
An Efficient Security Model for Password Generation and Time Complexity Analysis for

Cracking the Password

Bathula Prasanna Kumar*, Edara Srinivasa Reddy

Computer Science and Engineering, Acharya Nagarjuna University, Guntur 522510, AP, India

Corresponding Author Email: bathulap547@gmail.com

https://doi.org/10.18280/ijsse.100517 ABSTRACT

Received: 18 August 2020

Accepted: 6 October 2020

Passwords tend to be one of the most popular approaches to protect operating systems and

user’s data also. Most businesses rely on password protection schemes, and secure

passwords are incredibly necessary to them. The proposed model typically aims to impose

protection by forcing users to obey protocols to build passwords. For user protection,

password has become a prevailing method in terms of exposure to scarce tools. The main

problem with password is its consistency or power, i.e. how simple (or how difficult) a

third person can be "assumed" to enter the tool that you use while claiming to be you. In

operating systems, text-based passwords remain the primary form of authentication,

following major improvements in attackers' skills in breaking passwords. The proposed

Random Character Utilization with Hashing (RCUH) is used for generation of new

passwords by considering user parameters. The proposed model introduces a new

framework to design a password by considering nearly 10 parameters from the user and

also analyze the time for cracking the generated password to provide the system strength.

The proposed model aims to generate an efficient security model for password generation

by considering several secret parameters from the user. To break a set of consistency

passwords, analysis is also performed on time for password cracking. The tests show a

close positive correlation between guessing complexity and password consistency. The

proposed model is compared with the traditional password generation and cracking

models. The proposed model takes much time in cracking the password that improves the

systems security.

Keywords:

password generation, password cracking,

data security, unauthorized users, authorized

users, time complexity

1. INTRODUCTION

For programs, the continuous use of authentication

protection codes, identification of codes and hence the

development of passwords are becoming increasingly relevant

for study. Many people do not think enough about preserving

their password or having a good password. Authentication

development regulations also aim to implement encryption by

allowing users to apply complexities to passwords such as

numbers or special characters. Nevertheless, such politics

typically contribute to methods for managing, such as

repeating a phrase to render passwords longer regardless of the

requirements, which that the reliability of an ideal password

cracker. Several analysis of policy development of passwords

has been made, but none of them demonstrated the efficiency

of such policies against specific attacks [1]. Up to date, no

research explicitly focused on password security that the

password development policies can have. A significant

research issue not yet addressed is then what strategy to build

for passwords to be more successful in combating actual

attacks [2]. So how do we direct users in creating safe and

accessible passwords? A majority of passwords today require

14 or more characters. Nevertheless, the ability of humans to

remember long passwords is restricted and a longer password

typically contributes to repetitive passwords [3]. There are

many password policies which attempt to attach randomness

to a user-selected password. Nevertheless, people know a

sequence of things like names or common numbers, but not an

arbitrary character series. The development of passwords will

also be a balance between protection and usability [4]. We may

not think such strategies are strong enough on their own. The

solution we recommend is focused on tacit policies for the

development of passwords in which the program excludes a

password depending on its approximate capacity [5]. If the

intruder takes a long time to break the password, the password

is secure.

Since the Internet was a necessity of society, from business

to everyday life for ordinary people, online Security has been

a major concern. Protecting data from unauthorized access is

a crucial feature of online protection [6]. The most growing

approach is to use password in the cycle of online entry.

Password is a hidden string which only the user knows and is

stored on a server offering access to the data. Users request

data access, along with other Identity details such as user name

or email, must enter the password [7]. A message digest

cypher (Hash), which matches the previously-saved hash code

of your database, will be determined and the Hashed value is

sent to your server [8]. If a match is found, it is assumed that

the user claims to be who he is, and that the access is allowed

[9].

The password for operating applications is one of the most

commonly used security techniques. Advanced technologies

make biometrics and tokens encrypted simple to use, but the

password is also an authentication tool often used [10].

Passwords do not need additional hardware, can be

implemented easily, and can be used easily. Database

International Journal of Safety and Security Engineering
Vol. 10, No. 5, October, 2020, pp. 713-720

Journal homepage: http://iieta.org/journals/ijsse

713

https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.100517&domain=pdf

administrators utilize password composition policies (PCPs)

to discourage users from choosing vulnerable and quickly

conjecturable passwords [11]. Password composition policies

are commonly understood to make passwords more difficult to

devise, but this doesn't always happen [12]. This is since not

just the actual password but also the consumer behavior is

influenced by the password composition procedure. Users may

also use a password composition template to compose a secret,

modify unsecure security schemes or adversely impact secret

modifications [13]. Values differ in terms of composition of

their passwords. The structure of passwords differs from user

to user, and might not be followed in certain situations.

Websites may also restrict the type of special characters to use

and limit the length of their websites [14].

Many technologies were developed to improve the level of

Passwords for the security of the user typically provide:

Identity management systems or simply using powerful and

not easily guys passwords make authentication easier.

authentication. In this article we focus on the third of these

categories in accordance with previous remarks on the

continuing omnipresence of passwords [15]. The fact that

many different strong passwords are expected to be saved by

users simply for a daily business on the Internet clearly forces

users to compromise their own security [16].

The security and privacy of individual information from

intruders is a concern to all those who use different online

services [17]. Many authentication systems are available for

the protection of individuals' data, and the password

authentication system is one of them [18]. Increasing sharing

of information, popularisation of the Internet, electronically

traded transactions and the transmission of data have made

password security and authenticity an essential and essential

subject [19]. Because of usage of computer in many areas there

is a strong need for better authentication model for securing

user’s information [20].

2. LITERATURE SURVEY

The most popular method to secure keys to data, devices,

and network servers is through passwords. Since the first

introduction of the UNIX password scheme [21], the password

protection analysis has been carried out. Passwords are seen as

easy and cost-effective but at the same time as an incredibly

poor means of security, they are remembered. System

administrators have been proposed to evaluate the risk of

attacks by trying to break the codes of their own customers.

Therefore, password cracking programs should be accessible

and can check consumer passwords' effectiveness. Code

crackers were also very helpful in law enforcement during

their operations to cope with encrypted files and hard drives.

There are two different forms of web and offline password

cracking assaults. The intruder attempts to get entry to an

active account in an online password cracking attack. In this

scenario, authentication mechanisms such as just a few

unsuccessful logins are still available with each account. On

the other side, the intruder already got a password or encrypted

file in an offline password break, and then attempts to decode

or locate the password by guessing and attempting different

passwords. In this situation, it is not necessary to limit the

number of attempts that the intruder can create in order to find

the answer, even when he is ready to spend. The typical

method for breaking a password is frequently to seek password

guessing because the attacker has the password hash. The

intruder guesses first, by using the same hash algorithm, the

answer for the first password for "football123." When you

compare the two hashes, you split the secret, if this is not

replicated until you find a match.

2.1 Tips to break password

Every password p hashed to create its hatch code h as

defined in q by using an encryption function f. [1]. The task of

breaking the password is to use a method c such that c(h) = p

because h (instead of p) is only saved in the resource server

database. Therefore, the hacker will work out which tool c is

to be used to help locate p. Used to break codes, brute force

attack, dictionary assault and certain variants of time-space

compensation requirements are among the most popular

techniques.

2.1.1 Brute force attack

The alphabet l is a character collection alphabet and N =

length l, let p = a1, a2 ... al, ai length l passphrase. Since of

hash code h = f(p), the assault by a brute force is to seek any

string s= x1, x2 .. xl, xi the meaning of oscillating before f(s)

= h. In the case of Nl the size of a string set, the possible

passwords are identified by the alphabet - T è t (Nl) in the

period of time to break a password is equal to the number of

possible strings. This is, since brute-force attacks are dynamic,

N polynomial and l exponential. The letter è t is typically one

of the basic sets or variations.

2.1.2 Strike in dictionary

Since the majority of the people are using human-

memorable passwords that are usually words in dictionaries or

certain combinations, a hacker can seek could word in the

dictionary and not the brute force random string. Any term wi

(f) to D in the dictionary D is tested with this approach to see

if f(wi) = h is the specified hash code. Thus the assumption

that the secret is a word in the dictionary is very easy to crack.

In addition, all f(wi) hash codes are pre-computed and

processed in a database, instead of computed on a working

time basis.

2.1.3 Panel lookup

To render crack time fast, a table search attack saves

precomputed hazards in a database of possible passwords and

removes a specific password danger by scanning the database.

The attack is far simpler than the initial dictionary attack, only

because the hash does not have to be determined at runtime for

increasing conjecture. The way to store "all" imaginable

passwords and hazelnuts, however needs a significant amount

of space. The rainbow table solution is a timer to save even

less hash codes, but with a vast amount of passwords, rather

than pre computing the hash codes of a great deal of possible

passwords and storing in a bin. The fundamental concept is to

construct a K-length password-hash chain containing k

possible passwords and hash codes.

2.1.4 Markov model attack

The point was that people wanted easy to recall passwords.

Many users are aware of dictionary attack and recognizable

human passwords are usually unique (unique passwords

created are difficult to remember). Some of the methods to

combat famous passwords is an assault by "digital

dictionaries," which users may create through dictionaries. A

rapid dictionary attack method based on the likelihood of the

714

password sequence of characters was introduced by Colnago

et al. [1]. The approach uses the Markov standard model to

build a far smaller smart dictionary than conventional

dictionary assaults. The main observation is, "the distribution

of letters in passwords which can be easily remembered is

likely to be similar to the distribution of letters in their native

language." The Markovian dictionary can therefore be

developed in a sequence, depending on the probability of the

signs. The passwords are generated as

1. By founding the cypher text "Å" the decimal

Value ASCII.

2. 197 is 11000101 binary value.

3. After 00101 (the last 5 digits) have been multiplied by

The outcome of 1000 (Key) is 101000.

4. After you have added 110 (first three digits of the code)

The outcome is 101110,000.

5. As 101010 isn't an 8-bit we don't have to.

Dear friend

6. It will be 01110100 after the number was reversed.

7. 01110100's decimal value is 116.

In the upper case sequence is the decimal value of "116"

List 50 should therefore be withdrawn

8. ASCII importance detection 8

= 116-50 (decimal-constant value-50) = 66 (ASCII value)

9. Convert the given ASCII to "B" alphabet.

2.2 Password authentication models

Knieriem et al. [2] suggested to incorporate biometric

details into the password, a strategy to improve the reliability

of password-based programs. Once each user typed his or her

password, they registered keystroke features (keystroke length

and distance between keystrokes). There were 20 participants,

481 logins and 1 password in this trial. The hardening of

device passwords is close to the hardening of passwords. A

salt is a randomly generated bit number that is used throughout

the encryption process to permute any bits. This technique can

also be used to improve salting using users' typing

characteristics by determining some or all salt bits. This may

also be effective against an intruder who learns the secret and

logs in as a customer. Their approach increases the time it

takes on an attacker to look for the hard password thoroughly.

The use of Shannon entropy, as described in NIST is not an

efficient calculation of password power that was demonstrated

by Furnell et al. [3] in regular password cracking attacks

against several real-life password sets. We used Rock You

user set codes, initially collected through an assault on the

domain of rockyou.com. The number contained 32 million

passwords, although smaller keys were used to perform the

study. They tested the minimum password duration rule in the

development of passwords and since they did not have access

to the actual passwords, they formed this approach by

separating the test set depending on the minimum length.

The entropy value is determined independently by Grassi et

al. [4] from distributions of password types, code placings,

amount of code kinds, and quality of each character. The

entropy value is then summarized as overall entropy. In a

broad report, they proceeded to examine the power of their

passwords. You carried out an online analysis of five policies

for the development of passwords.

3. PROPOSED MODEL

Password guess strengths traditionally is measured by

running a password cracking tool and recording when each

password is crashed. This works fine when the scan is limited

to a relatively small amount of divinations. Nevertheless, it is

necessary to remember how many passwords may be solved

with even further attempts as the computational ability of

potential adversaries grows.

In most deterministic password devaluation algorithms, we

take advantage of the fact that a calculator function may be

generated which maps a password to the number of guesses

required to devise the password. This performance value is

called the password guessing number. With any cracking

algorithm under review, a new guess-number calculator must

be introduced. A new calculator tuning is created for each new

training set to be checked for algorithms which use a training

set of known passwords to prioritize derivations. Because we

gather passwords with plaintext, we can use the calculator

method of an algorithm for searching for the corresponding

password guess number without actually running the

algorithm.

The proposed approach is used to measure in a number of

ways the guess ability of the passwords. They calculate the

percentage of passwords that a given algorithm will split,

which is important since heuristics are used by most successful

cracking tools and not every password. They also measure the

number of assumptions that will be broken. We also use

computers to compare the performance of various splitting

algorithms and various training sets in each algorithm. If we

integrate the effects of guess numbers in a variety of

algorithms and configurations, we may build an analysis of a

number of passwords' cumulative power. The proposed

Random Character Utilization with Hashing (RCUH) model is

explained in the algorithm.

Algorithm Random_Character_Utilization_with_Hashing

(RCUH)

{

Input the user parameters

UN getInput(user_name);

PH getInput(phnone_number);

EI getInput(email_id);

DOB getInput(date_of_birth);

EID getInput(employee_id);

FN getInput(father_name);

MN getInput(mother_name);

SN getInput(school_name);

UGN getInput(ug_college_name);

SEN getInput(secret_number);

String arr[11]={UN,PH,EI,DOB,EID,FN,MN,SN,UGN,SEN}

Hash function is applied on the arr[]

H(x)  y where x ∈ Z and y ∈ Zn

H(x) ={UN ⊕ SEN}

H(x) H(x) && {PH || UGN}

H(x)H(x) &&{EI&&SN}

H(x)H(x) +{DOB⊕EID}

H(x)H(x) ⊕{FN||MN}

H(x) =H(x)+Th (Threshold value considered by system owner)

P(U)H(x)

Display Password of User→ P(U)

}

After comparing the passwords we have collected to lists of

1, 5, and 1 lack guesses produced through various cracking

tools and tunings. we selected these as the most promising

brute-force and heuristic alternatives. The proposed model

715

involves a training set: a repository of recognized passwords

used to create a list of devices and to decide whether to test

them. We are investigating a variety of training programs

made up of the numerous variations of lists of public word lists

and subsets of passwords that have gathered. It enables us to

determine how the efficiency of cracking algorithms is

enhanced by complementing publicly accessible data with

passwords obtained from the device under attack. They do

make curriculum improvements that are precisely adapted to

our strategies, comprehensive and fundamental. The password

calculation parameters are indicated in Table 1.

We use a multi level cross-validation method to measure

calculation numbers in each experiment just for the passwords.

Passwords are divided into n partitions or folds for a given

experiment. We create a publicly accessible training set plus

(n−1) folds and check it against the remaining folds.

Each n folds are used precisely once as test data for n

learning and training iterations. We will merge tests with all

our passwords with data from the n folds. Because training

typically requires significant computational resources, we

restrict our testing to limited iterations. It appears to be

appropriate based on the consistency of the effects we obtained

of iterations. Such testing sets or methods are not known to be

the best method of guessing the passwords we obtained. They

concentrate more on measuring the resistance to guessing

through password structure policies. The analysis of

algorithms' output for various tunings often gives insight into

the kind of data set an intruder may like to efficiently conceive

of passwords generated in compliance with the particular

password composition policy.

When applications begin to use authentication protection

codes, policies to build codes become particularly necessary

to examine. When mentioned earlier, neither of the policy-

making experiments particularly concentrated on the

effectiveness of the authentication. A significant research

issue is not addressed yet is then how to establish the most

successful model against attacks in the development of

passwords. In our view, our solution to this issue is focused on

education and studying context-free grammar, and then on

using it to create functional passwords for the user. We also

developed and created a method to determine user-selected

password intensity dependent on the probability that an

intruder would break the password. After generating the

password by applying hash functions, the password should be

checked for capability. The password cracking is analyzed

using the model depicted below.

Algorithm RCUH_Cracking

{

Input parameters from the USER.

String data[11];

For i=0

do

Data[i]  getInput();

done

while (data > 0)

{

 Crapass  digits[data % size];

 val  val/size;

 Ti  Iiter_count + len(val);

 Hash (k)  𝜆 𝑇𝑖 + ∑ val +𝐿
𝑖=0 𝑘(𝑖) + 𝛽 + 𝑀

 }

Ti  Iiter_count + 𝜆 𝑇𝑖 + 𝛽

Where 𝜆 represents password length and 𝛽 represents

iteration level.

for (int j = Ti; j >= 0; --j)

 {

 if (crapass [j] == 0)

 {

 --T;

 crapass[j] val[0];

 break;

 }

 string::size_t_found  alphabet.find(crapass[j]);

 ++ Iiter_count;

 if (size_t_found < crapass.length)

 {

 crapass[j]  val[size_t_found];

 break;

 }

crapass[j]  val[0];

 if (j == 0)

 {

 return crapass("");

 }

 continue;

 }

Displat Ti, crapass.

}

Table 1. Password calculation parameters

Parameters Considered No.of users Password Length in bits Passowrd Strength Password Calculation time in Miliseconds

5 100 56 Average 3

7 200 128 Good 5

9 300 128 Good 7

10 400 256 Strong 9

Table 2. Password cracking parameters

Parameters

Considered

No.of

users

No.of

Iterations

Passowrd

Strength

Password cracking time in

Miliseconds

Cracked

Status

5 500 Average 7 Success

7 500 Good 10 Failed

9 500 Good 12 Failed

10 500 Strong 15 Failed

716

Explicit protocols include guidelines for how to create a

password. A majority of passwords today require 14 or more

characters. Nevertheless, the ability of humans to remember

long passwords is restricted and a longer password typically

contributes to repetitive passwords. There are now a number

of password generation policies, requiring users to use

minimum-length passwords, or, for example, to include at

least two or non-alphanumeric numbers. The practical efficacy

of the tactics of specific assault was not, however, researched.

For example, a protocol that allows a user to use at least three

digits in a user’s password would typically automatically

attach "123" to a user's password at the end of an unreliable

one. Regulations, including 14 characters, can not only hinder

the consumer but can also be helpful for an attacker as people

tend to follow common patterns and may end up choosing

popular variations of keys or simply repeating the same

password two or three times. The parameters considered for

password cracking are listed in Table 2.

The proposed model considers a threshold value ‘T’ that is

a probability value t, which means that passwords are less than

likely to be good enough. The effectiveness of a password

depends on how much time an attacker takes to crack the

password. As previously explained, there are growing types of

online threats, such as hostile powers and dictionary attacks.

We assume that probabilistic password cracking is the most

effective solution. And, any time we think of an intrusion we

believe the intruder is clever enough to find the right method

to break the password. In any applications the intruders

involve to degrade the system performance. To avoid

intrusions in any application, Intrusion Detection System

(IDS) model need to be integrated to the security application

for attaining better results. If IDS model is integrated, then if

any intrusion is identified, then the system will trigger a signal

for identification and removal of malicious nodes in the system

for enhancing the security levels.

The simple premise is that the intruder should seek

passwords with the greatest likelihood. So we will calculate

how many g(t) presumed an intruder will be achieved before

guessing a password with a likelihood equivalent to the T

threshold value if user begins to presume from the maximum

probability level. By dividing the total sum of g(t)

measurements by the value of c hour for each device, we know

precisely how long it is appropriate for the intruder to arrive at

this point, based on the form of hash, the machine speed etc.

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑇𝑖𝑚𝑒 (𝑇𝑖) =
𝑇𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑢𝑠𝑒𝑟_𝑔𝑢𝑒𝑠𝑠𝑒𝑠

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠_𝑝𝑒𝑟_𝑚𝑖𝑛𝑢𝑡𝑒

They recommend two methods of describing the threshold:

In the first solution, we would have a record that compares

increasing possibility to the total number of attempts the

intruder will create before hitting the probability by running

the proposed password cracker once beforehand. While this is

a simpler and more precise method, the optimal amount of

estimates cannot always be met owing to time and money. For

example, if the chance of a password is less than the threshold,

we know that it takes at least 1 week and 3 days for the

password to be broken using the optimal password cracking

technique. The next method only helps users to reduce the

number of assumptions g(t) before a specified value t is

reached, but it just involves the use of context-free grammar,

and does not necessarily need to produce any guesses. It is

therefore conservative to ensure that the password proposed is

secure. The algorithm starts with the identification of a

threshold t and the estimation of the number of elements

greater than this amount within each basis structure.

The challenge that can exist in this process is that the

probability of accurate guessing in a very short time is not

guaranteed. The concerns are what if there is no context-free

grammar comprising the foundation structure or any other

components of the user-chosen password.

• If the user-selection password's basic structure isn't found

in context-free language, either we can presume and agree that

the password is solid enough or we can consider the lower

probability for the basic structures and use it as an estimate of

the certainty of that basic structure. Since only the above

method is being taken, and we did not test the system with

these two solutions, there is no outcome showing which one is

stronger.

• If the secret digit components or the special character

components were originally not included in the training data,

we still have a chance to find these values as we have a

grammar that contains these baseless values in the training set.

• If the password's alphabet component is omitted from the

dictionary, we use the same length term possibility in the

dictionary, as all terms with the same length are of equal

probability. We always presume that the frequency of both

words is the same and they are all contained in the dictionary.

In future, we will be able to try various approaches such as

giving the words not found in the dictionary much less chance.

The proposed model generates passwords which takes more

time to crack is observed in the proposed model.

4. RESULTS

The proposed RCUH model for password generation and

cracking analysis model is implemented in JAVA. The

proposed model is compared with the traditional models by

considering the parameters password generation time,

password cracking time, hash key calculation time, Security

Level. The proposed model generates the passwords more

strongly as it takes more time for the attacker to crack the key.

The proposed model takes input from the user as a single

character for different parameters and then applies hashing on

it to result a strong password. The model is depicted in Figure

1.

The Password Generation Time of the proposed and

traditional Weir model is depicted in Figure 2. The proposed

model takes less time in generation of password. The codes

have various user attributes and their password will be created

with each generation model and then test its accuracy. The test

results indicate that the matching attribute password

devaluation in the required test range has the highest accuracy.

The proposed RCUH model is strong enough to design the

passwords to secure the system.

After taking the specified number of user characters for

every parameter, the hash key is generated by applying the

modern mathematic operations so as to generate the password

that should be strong enough to secure the system and the

cracking possibility should be complex. The key idea of a

model generated by passwords is to predict the next character

with the current password generated. Before the model was

entered, each training password was interpreted as matrices.

The duration of the input sequence in the model during the

training process is provided by the user. The hash key

calculation time is depicted in Figure 3.

717

Figure 1. User character input for parameters

Figure 2. Password generation time

Figure 3. Hash key calculation time

The password that is generated should undergo, password

cracking module to check its capability and also to analyze the

time taken for cracking it. As the time is more, the capability

of the password is high. The Password cracking time of the

proposed and the traditional models are depicted in Figure 4.

Figure 4. Password cracking time

Figure 5. Security level

718

The proposed RCUH model exhibits better performance in

terms of security and cracking time. The cracking model is

used after the training to test the model for password power,

and even passwords to expand the dictionary of passwords that

are used for devaluation. Until devaluation, a network exploit

method will be used to extract the password file. The Security

levels of the proposed model and the traditional methods are

depicted in Figure 5. The password if takes more time to crack,

it represents that the password is strong enough to provider

security to the system.

5. CONCLUSION

To certain individuals in today's country, managing

passwords is a big issue. This is best to use codes that attackers

consider challenging to formulate. Although network

administrators are increasingly improved, the amount and

difficulty of the specifications for password creation, the true

added benefit of the specifications remains poorly known. Its

research represents a major step in not only recognizing these

concerns, but also the assessment process. Our studies often

provide valuable details regarding the study of guessing

resistance. The ample, closely related knowledge on training

is needed for successful attack of passwords generated under

a complicated or unusual in-practice composition of policies.

Therefore, the collection of a subset of compatible passwords

from a wider quantity will only accurately define this form of

password set; it is possible that this subset does not represent

passwords established under that program. Eventually, we

stated that the proposed model generates a statistics approach

for password power, and can accurately estimate any

quantitative variations in deviations between password sets.

The proposed model cracking time is very high when

compared to traditional models.

REFERENCES

[1] Colnago, J., Devlin, S., Oates, M., Swoopes, C., Bauer,

L., Cranor, L., Christin, N. (2018). “It’s not actually that

horrible”: Exploring adoption of two-factor

authentication at a university. Proceedings of the 2018

CHI Conference on Human Factors in Computing

Systems, CHI ’18, ACM, New York, NY, USA, pp. 1-11.

https://doi.org/10.1145/3173574.3174030

[2] Knieriem, B., Zhang, X., Levine, P., Breitinger, F.,

Baggili, I. (2018). An overview of the usage of default

passwords. In: Matoušek, P., Schmiedecker, M. (eds.)

Digital Forensics and Cyber Crime. ICDF2C 2017,

Springer, Lecture Notes of the Institute for Computer

Sciences, Social Informatics and Telecommunications

Engineering, 216: 195-203. https://doi.org/10.1007/978-

3-319-73697-6_15

[3] Furnell, S., Esmael, R., Yang, W., Li, N. (2018).

Enhancing security behaviour by supporting the user.

Computers & Security, 75: 1-9.
https://doi.org/10.1016/j.cose.2018.01.016

[4] Grassi, P.A., Garcia, M.E., Fenton, J.L. (2017). Digital

Identity Guidelines. Special Publication (NIST SP), pp.

800-63-3. https://doi.org/10.6028/NIST.SP.800-63b

[5] Murray, H., Malone, D. (2017). Evaluating password

advice. In: 28th Irish Signals and Systems Conference

(ISSC), pp. 1-6.

https://doi.org/10.1109/issc.2017.7983609

[6] Habib, H., Colnago, J., Melicher, W., Ur, B., Segreti,

S.M., Bauer, L., Christin, N., Cranor, L.F. (2017).

Password creation in the presence of blacklists. In:

Workshop on Usable Security, USEC ’17, Internet

Society. https://doi.org/10.14722/usec.2017.23043

[7] Ur, B., Noma, F., Bees, J., Segreti, S.M., Shay, R., Bauer,

L., Christin, N., Cranor, L.F. (2015). “I added’!’ at the

end to make it secure”: Observing password creation in

the lab. In: Eleventh Symposium on Usable Privacy and

Security (SOUPS 2015), USENIX Association, Ottawa,

pp. 123-140. https://doi.org/10.14722/usec.2017.23043

[8] Florencio, D., Herley, C., van Oorschot, P.C. (2014).

Password portfolios and the finite-effort user: sustainably

managing large numbers of accounts. In: Proceedings

USENIX Security, pp. 575-590.
[9] Shay, R., Komanduri, S., Kelley, P.G., Leon, P.G.,

Mazurek, M.L., Bauer, L., Cranor, L.F. (2010).

Encountering stronger password requirements: user

attitudes and behaviors. In Proceedings of the Sixth

Symposium on Usable Privacy and Security, pp. 1-20.

https://doi.org/10.1145/1837110.1837113

[10] Clair, L.S., Johansen, L., Enck, W., Pirretti, M., Traynor,

P., McDaniel, P., Jaeger, T. (2006). Password exhaustion:

Predicting the end of password usefulness. In

International Conference on Information Systems

Security, pp. 37-55. https://doi.org/10.1007/11961635_3

[11] Burr, W., Dodson, D., Polk, W. (2004). Electronic

authentication guideline (No. NIST Special Publication

(SP) 800-63 Ver. 1.0 (Withdrawn)). National Institute of

Standards and Technology.

[12] Proctor, R.W., Lien, M.C., Vu, K.P.L., Schultz, E.E.,

Salvendy, G. (2002). Improving computer security for

authentication of users: Influence of proactive password

restrictions. Behavior Research Methods, Instruments, &

Computers, 34(2): 163-169.

https://doi.org/10.3758/bf03195438

[13] Weir, M., Aggarwal, S., Collins, M., Stern, H. (2010).

Testing metrics for password creation policies by

attacking large sets of revealed passwords. In

Proceedings of the 17th ACM conference on Computer

and communications security, pp. 162-175.

https://doi.org/10.1145/1866307.1866327

[14] Ross, J., Irani, L., Silberman, M.S., Zaldivar, A.,

Tomlinson, B. (2010). Who are the crowdworkers?

shifting demographics in Mechanical Turk. In CHI'10

Extended Abstracts on Human Factors in Computing

Systems, pp. 2863-2872.
https://doi.org/10.1145/1753846.1753873

[15] Ipeirotis, P. (2010). Demographics of mechanical Turk.

New York University. Tech. Rep.

[16] Buhrmester, M., Kwang, T., Gosling, S.D. (2011).

Amazon’s Mechanical Turk: A new source of

inexpensive, yet high-quality, data? Perspectives on

Psychological Science, 6(1): 3-5.

https://doi.org/10.1037/e527772014-223

[17] Downs, J.S., Holbrook, M.B., Sheng, S., Cranor, L.F.

(2010). Are your participants gaming the system?

Screening Mechanical Turk workers. In Proceedings of

the SIGCHI Conference on Human Factors in

Computing Systems, pp. 2399-2402.

https://doi.org/10.1145/1753326.1753688

719

[18] Kittur, A., Chi, E.H., Suh, B. (2008). Crowdsourcing user

studies with Mechanical Turk. In Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems, pp. 453-456.
https://doi.org/10.1145/1357054.1357127

[19] Toomim, M., Kriplean, T., Pörtner, C., Landay, J. (2011).

Utility of human-computer interactions: Toward a

science of preference measurement. In Proceedings of

the SIGCHI Conference on Human Factors in

Computing Systems, pp. 2275-2284.

https://doi.org/10.1145/1978942.1979277

[20] Chiasson, S., Forget, A., Stobert, E., Van Oorschot, P.C.,

Biddle, R. (2009). Multiple password interference in text

passwords and click-based graphical passwords. In

Proceedings of the 16th ACM Conference on Computer

and Communications Security, pp. 500-511.

https://doi.org/10.1145/1653662.1653722

[21] Kuo, C., Romanosky, S., Cranor, L.F. (2006). Human

selection of mnemonic phrase-based passwords. In

Proceedings of the Second Symposium on Usable

Privacy and Security, pp. 67-78.

https://doi.org/10.1145/1143120.1143129

720

