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In hydraulic engineering, the steady non-uniform flow in a channel with the gradual 

changes at the water surface level is introduced as the Gradually Varied Flow (GVF). 

For the design of open channels, it is necessary to calculate the GVF profile along the 

channel flow. The GVF profile is described by a nonlinear Ordinary Differential 

Equation (ODE). Because this equation is strongly nonlinear, providing new analytical 

and/or semi-analytical solutions for this equation without any simplifications and/or 

linearizations would be necessary and helpful. In this research, the Perturbation Method 

(PM) is proposed to present a semi-analytical solution for solving the GVF equation in 

the prismatic triangular channel. A total of two cases are studied in this paper. In case 

1, the Manning equation and in case 2, the Chezy equation are applied as the resistance 

equations. The GVF profiles in the two cases are compared with the Finite Difference 

Method (FDM) profiles. Also, the effect of the summation truncation in the PM is 

studied for these cases. The results show that by increasing the terms approximation in 

the PM, the GVF profile converges to the FDM profile. A reference solution for 

efficiency assessment of numerical techniques can be provided by presented semi-

analytical solutions in this paper. Furthermore, the proposed method in this paper can 

be used as a new idea in providing semi-analytical solutions to other open channel 

works. 
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1. INTRODUCTION

In a prismatic channel, the steady non-uniform flow with 

gradual changes at the water surface level is defined as 

Gradually varied flow (GVF) [1]. For the design of open 

channels, it is necessary to calculate the water depth along the 

flow direction and it is performed by investigation of GVF in 

the channel. 

Over the past few decades, the calculation of GVF profiles 

has been an important issue for hydraulic engineering. To 

obtain this profile, the nonlinear ordinary differential equation 

of the GVF should be solved. Analytical and numerical 

methods can be used for the solution of this equation. However, 

due to the extreme nonlinear state of this equation, providing 

an analytical solution for it is difficult. In the last three decades, 

many numerical techniques have been proposed to obtain a 

GVF profile in the open channels. 

Numerical techniques consist of Finite Difference Method 

(FDM), Newton-Raphson method, Differential Quadrature 

Method (DQM), Runge– Kutta method, Genetic Programming 

and other methods [2-16].  

However, numerical methods that have been proposed for 

solving this problem are discontinuous solutions. Analytical 

and semi-analytical solutions continue and give a proper 

understanding for problems, compared to numerical solutions. 

Analytical solutions can be used as reference solutions for 

verifying numerical solutions and numerical programming 

[17, 18]. Patil et al. [19] introduced an improved direct method 

for the Chow method in prismatic channels to solve the GVF 

equation. The hydraulic parameters in their integration were 

considered to be variable, unlike the Chow method that the 

hydraulic parameters were constant at all depths. Vatankhah 

[20] presented an analytical solution for calculation of the

GVF profile length in triangular channels using the Manning

formula as the resistance equation. He obtained the GVF

profiles for subcritical and supercritical flows in the Mild and

steep slopes. Jan and Chen [21] applied the Gaussian hyper-

geometric function (GHF) in the direct integration method for

the analytical solution of the GVF equation in sustain and non-

sustain wide channels. They obtained the GHF-based solutions

for GVF profiles in various slopes. Vatankhah [22] developed

an analytical solution by the direct integration method to

obtain the GVF profile in the circular prismatic channels. He

applied the variable Manning coefficient in the governing

equation. Tajari et al. [23] presented the semi-analytical

solution and numerical simulation for the spatially varied flow

(SVF) equation along duckbill weir. In that paper, the semi-

analytical solution and Flow-3D simulation were in good

agreement with experimental results.

Homayoon and Abedini [24] presented an analytical 

solution to the GVF equation for ordinary rectangular and 

triangular channels with the Manning equation as the 

resistance equation. The proposed analytical solution was 

compared with HEC-RAS software and numerical integration 

schemes. 

Other similar researches investigated the analytical and 
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semi-analytical solutions for GVF profiles in various channels 

[25-33]. 

Analytical solutions presented in the literature for the 

governing equation contain many simplifications. Therefore, 

providing new analytical and/or semi-analytical solutions for 

the GVF profile equation without such simplifications and/or 

linearizations would be necessary and helpful. In addition, 

most presented methods to date only provide the profile length 

between two specified water depths along the channel. In other 

words, they do not provide any closed form continuous 

equation for the profile or water surface along the channel. 

In this research, the Perturbation Method (PM) is proposed 

to present a semi-analytical solution for solving the GVF 

equation in the prismatic triangular channels. A total of two 

cases are investigated in this study. In case 1, the Manning 

equation and in case 2, the Chezy equation are utilized as the 

resistance equations. The GVF profiles in two cases are 

compared with the Finite Difference Method (FDM) profiles. 

Also, the effect of the terms approximation and the 

summations truncation in the PM is studied for these cases. 

These semi-analytical solutions may be used as a benchmark 

for verification and efficiency assessment of other numerical 

approaches. 

 

 

2. GOVERNING EQUATION 

 

The Governing equation and boundary condition for the 

GVF in a prismatic channel may be expressed as [34, 35]. 

 

0

2 1 ,     (0)
1

f
S Sdy

y y
dx Fr


 


 (1) 

 

where, x is the distance along the channel (positive in the 

direction of channel flow); y is the water depth; S0 is the 

longitudinal slope of the channel; Sf is the energy line slope 

and Fr is the Froude number. The Fr2 for the triangular 

channel is: 
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where, Q is the discharge; A is the cross section area of the 

channel flow; T is the width of the water surface; g is the 

acceleration of gravitation and Z is the side slope of the 

triangular channel. For simplicity, Fr2 is replaced with G(y) in 

the next equations. 

 

 

3. TRIANGULAR CHANNEL WITH THE MANNING 

EQUATION 

 

At first, Eq. (1) is rearranged as follows:  
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In Eq. (3), Sf is substituted by the Manning equation for the 

triangular channel. 

According to the perturbation method, a solution for the Eq. 

(3) is presented as [36]: 
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where, ε is a small parameter that can be artificially introduced 

in the governing equation (Eq. (3)). 

Some terms of the perturbation series (Eq. (4)) for ε=1 may 

be written as: 

 

0 1 2
( ) ( ) ( ) ( ) ...x y x y x y x y     (5) 

 

In this research, the ε parameter is inserted into Eq. (3) as 

follows: 
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Now, substituting Eq. (4) into Eq. (6a) (rearranged ODE 

with the ε parameter) and applying some simplifications yields: 
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where, n is Manning roughness coefficient and f(y) is: 
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Also, substituting Eq. (4) into rearranged boundary 

condition (Eq. (6b)) gives: 

 

0 1 1 1 2 1 3 1

0 1 2 3
( ) ( ) ( ) ( ) ... 0    x y x y x y x y         (9) 

 

Equating the left and right side terms of Eqns. (7) and (9) 

for identical powers of ε0, ε1, ε2, ε3, … and applying some 

simplifications yields: 
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The solutions for Eqns. (10a), (10b), (10c) and etc. are: 
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where, C0, C1, C2, C3, … are constants and 𝑅 =
𝑍𝑦

2√1+𝑍2
 is the 

hydraulic radius of the triangular channel. The constants are 

obtained by boundary conditions (in Eqns. (10a), (10b), (10c) 

and etc.).  

With substituting Eqns. (11a), (11b), (11c) and etc. in Eq. 

(5), the semi-analytical solution for GVF profile in a prismatic 

triangular channel may be expressed as: 
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(12) 

 

where, C** is C0+C1+C2+C3+···. To show the application of Eq. 

(12), an example of the GVF profile is presented in the 

triangular channel and is compared with FDM. More details 

for the explicit FDM solution can be found by Szymkiewicz 

[35]. 

 

3.1 Example 

 

In this example, a triangular channel is considered with a 

mild slope of S0 =0.001, the Manning coefficient n=0.015, the 

discharge Q=4m3/s and the side slope Z=1.5. There is a control 

structure in the flow path of the channel that creates the GVF 

profile from the control structure site to upstream. The water 

depth in the control structure site is 2m. 

Figure 1 shows a schematic view of the GVF profile in this 

channel. 

 
 

Figure 1. The schematic view of the GVF profile in the 

channel with the mild slope (M1 profile in the open channel 

hydraulic) 

 

As seen in Figure 1, the water surface profile (or GVF 

profile) decreases from the control structure site to upstream 

of channel.  

Now, the GVF profile in this channel can be obtained by 

substituting example parameters in Eq. (12). 

It should be noted that the presented solutions (Eqs. 4, 5 and 

12) are series solutions. Therefore, it is necessary to check 

their convergence in reaching to the answer for the number of 

used terms. Certainly, in the analytical solutions that are 

presented in the series forms, using the first few terms is 

enough to obtain the exact solution. The expressed numerical 

solution (FDM solution) is presented to determine how many 

terms of the presented series are needed for obtaining the exact 

solution. By determining the number of terms, a continuous 

solution can be created to obtain GVF profile in the triangular 

channels with Manning equation.  

The GVF profile in this channel for different terms 

approximation of Eq. (12) are shown in Figure 2. It should be 

noted that in Figure 2, water surface profile draws from 

downstream to upstream of the channel flow.   

As mentioned in defenition of Eq. (1), the distance along the 

channel (x) is positive in the direction of channel flow and 

therefore, When the profile is drawn from downstream to 

upstream of the channel (the opposite direction of the flow), 

the value of X is negative (horizental axes in Figures 2a to 2d) 

[34, 35]. Furthermore, the negative value for X is obtained 

from both numerical and analytical methods.  

In this Figure, the first three terms approximation is 

equivalent to the sum of the first three terms and the 

corresponding constant (C** =C0+C1+C2) in Eq. (12). Also, the 

first four terms approximation means the sum of the first four 

terms and the corresponding constant (C** =C0+C1+C2+C3) in 

Eq. (12) and so on. 

So that, Figures 2a, 2b, 2c and 2d are for the first three, four, 

five and six terms of Eq. (12), respectively. 

As shown, by increasing the terms approximation of Eq. 

(12), GVF profile for the perturbation solution converges to 

the FDM profile (FDM is for Δx=1m). Therefore, as seen in 

Figure 2d, the perturbation profile is in excellent agreement 

with the FDM profile. Also, Errors as well as correlation 

among solutions are computed in terms of root mean squared 

error (RMSE) and absolute fraction of variance (R2) and 

shown in Figures 2a to 2d. R2 and RMSE parameters are 

computed as:
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where, yPM and yFDM are the water depth values by PM and 

FDM, respectively. Closer values of R2 to 1 and closer values 

of RMSE to 0, indicate good agreements between PM and 

FDM results. As shown in Figures, maximum value of R2 and 

minimum value of RMSE are in Figure 2d with six terms 

approximation. In other words, R2 value is closer to 1 and 

RMSE value is closer to zero by increasing the terms 

approximation.  

Table 1 shows the water depth values at different distances 

for various terms approximation. As seen, difference in water 

depth is negligible at six terms approximation, and yPM is 

almost identical to yFDM at all distances. Relative error (RE) 

values in the Table are defined as:  

  

Relative Error (RE) = 100PM FDM

PM

y y

y


   

 

As shown, RE’s are all less than 0.5% which is deemed 

reasonable, and hence, it is concluded that convergence in Eq. 

(12) is very rapid. 

According to the results, the PM can be applied to plot the 

water surface profile for the prismatic triangular channel when 

the Manning equation is utilized for the resistance equation. 

 

 
(a) First three terms 

 

 
(b) First four terms 

 
(c) First five terms 

 

 
(d) First six terms 

 

Figure 2. GVF profiles in the triangular channel for various 

terms approximation in Eq. (12): a) First three terms, b) First 

four terms, c) First five terms, d) First six terms 

 

Table 1. Water depth values for perturbation solution with 

various terms approximation, FDM solution, and the relative 

error (RE) in the Manning equation case 

 

X 

(m) 

yPM (m) by 

first three 

terms 

yPM (m) by 

first four 

terms 

yPM (m) by 

first five 

terms 

yPM (m) by 

first six 

terms 

yFDM 

(m) 

∆x=1 m 

RE 

(%) 

-100 1.9095 1.9095 1.9095 1.9095 1.9099 0.02 

-300 1.7380 1.7395 1.7395 1.7395 1.7399 0.02 

-500 1.5840 1.5895 1.5910 1.5915 1.5920 0.03 

-800 1.4002 1.4185 1.4280 1.4325 1.4394 0.48 

 

 

4. TRIANGULAR CHANNEL WITH THE CHEZY 

EQUATION 

 

In this section, the Chezy equation is used for the energy 

line slope (Sf) in the governing equation (Eq. (1)). Therefore, 

Sf with the Chezy equation for the triangular channel is: 
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(13) 

 

where, C is Chezy’s roughness coefficient. Here, the 

coefficient is assumed constant. 

Now, Following the similar mathematical procedure as 

before (section 3), the answers for x0, x1, x2, … would be: 
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(14c) 
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(14d) 
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(14f) 

 

where, C0
*, C1

*, C2
*, C3

*…are constants. The constants are 

obtained by boundary conditions (similar to Eqns. (10a), (10b), 

(10c) and etc.).  

Finally, substituting Eqns. (14a), (14b), (14c) and etc. in Eq. 

(5) and applying some simplifications, the perturbation 

solution for the GVF profile, in this case, is written as: 
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where, C* is C0
*+C1

*+C2
*+···. Eq. (15) is the exact solution for 

the nonlinear governing equation (Eq. (1)) in the prismatic 

triangular channel. In order to confirm summations 

convergence in Eq. (15), water surface profile is calculated 

using summations truncation with different values of m in an 

applied example. The example parameters for this case are 

identical to those used in the previous section, except that the 

Chezy coefficient (C) is 60. As explained in the previous 

section, the presented solution (Eq. (15)) is series solution. 

Therefore, it is necessary to check its convergence in reaching 

to the answer for the number of used terms. By determining 

the number of terms, a continuous solution can be created to 

obtain GVF profile in the triangular channels with Chezy 

equation.  

Figure 3 shows the GVF profile for summations truncation 

with different values of m in Eq. (15). So that, Figures 3a, 3b, 

3c and 3d are for m=0~2, m=0~3, m=0~4 and m=0~5, 

respectively. As explained in the previous section, the X 

values are negative in the horizontal axes of Figures 3a to 3b.  

 
(a) m=0~2 

 
(b) m=0~3 

 
(c) m=0~4 

 
(d) m=0~5 

 

Figure 3. GVF profiles in the triangular channel for 

summations truncation with a different value of m in Eq. 

(15): a) m=0~2, b) m=0~3, c) m=0~4, d) m=0~5 
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As seen, by increasing m values in Eq. (15), the perturbation 

profile is more consistent with the FDM profile (see R2 and 

RMSE values in Figures 3a to 3d). Thus, Figure 3d for m=0~5 

shows an excellent agreement between them. In other words, 

R2 value is very close to 1 and RMSE value is very close to 

zero in m=0~5 or Figure 3d.  

Also, Table 2 shows the water depth values at different 

distances for various m values. As seen, difference in water 

depth is negligible at m=0~5, and yPM is almost identical to 

yFDM at all distances. As seen, the maximum RE is 0.48% and 

therefore, yPM values are judged as having excellent 

agreements with yFDM. 

According to the found results, the PM can be used to obtain 

the water surface profile for a prismatic triangular channel 

with mild slope (M1 profile in the open channel hydraulic) 

when the Chezy equation is utilized for the energy line slope. 

 

Table 2. Water depth values for perturbation solution with 

various m values, FDM solution, and the relative error (RE) 

in the Chezy equation case 

 

X(m) 
yPM (m) by 

m=0~2 

yPM (m) by 

m=0~3 

yPM (m) by 

m=0~4 

yPM (m) by 

m=0~5 

yFDM (m) 

∆x=1 m 
RE (%) 

-100 1.9115 1.9120 1.9120 1.9120 1.9122 0.01 

-300 1.7445 1.7465 1.7470 1.7470 1.7473 0.017 

-500 1.5950 1.6010 1.6030 1.6040 1.6044 0.02 

-800 1.4115 1.4335 1.4430 1.4475 1.4545 0.48 

 

 

5. CONCLUSIONS  

 

In the current study, semi-analytical solutions have been 

presented by the Perturbation Method (PM) for solving the 

GVF equation in a prismatic triangular channel. Two cases 

were investigated in this paper. In case 1, the Manning 

equation and in case 2, the Chezy equation were applied as the 

resistance equations. Semi-analytical profiles in two cases 

were compared to the Finite Difference Method (FDM) 

profiles. Also, the effect of the terms approximation and the 

summations truncation in the PM was investigated for these 

cases. By determining the number of terms, a continuous 

solution can be created to obtain GVF profile in the triangular 

channels. 

The results have shown that by increasing the terms 

approximation in the PM, GVF profiles coincide with FDM 

profiles. These semi-analytical solutions may be used as a 

benchmark solution for verification and efficiency assessment 

of other numerical techniques. 

Furthermore, the proposed method in this paper can be used 

as a new idea in providing semi-analytical solutions to other 

open channel works such as the spatially varied flow equation. 

Investigation of analytical solutions for trapezoidal, circular, 

parabolic and non-prismatic channels using PM is suggested 

for future researches in this field. 
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NOMENCLATURE 

 

Fr Froude number 

S0 The longitudinal slope of the channel 

Sf Energy line slope 

T Width of the water surface, m 

A Cross section area of the channel flow, m2 

Q Discharge, m3/s  

g Acceleration of gravitation, m.s-2 

Z Side slope of the triangular channel 

R The hydraulic radius of triangular channel, m 

n Manning roughness coefficient 

x The distance along the channel, m 

C Chezy’s roughness coefficient 
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