM=605.491 W.m-2 and from Eq. (24) it follows that l=4m.  

The Table 3 contains the noisy value for flow measurements 

in a range around the actual value q, along the level noise ε 

with the corresponding estimates 𝑙 for l and the estimated error 

bound K defined in (35).  

In Figure 5 the elasticity is plotted for Example 2. Due to 

the fact κA>κB, the elasticity is a positive function (see (40)), 

strictly decreasing (see (41)) having a vertical asymptote at 

q=qm (see (38)).  

 

Table 3. Estimate of l for Example 2 

 

𝒒̂ (W. m-2) 𝒍̂ (m) 𝜺 (W. m-2) K(m) 

263 3.839 3.927 0.160 

264 3.881 2.927 0.119 

265 3.922 1.927 0.078 

266 3.962 0.927 0.037 

266.927 4.000 0.000 0.000 

268 4.043 1.073 0.043 

269 4.083 2.073 0.082 

270 4.122 3.073 0.122 

271 4.161 4.073 0.161 

272 4.200 5.073 0.200 

 

This function indicates that a measurement error of 1 % in 

the flow value 𝑞̂ translates into an error of around 3 % in the 

estimation value 𝑙 of the contact point. 

 

 
 

Figure 5. Elasticity for Example 2 

 

5.3 Example 3  

 

In this example we consider the case where conductivity 

values are of the similar order. In particular, a Al-Mg bar is 

assumed to estimate the interface length l (κA=204Wm-10C-

1<κB=156Wm-10C-1). 

For q=474.475 W.m-2, the necessary and sufficient 

condition (31) are verified because that qm= 457.031 W.m-2  

and qM=503.289 W.m-2 and from Eq. (24) it follows that l=4m. 
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Note that since the materials have similar conductivity 

values, the measurement of the heat flux should be more 

accurate in order to satisfy the condition (31). 

The Table 4 contains the noisy value for flow measurements 

in a range around the actual value q, along the level noise ε 

with the corresponding estimates 𝑙 for l and the estimated error 

bound K defined in (35).  

The estimate values in Table 4 are less accurate than those 

obtained in Examples 1 and 2. This is due to the fact that the 

thermal conductivities of the materials are similar and by 

equation (35) this causes the error in the estimation to increase. 

For the same reason K values are higher in this example 

compared to the ones for Examples 1 and 2. 

 

Table 4. Estimate of l for Example 3 

 

𝒒̂ (W. m-2) 𝒍̂ (m) 𝜺 (W. m-2) K(m) 

470 3.002 4.475 0.998 

471 3.226 3.475 0.773 

472 3.450 2.475 0.549 

473 3.673 1.475 0.327 

474 3.895 0.475 0.105 

474.475 4.000 0.000 0.000 

476 4.336 1.525 0.336 

477 4.555 2.525 0.555 

478 4.773 3.525 0.773 

479 4.899 4.525 0.990 

 

The estimate values in Table 4 are less accurate than those 

obtained in Examples 1 and 2. This is due to the fact that the 

thermal conductivities of the materials are similar and by Eq. 

(35) this causes greater errors in the estimation. For the same 

reason the K values (errors bounds) are higher in this example 

compared to the ones obtained for Examples 1 and 2. 

In Figure 6 the elasticity is plotted for Example 3. Notice 

that for this example κA>κB, and for this reason, elasticity is a 

positive function (see (40)), strictly decreasing (see (41)) 

having a vertical asymptote at q=qm (see (38)). 

This function indicates that a measurement error of 1 % in 

the flow value 𝑞̂ translates into an error higher than 25 % in 

the estimation value 𝑙 of the contact point. 

 

 
 

Figure 6. Elasticity for Example 3 

 

The above examples show the different situations related to 

the conductivity values of the two materials. In all cases, the 

necessary and sufficient conditions (31) are verified. Although 

particular materials and a particular value for the interface 

location are considered for this article, other cases have similar 

behavior. 

 

 

6. CONCLUSIONS 

 

A mathematical model for the heat transfer of a bar of 

negligible diameter and known length totally isolated on its 

lateral surface composed of two different, isotropic and 

homogeneous materials is studied. Appropriate boundary 

conditions are imposed and an analytical solution to the 

forward problem is found that turns out to be consistent with 

the case where no interface is present (a bar made of only one 

material). 

Using a flow over-specified condition at the right boundary, 

a technique for estimating the contact point is proposed. 

Necessary and sufficient conditions are provided for the 

estimation of the parameter as well as a bound for the 

estimation error.  

Using the elasticity function, the local influence of the 

dependency of the contact point on the flow is studied. 

The numerical examples indicate that the approach 

introduced here is useful for determining the point of contact 

between the materials, but it is necessary to have as accurately 

flow values as possible in order to obtain a good estimed 

location. The elasticity analysis indicates that the error 

estimates could become very large when the materials have 

similar thermal conductivities. 
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NOMENCLATURE 

 

a 

b 

c 

d 

E 

variable assistant, ℃ 

variable assistant, ℃.m-1 

variable assistant, ℃ 

variable assistant, ℃.m-1 

elasticity 

F 

h 

K 

l 

𝑙 
L 

q 

𝑞̂ 

S 

heat source, ℃  

convective coefficient, W. m-2.℃ -1 

bound for estimation error, m 

interface position, m 

Interface position estimation, m 

bar length, m 

thermal flow, W. m-2 

measured thermal flux, W. m-2 

sensitivity, W -1.m3 

Ta 

u 

room temperature, ℃ 

bar temperature, ℃ 

x special variable, m 

 

Greek symbols 

 

𝜀 Bound for flow measurement error, W. m-2 

𝜅 thermal conductivity, W.m-1.℃ -1 

𝜍 variable assistant, W2.m-2.℃ -2 

 

Subscripts 

 

A 

B 

e 

M 

m 

regarding material A 

regarding material B 

regarding to the exact value 

regarding the maximum 

regarding the minimum 
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