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In the brain-computer interface system (BCI), electroencephalography (EEG) signals are 

converted into digital signals and analyzed, allowing direct communication between humans 

and the electronic devices around them. The convenience of the user and the speed of 

communication with the surrounding devices are the most important challenges of BCI 

systems. The Emotiv Epoc headset minimizes the discomfort of the user thanks to its wet 

electrodes and easy handling. In the continuation of our previous works, in this paper, we 

developed our BCI system based on the gaze at the rotating vanes using the inexpensive 

Emotiv Epoc headset. In addition to user comfort, our design has an acceptable mean 

accuracy rate (ACC) and mean information transfer rate (ITR) compared to similar systems. 
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1. INTRODUCTION

Throughout Brain-computer interface (BCI) systems allow 

people with physical disabilities to contact people around them 

and control external electronic devices such as wheelchairs 

and prostheses. The purpose of these systems is translating 

brain signals into commands that the person intends, without 

the need for any muscle of the disabled person to work [1]. For 

many researchers, these systems are the only possible solution 

for physically disabled people [2, 3].  

Electroencephalography (EEG) is an electrical signal with a 

high temporal resolution and a very small amplitude (in the μV 

range) produced by neuronal activations in the brain [4]. EEG 

recording is more easily done than recording other brain 

signals such as Functional magnetic resonance imaging 

(FMRI) [5], and its low risk and low cost have contributed to 

its preference in BCI systems [6]. Emotiv Epoc is one of the 

cheapest and increasingly used EEG recorders in terms of 

usability [7, 8]. It is an EEG device that is prepared rapidly and 

is inexpensive and user-friendly, with light and wet electrodes. 

This device was not introduced for research purposes but for 

gaming and entertainment, with a number of software 

packages that can detect the user's emotions and facial 

expressions and control the objects in a virtual world. 

However, it has become increasingly popular due to its 

flexibility and the wide range of suites it offers [9]. The Emotiv 

Epoc device has 14 electrodes and two reference electrodes 

placed in the 10-10 international EEG electrode placement 

system. The internal sampling rate of the device is 2048 Hz, 

but the data are then sampled down to 128 Hz before accessing 

the system. With Emotiv Epoc, it takes less than 5 minutes to 

obtain a clear EEG signal, and it feels comfortable for the user. 

This is very good compared to the preparation time of other 

gel devices. For these reasons, Emotiv Epoc is user-friendly 

and suitable for practical applications. 

Although the Emotiv Epoc headset has restrictions in terms 

of signal quality, it is gaining popularity in BCI research. It has 

been used in various BCI applications because of its 

accessibility and portability for consumers and researchers 

[10]. Some studies have compared Emotiv Epoc with other 

devices [11, 12]. It is clear that the low-cost Emotiv Epoc 

yields satisfactory results since the accuracy rates of the 

systems do not drop significantly when using this equipment. 

As a result, Emotiv's performance has been proven competent 

for BCI systems [9], and due to the reasons mentioned, Emotiv 

is a tool that promises to bring a simple, affordable BCI into 

people's lives [11]. 

In the literature, there are many BCI systems with the 

Emotiv Epoc device. Tong et al. [13] in a study based on the 

P300 paradigm achieved an 88.75% accuracy rate and 7.17 

bits/min information transfer rate (ITR). This system was 

tested on 20 people in two locations, on the subway and in the 

office. Results on the subway were poorer than in Office. A 

steady-state visually evoked potential (SSVEP)-based BCI 

system was recommended by Soroush et al. [14]. The goal of 

their study was to design a BCI system that did not require any 

training phase and could, therefore, be used immediately by 

new users. The accuracy rate of this system with the Emotiv 

Epoc was 94.85%, and ITR was 1.5 bits per trial. The study by 

Mijani et al. [15] tested an offline speller system on three 

people. The accuracy rate and ITR of this P300-based study 

were calculated for single, dual, and triple rapid serial visual 

presentation, 78%, 63%, 64%, and 3.65, 7.72, and 11.5 

bits/min, respectively. In a study conducted in 2019 [16], the 

combination of different colors used for SSVEP was tested, 

and a ~90% accuracy rate and ~8 bits/min ITR were calculated. 

Moreover, in a study based on the motor imagery paradigm 

[17], the accuracy rate was calculated as 93.6%. This study 

was conducted on seven people in the offline mode and used 

deep learning methods for classifications. The ITR of the 
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system has not been computed. 

The aim of this study was to develop a user-friendly, 

completely independent BCI system by using only the brain 

signals of the disabled, thereby increasing the users’ quality of 

life by enabling them to interact with the surrounding 

environment. Each of the common paradigms used in BCI 

systems has its own disadvantages. In the P300 and SSVEP 

paradigms, the user has to look at the lights constantly blinking. 

This is an irritating issue for long-term users and may even 

cause eye diseases. In the motor imagery paradigm, the user 

has to consider the movement of his/her limbs constantly. We 

proposed a BCI system based on rotating vanes in our previous 

studies [18, 19] to solve these problems. However, the EEG 

device used in our studies was wired and with gel. In the 

present study, we tested our system on the Emotiv Epoc device, 

which has a lower quality signal and is cheap. The BCI system 

based on rotating vanes with the Emotiv Epoc device will 

provide more comfort for users. 

The organization of this article is as follows: Materials and 

methods are explained after the Introduction section. This 

section involves data description, pre-processing, feature 

extraction, classification, and performance metrics in BCI 

systems, in that order. In the third section, the results are 

described, and in the fourth and fifth sections, discussion and 

conclusion are given, respectively.  

 

 

2. MATERIALS AND METHODS 

 

2.1 Data description 

 

As mentioned earlier, in order to overcome the problems of 

popular BCI paradigms, we proposed a BCI system based on 

rotating vanes in our previous studies. Thanks to this system, 

the user can avoid looking at flashing lights or thinking of 

constantly moving limbs. We used the interface designed 

through Matlab 2014a in our previous works. This interface is 

given in Figure 1. As it appears, four "A" letters were written 

in white on a black screen, and a red vane was placed on top 

of each. The speed and direction of rotation of the vanes are as 

follows: 

⚫ Vane 1 (top left) rotates in a counterclockwise manner 

every five seconds. 

⚫ Vane 2 (top right) rotates in a counterclockwise 

manner every one second. 

⚫ Vane 3 (bottom left) rotates in a clockwise manner 

every five seconds. 

⚫ Vane 4 (bottom right) rotates in a clockwise manner 

every one second. 

In this way, the options presented according to the user's 

needs will be located under each vane and it will be sufficient 

for the user to look at the vane on the desired option. 

EEG signals were taken by the Emotiv Epoc EEG device 

from five participants (four men and one woman) aged 27 to 

32 years at the Electrical and Electronics Engineering 

Department, Karadeniz Technical University. The 

experiments were performed with the registration number 

24237859-640 according to the rules of the Faculty of 

Medicine Ethics Committee, Karadeniz Technical University 

(Turkey). The participants had no previous experience of using 

any BCI systems and could withdraw at any time during the 

experiment without any pressure on them. The Emotiv Epoc 

device sampled the EEG signal through 14 electrodes at 128 

samples/sec. The participants were seated at a distance of 1 m 

in front of a 32-inch monitor, and after a few seconds of rest, 

recordings commenced. The participants were asked to look at 

each vane for 125 seconds. This process was started and 

finished with a beep sound. After hearing the second beep 

sound, and before starting watching the next vane, the 

participants were given a resting time of about 1 minute. In 

this way, the data set was recorded from a total of five 

participants. Then, the data set was divided into 6-sec, 4-sec, 

and 2-sec epochs, with four seconds, two seconds, and one 

second of overlapping, respectively (Table 1). For example, 

the EEG signal in a single channel, which is 125 seconds for 

each vane, was separated into 6-second segments by four 

seconds of overlapping, resulting in a total of 59 epochs.  

 

 
 

Figure 1. Rotating vanes designed by Matlab 2014a [19] 

 

Table 1. Description of the data set for one participant in an 

EEG channel 
 

Epoch 

duration 

Overlapping 

(sec.) 

Epoch number for each 

vane 

6-sec 4 59 

4-sec 2 60 

2-sec 1 120 

 

2.2 Pre-processing 

 

The amplitude of the signals can directly affect the 

classification performance. Therefore, the min-max 

normalization method was applied in each epoch, as shown in 

Eq. (1), to reduce the effect of amplitude. 

 

𝑋𝑁 =
𝑥 −𝑚𝑖𝑛⁡(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛⁡(𝑥)
 (1) 

 

Here, x and XN are the original epoch and normalized epoch 

indicator, respectively. Furthermore, processing of EEG 

signals requires special approaches such as filtering [20]. After 

normalization, each epoch was passed through a 0.1-45 Hz 

bandpass Butterworth filter. The order of the filter was 

determined as three by trial and error, and Matlab filtfilt 

command was used to reduce the phase shift to zero. 

 

2.3 Feature extraction 

 

The power spectrum density (PSD) analysis provides basic 

information on how power is distributed as a function of 

frequency. In this study, the Welch method was adopted to 

calculate PSD [21]. A short summary of the Welch method can 

be described as follows: In the first step, each epoch is divided 

into parts of a certain length with certain overlaps. In the 

second step, by applying a window to each part, the relevant 

periodogram is calculated, i.e., a Fast Fourier Transform (FFT) 
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is applied to the windowed data. Finally, in the third step, the 

spectral density is estimated by averaging over the modified 

periodograms. The spectrum estimate obtained is scaled to 

calculate the PSD. In our study, a smooth Hamming window 

[22] w(n) is applied to each part of data based on Eq. (2). 

 

W(n)=0.54-0.46 cos(2nπ/L) (2) 

 

where, n=0,1,2 … L-1, and L denotes the length of each part. 

After calculating the PSD of each epoch, features were 

extracted by considering the five frequency rhythms of the 

EEG signal [23]. For this, the areas formed between the PSD 

graph and the x-axis for delta (0-4 Hz), theta (4-7 Hz), alpha 

(8-12 Hz), beta (13-30 Hz), and gamma (30-45 Hz) bands was 

calculated by Matlab trapz command, and thus 5 features were 

obtained from each epoch. A feature vector of an epoch was 

created by bringing these features obtained from 14 channels 

side by side. 

 

2.4 Classification 

 

An algorithm trained with labelled training samples to 

identify unknown samples is called a classifier. The support 

vector machine (SVM) [24], linear discriminant analysis 

(LDA) [25], k-nearest neighbors (k-NN) [26], and Ada boost 

[26] are classifiers used on Emotiv-based BCI systems. SVM 

(linear, quadratic, cubic, medium Gaussian), linear 

discriminant, and ensemble subspace discriminant were 

employed in this study. 

 

2.5 Performance metrics in BCI systems 

 

2.5.1 Accuracy rate (ACC) 

The accuracy rate is the most used metric in a classification 

process. This metric is obtained by dividing the number of 

correctly identifying samples of the system by the number of 

all correctly and incorrectly defined samples by using the Eq. 

(3) [27]. Calculation of ACC is usually performed according 

to two popular strategies: K-fold cross-validation (K-FCV) 

strategy and holdout strategy. 

 

ACC=⁡
𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑠𝑎𝑚𝑝𝑙𝑒𝑠⁡𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑⁡𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑇𝑜𝑡𝑎𝑙⁡𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (3) 

 

K-fold cross-validation (K-FCV) strategy: In this strategy, 

the data set is divided into K equal set; the K-1 subdivision is 

used as the training data set; and a subdivision is utilized as 

the testing data set [28]. All subdivisions are used as a testing 

data set once, and the accuracy rate is calculated each time. 

The accuracy rate of the system is the average of the accuracy 

rates obtained [29, 30]. In the K-FCV strategy, K is chosen as 

many as the number of samples to reduce the risk of unlucky 

splitting. In this strategy, called leave one–out cross-validation 

(LOO-CV), one sample is employed as a testing set, and the 

remaining samples are used as a training set. Here, we used the 

LOO-CV strategy for the computation of ACC. 

Holdout strategy: The holdout strategy is frequently used to 

evaluate the performance of BCI systems. In this strategy, the 

data set is divided into two sets of training and testing. The 

classifier is trained with the training set and the model is 

created. Then, the model is tested with the test dataset. In 

general, researchers create different training and testing sets 

by mixing the data set several times to demonstrate the 

stability of their systems, and in this way, they obtain the 

overall accuracy rate of the system by calculating the average 

of the calculated accuracy rates each time. 

 

2.5.2 ITR 

The value of ITR is very influential, as BCI systems interact 

directly with patients [31]. The ITR is the most comprehensive 

performance metric of BCI systems. This metric derives from 

the principles of information theory and summarizes the three 

important parameters of the BCI system with a single value. 

These parameters are the accuracy rate of the system, the time 

it takes for a selection to be recognized in the system, and the 

number of tasks in each selection. According to Shannon's ITR, 

ITR is defined by Eq. (4) [32].  

 

Bt= 𝑙𝑜𝑔2𝐾 + 𝑝𝑙𝑜𝑔2𝑝 + (1 − 𝑝)𝑙𝑜𝑔2(
1−𝑝

𝐾−1
) (4) 

 

where, K indicates how many rights the user has in each 

selection, and p represents the system's ACC. The unit of Bt is 

bits per trial and in minutes can be expressed by Eq. (5). 

 

ITR= 60 ∗
𝐵𝑡

𝑇
 (5) 

 

where, T is the time it takes for a selection to be recognized in 

the system. In our study, we have four vanes so K is 4. Also, 

T is 6, 4, and 2 when we used 6-sec, 4-sec, and 2-sec epochs, 

respectively. For more details and proofs of ITR based on 

information theory, could be referred to the studies [33, 34]. 

 

 

3. RESULTS 

 

As previously mentioned, after EEG signals were recorded, 

they were divided into, 6-sec, 4-sec, and 2-sec epochs. After 

normalization and filtering of epochs, PSD was calculated by 

the Welch method. It is known that EEG signals have five 

frequency rhythms: delta band (0-4 Hz), theta band (4-7 Hz), 

alpha band (8-12 Hz), beta-band (13-30 Hz), and gamma band 

(30-49 Hz). In the PSD graph, the area of the areas that make 

up these bands with the x-axis was calculated as the features 

of each epoch, and thus 5 features were obtained from each 

epoch. These features obtained from 14 channels were brought 

side by side to form the feature vector of an epoch. These 

feature vectors were classified into six classifiers with two 

strategies. The accuracy rates and ITRs of 6-sec epochs 

obtained based on the LOO-CV strategy are shown in Table 2. 

Also, in Tables 3 and Table 4, the results of 4-sec and 2-sec 

epochs are given according to this strategy. The participants 

were named S1, S2, S3, S4, and S5, and in the last column of 

the tables, for five participants, the average of each metric was 

calculated. 

In the holdout strategy, 75% of the data set was used for the 

training of the classifier and 25% for the testing of the created 

model. To reduce the risk of unlucky splitting, this procedure 

was repeated 10 times and the average accuracy rate was 

calculated. Results for 6-sec, 4-sec, and 2-sec epochs were 

given in Tables 5, 6, and 7, respectively. In addition, the 

Cohen’s kappa coefficient [35] of the system and the 

sensitivity of each class were presented in Figures A1, A2, and 

A3 for 6-sec, 4-sec, and 2-sec epochs in Appendix, 

respectively. 
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Table 2. Accuracy rates and ITRs for 6-sec epochs based on LOO-CV strategy; the highest value in each metric is indicated in 

boldface 

 
Classifier Metric S1 S2 S3 S4 S5 AVG. 

Linear discriminant ACC 0.9322 0.8686 0.9873 0.9322 0.8390 91.18 

ITR 15.35 12.31 18.82 15.35 11.08 14.58 

Linear SVM ACC 0.8644 0.8814 0.9831 0.9280 0.8475 90.08 

ITR 12.13 12.87 18.49 15.12 11.42 14.01 

Quadratic SVM ACC 0.9280 0.8941 0.9915 0.9661 0.8814 93.22 

ITR 15.12 13.45 19.16 17.33 12.87 15.58 

Cubic SVM ACC 0.9364 0.8814 0.9873 0.9576 0.9237 93.72 

ITR 15.58 12.87 18.82 16.80 14.90 15.79 

Medium Gaussian SVM ACC 0.8559 0.8051 0.9958 0.9407 0.8432 88.81 

ITR 11.77 9.79 19.54 15.81 11.25 13.63 

Ensemble Subspace discriminant ACC 0.9153 0.8983 0.9915 0.9619 0.8983 93.3 

ITR 14.47 13.64 19.16 17.06 13.64 15.60 

 

Table 3. Accuracy rates and ITRs for 4-sec epochs based on LOO-CV strategy; the highest value in each metric is indicated in 

boldface 

 
Classifier Metric S1 S2 S3 S4 S5 AVG. 

Linear discriminant ACC 0.7875 0.7917 0.9167 0.8542 0.7542 0.8208 

ITR 13.75 13.97 21.81 17.54 12.09 15.83 

Linear SVM ACC 0.8000 0.7875 0.9292 0.8542 0.7708 0.8283 

ITR 14.42 13.75 22.78 17.54 12.90 16.27 

Quadratic SVM ACC 0.8292 0.7958 0.9417 0.8625 0.8125 0.8483 

ITR 16.04 14.19 23.80 18.07 15.10 17.44 

Cubic SVM ACC 0.8500 0.8083 0.9458 0.8583 0.8167 0.8558 

ITR 17.29 14.87 24.15 17.80 15.33 17.88 

Medium Gaussian SVM ACC 0.7667 0.6958 0.9167 0.8417 0.7875 0.8016 

ITR 12.70 9.47 21.81 16.78 13.75 14.9 

Ensemble Subspace discriminant ACC 0.8208 0.8167 0.9500 0.8667 0.7917 0.8491 

ITR 15.57 15.33 24.52 18.33 13.97 17.54 

 

Table 4. Accuracy rates and ITRs for 2-sec epochs based on LOO-CV strategy; the highest value in each metric is indicated in 

boldface 

 
Classifier Metric S1 S2 S3 S4 S5 AVG. 

Linear discriminant ACC 0.7583 0.7521 0.8063 0.7625 0.7438 0.7645 

ITR 24.57 23.97 29.51 24.98 23.18 25.24 

Linear SVM ACC 0.7792 0.7458 0.8271 0.7729 0.7396 0.7729 

ITR 26.65 23.38 31.85 26.02 22.80 26.13 

Quadratic SVM ACC 0.7812 0.7500 0.8354 0.7708 0.8104 0.7895 

ITR 26.86 23.77 32.82 25.81 29.97 27.84 

Cubic SVM ACC 0.7417 0.7667 0.8187 0.7563 0.8208 0.7808 

ITR 22.99 25.39 30.90 24.37 31.13 26.95 

Medium Gaussian SVM ACC 0.7396 0.7146 0.8417 0.7458 0.7833 0.765 

ITR 22.80 20.55 33.56 23.38 27.08 25.47 

Ensemble Subspace discriminant ACC 0.7708 0.7646 0.8187 0.7812 0.7542 0.7779 

ITR 25.81 25.19 30.90 26.86 24.17 26.58 

 

Table 5. Accuracy rates and ITRs for 6-sec epochs based on holdout strategy; the highest value in each metric is indicated in 

boldface 

 
Classifier Metric S1 S2 S3 S4 S5 AVG. 

Linear discriminant ACC 0.8839 0.8179 0.9768 0.8964 0.8214 0.8792 

ITR 13.12 10.38 17.42 13.63 10.60 13.03 

Linear SVM ACC 0.8214 0.8518 0.9750 0.8893 0.8357 0.8746 

ITR 10.48 11.65 17.58 13.35 11.09 12.82 

Quadratic SVM ACC 0.8821 0.8732 0.9839 0.9464 0.8714 0.9114 

ITR 13.00 12.56 18.08 16.21 12.69 14.50 

Cubic SVM ACC 0.8875 0.8464 0.9786 0.9357 0.8768 0.9050 

ITR 13.34 11.55 17.82 15.62 12.84 14.23 

Medium Gaussian SVM ACC 0.7964 0.7929 0.9786 0.8982 0.8054 0.8542 

ITR 9.61 9.41 17.65 13.74 9.96 12.07 

Ensemble Subspace 

discriminant 

ACC 0.8865 0.8821 0.9721 0.9304 0.8839 0.9110 

ITR 13.22 13.06 17.29 15.35 13.24 14.42 
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Table 6. Accuracy rates and ITRs for 4-sec epochs based on holdout strategy; the highest value in each metric is indicated in 

boldface 
 

Classifier Metric S1 S2 S3 S4 S5 AVG. 

Linear discriminant ACC 0.7150 0.7750 0.9033 0.7917 0.7117 0.7793 

ITR 10.52 13.21 20.94 14.07 10.33 13.81 

Linear SVM ACC 0.7667 0.7883 0.8950 0.8450 0.7617 0.8113 

ITR 12.75 13.85 20.57 17.09 12.60 15.37 

Quadratic SVM ACC 0.7767 0.7950 0.9083 0.8600 0.8083 0.8296 

ITR 13.36 14.24 20.66 18.05 15.01 16.26 

Cubic SVM ACC 0.7800 0.7800 0.9100 0.8533 0.8133 0.8273 

ITR 13.49 13.42 20.78 17.59 15.34 16.12 

Medium Gaussian SVM ACC 0.7183 0.6900 0.9083 0.8267 0.7667 0.7820 

ITR 10.62 9.40 21.43 15.96 12.80 14.04 

Ensemble Subspace discriminant ACC 0.7817 0.8167 0.9300 0.8617 0.8000 0.8380 

ITR 13.56 15.41 23.03 18.14 14.48 16.92 

 

Table 7. Accuracy rates and ITRs for 2-sec epochs based on holdout strategy; the highest value in each metric is indicated in 

boldface 
 

Classifier Metric S1 S2 S3 S4 S5 AVG. 

Linear discriminant ACC 0.7133 0.7408 0.7825 0.7417 0.7567 0.7470 

ITR 20.61 23.19 27.12 23.10 24.49 23.70 

Linear SVM ACC 0.7250 0.7500 0.7992 0.7475 0.7317 0.7506 

ITR 21.57 23.88 28.89 23.72 22.18 24.05 

Quadratic SVM ACC 0.7800 0.7433 0.8042 0.7358 0.7842 0.7695 

ITR 26.94 23.31 29.40 22.63 27.23 25.90 

Cubic SVM ACC 0.7825 0.7583 0.8000 0.7150 0.7808 0.7673 

ITR 27.09 24.66 28.99 20.68 26.90 25.67 

Medium Gaussian SVM ACC 0.7517 0.7008 0.8117 0.7175 0.7475 0.7458 

ITR 24.13 19.52 30.31 20.95 23.58 23.70 

Ensemble Subspace discriminant ACC 0.7367 0.7525 0.7925 0.7467 0.7775 0.7611 

ITR 22.70 24.16 28.31 23.62 26.60 25.08 

 

In all of the sections of this study, the Linear discriminant 

classifier, the covariance structure was selected as full. In 

Linear, Quadratic, Cubic SVM classifier Box constraint level 

was selected 1, and kernel scale mode was Auto. In the 

Medium Gaussian SVM classifier box constraint level was 1 

and the kernel scale was selected as 8.4. In all SVM classifiers, 

one vs. one method was used for the upgrade of the binary 

classifier to a multi-class classifier. In Ensemble Subspace 

discriminant number of learners was 30 and subspace 

dimensions were selected as 35. These parameters were 

selected by the try and error method and are constant in all 

sections of this study. 

 

 

4. DISCUSSIONS  

 

A BCI system based on the rotating vanes with the Emotiv 

Epoc device was proposed and evaluated in 6-sec, 4-sec, and 

2-sec epochs according to two strategies. According to the 

LOO-CV strategy, the cubic SVM classifier gave better results 

than the other five classifiers. The average accuracy rate 

obtained with this strategy for the 6-sec epochs was calculated 

as 93.72%, and the average ITR of the system was 15.79 

bits/min. The average accuracy rates were 85.58% and 78.08% 

in 4-sec and 2-sec epochs, and the ITR of the system was 

computed as 17.88 and 26.95 bits/min, respectively. 

In the results obtained with the hold-out strategy, which is 

more common in offline studies of BCI systems, quadratic 

SVM is the most successful classifier in 6-sec and 2-sec 

epochs. The average accuracy rates obtained for the 6-sec and 

2-sec epochs were 91.14% and 76.95%, and the speed of the 

system equaled 14.50 and 25.90 bits/min, respectively. The 

Ensemble Subspace discriminant classifier was more 

successful in 4-sec epochs. The average accuracy rate and ITR 

of the system were calculated as 83.80% and 16.92 bits/min, 

respectively. Successful in 6-sec and 2-sec epochs, the 

quadratic SVM followed this classifier with little difference 

(82.96% and 16.26 bits/min). 

In most Emotiv-based BCI systems (such as [36] and [37]), 

the system's accuracy rate and ITR were not computed. Still, 

extensive studies are available in the literature. In a study 

based on the SSVEP paradigm, Brennan et al. [38] used 

Emotiv Epoc and reached a 79.2% accuracy rate and 15.23 

bits/min ITR. In a 2012 study [11], the accuracy rate of the 

system in the offline mode was calculated as 82.99% ± 4.98%. 

In this SSVEP-based study, the speed of the system was given 

as 28.06 ± 6.45 bits/min. Four participants contributed to this 

study. The accuracy rate of the system in the online mode was 

95.83% ± 3.59% and the ITR was 20.97 ± 0.37 bits/min. The 

results of other studies are close to these values [14] or even 

less [13, 15, 16]. When we compare the paradigm problems 

and the results of these studies with the proposed system's 

paradigm and results, it becomes clear that the proposed 

system provides more comfort for users, and the design has an 

acceptable ACC and ITR compared to similar systems.  

 

 

5. CONCLUSION 

 

In EEG-based BCI systems, EEG signals are analyzed and 

the secret thoughts of the user are translated into certain 

commands; in this way, the user can communicate with his/her 

surroundings. Although BCI faces many challenges in terms 

of applicability, usability, and accuracy rate, it is the future of 

the human-machine interface and the only communication 

destination for paralyzed people. The convenience of the user 
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and the speed of communication with the surrounding devices 

are the most important challenges of BCI systems. The Emotiv 

Epoc headset minimizes the discomfort of the user with its wet 

electrodes and easy usage. To continue our previous works, in 

this article, we developed our BCI system based on rotating 

vanes using the Emotiv Epoc headset. The system's offline 

accuracy rate and speed were calculated as ~77%, 84%, 92%, 

and 26, 17, 15 bits/min for the 2-sec, 4-sec, and 6-sec epochs, 

respectively. In the next study, we have planned to increase the 

accuracy rate of 2-sec epochs by testing different feature 

extraction and classification methods, and to test the system in 

a realistic environment by using the proposed BCI system as a 

control terminal in the online mode. 
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APPENDIX 
 

 
 

Figure A1. Cohen’s kappa coefficient and sensitivity of each 

vane in 6-sec epochs based on the hold-out strategy 
 

 
 

Figure A2. Cohen’s kappa coefficient and sensitivity of each 

vane in 4-sec epochs based on the hold-out strategy 
 

 
 

Figure A3. Cohen’s kappa coefficient and sensitivity of each 

vane in 2-sec epochs based on the hold-out strategy  
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