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Despite the marked progress in recent years, structured light-based three-dimensional (3D) 

measurement techniques still have difficulty in capturing mirror surface reflection. The 

accuracy of 3D reconstruction for mirror objects should be further improved to adapt to the 

high reflectivity and curvature of such objects. To improve the stripe definition and 

reconstruction accuracy of highly reflective mirror objects, this paper analyzes the local blur 

of defocus stripes in phase measuring deflectometry (PMD) system, and presents a method 

to analyze the spatially varying defocusing and de-blurring, with the aid of a 3D block 

matching algorithm, thereby focusing on defocus stripes. Experimental results show that the 

proposed method can achieve micron-level reconstruction accuracy of standard flat mirrors, 

and detect the defects on highly reflective mirror objects at a high precision. 
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1. INTRODUCTION

Optical three-dimensional (3D) imaging has obvious 

advantages in reconstructing objects with diffuse reflection, 

whether in terms of speed, accuracy, or stability. As a result, 

this technology has been widely used in industrial 

manufacturing, product inspection, reverse engineering, 

biomedicine, and other fields [1-3]. The early optical 3D 

imaging methods mostly adopt the contact measurement 

model: the coordinates of each point on the reflective surface 

are obtained by moving the stylus, and combined to obtain the 

3D surface shape of the reflective object. Albeit its high 

accuracy, the traditional 3D imaging instruments raise strict 

requirements on the measuring conditions, because the contact 

system might damage the mirror surface. 

Recently, non-contact 3D imaging has again wide attention, 

owing to its large measuring range and prevention of surface 

damage. Taking the binary shifting strip as structured light 

pattern, Song et al. [4] presented a highly dynamic range 

structured light means for the 3D measurement of specular 

surface, and experimentally proved that their means can 

precisely reconstruct specular targets with various shapes. Han 

et al. [5] proposed an accurate phase measuring deflectometry 

(PMD) method for 3D reconstruction of mirror surfaces, and 

demonstrated the high precision of the method through 

experiments. Song et al. [6] developed an advanced fusion 

strategy for the reconstruction of complex objects in 

micrometer-level 3D measurement, and adopted a novel 

scene-adaptive decoding algorithm based on a binary tree to 

improve the robustness of decoding and eliminate the effects 

of noise and occlusion on stripe detection. 

PMD is a popular non-contact 3D imaging method [7-9]. By 

this technique, the surface phase of the target object is 

extracted from the deformed sine stripe pattern obtained by the 

charge-coupled device (CCD). The quality of the obtained 

stripe directly bears on the phase calculation and the 

reconstruction accuracy of the target object. However, the 

captured stripes are inevitably deformed by the limited field 

depth of the CCD. Besides, there is little report on the 

acquisition of high-quality stripes, which is a key step for 

structured light 3D measurement of object surfaces. 

After obtaining stripes, researchers usually reduce 

measurement errors through algorithm compensation. 

Considering the nonlinearity of the stripe projection system, 

researchers have proposed various compensation methods, 

namely, the structured light method of Roach grating encoding, 

the calibration of nonlinear Gamma value, the look-up table 

(LUT) method, the light intensity compensation, and the pre-

distortion stripe method. These methods are also applicable to 

PMD. In addition, different compensation methods have 

emerged to tackle the phase error induced by the quantization 

of stripe intensity in stripe projection, namely, a multi-period 

phase shift measurement method, and a phase measurement 

method that removes the peak and valley pixels. 

The high-quality stripes are the prerequisite for high-

precision measurement and reconstruction. With the aim to 

obtain high-quality stripes, this paper analyzes the local 

blurring of the deformed stripes in space, preprocesses the 

focus of the deformed stripes, and establishes a defocus model 

of the space. Next, high-precision stripes were obtained 

efficiently and quickly by the 3D block matching algorithm 

(BM3D), and the mirror object was reconstructed three 

dimensionally in high precision, using the regional wavefront 

reconstruction algorithm based on the Southwell model. In this 

way, the highly reflective mirror objects are reconstructed 

accurately. 

The remainder of this paper is organized as follows: Section 

2 presents the spatially varying defocusing and de-blurring 

analyzes, and the integral reconstruction algorithm; Section 3 

verifies the proposed method through experiments, and 
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discusses the experimental results; Section 4 puts forward the 

conclusions, and looks forward to the future research. 

 

 

2. PRINCIPLE AND KEY ALGORITHMS OF PMD 

 

2.1 Construction and principle of PMD system 

 

The hardware of PMD system encompasses a liquid crystal 

display (LCD) and a CCD camera. The display is synced with 

camera shooting under the control of a computer. Figures 1 

and 2 are a photo and the principle of the PMD system. It can 

be seen that the display presents the standard sine stripes, 

while the camera captures the reflection condition of the 

reflector. In other words, the camera observes the stripe pattern 

on the display via the target mirror. The stripes reflected by the 

mirror carry the shape information of the surface deformation. 

Then, the stripe information is demodulated to derive the 3D 

surface topography of the target mirror. Figure 3 explains the 

workflow of 3D shape measurement of mirror objects by 

classical PMD. 

 

 
 

Figure 1. The hardware of the PMD system 

 

 
 

Figure 2. The principle of the PMD system 

 

Generate straight sine stripe patterns

Display the patterns

Capture the deformed patterns 

reflected by mirror object

Calculate the unwrapped phase data

Calculate the unwrapped phase data Calibrate the system parameters

Collect local slope data on the surface of 
the mirror object

Integrate the slope data to obtain 3D shape data of the surface of the 
mirror object  

 

Figure 3. The workflow of 3D shape measurement of mirror objects by classical PMD 

 

2.2 Calibration of PMD system 

 

In 3D imaging detection, system calibration is the 

precondition for high-precision measurement. Here, the two-

dimensional (2D) structured light is connected with the 3D 

shape of the target mirror, based on the mapping between the 

stripe phase determined by PMD and the surface gradient of 

the mirror.  

The system calibration can be divided into two parts: the 

calibration of CCD camera, and the calibration of system 

geometry. The latter mainly focuses on the reference plane and 

LCD position. The main calibration parameters of the PMD 

system were determined by the calibration measurement 

system [10-12], namely, focal length F, principal point 

coordinates C of the image, distortion parameter K, rotation 

vector R, translation vector T, etc. [10-12]. The derivation of 

these parameters is detailed in the works of Huang et al. [7], 

Knauer et al. [8] and Zuo et al. [9]. 

 

Table 1. The configuration of system calibration parameters 

 
Checkboard dimensions 9 rows 11columns 

CCD resolution 2,080*1,552/HIKVISION 

LCD resolution 1,920*1,080/HP24es 

Cellular pixel 40 

LCD pixel size 0.271mm*0.271mm 

Cell size 10.84mm 

Number of captured images 20 
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The first step of system calibration is to generate a 

checkerboard by computer for the calibration of the CCD 

camera. Here, the checkerboard has 9 rows and 11 columns. 

The size of each grid on the checkerboard was set to 40 pixels, 

according to the unit pixel size of LCD screen (0.271mm), and 

the side length of each grid (10.84mm). 

Then, a high-precision mirror was placed on the reference 

plane, and rotated and moved in turn (Figure 4(a)). Meanwhile, 

the camera captured the checkerboard patterns of different 

positions (Figure 4(b)). After collecting 20 images, Zhang’s 

calibration method was introduced to calibrate the internal 

parameters of the camera, including F, C, and K. On this basis, 

the relationship between the reference plane and the LCD 

screen was derived, and the external parameters were 

calculated.  

The Zhang’s method strikes a balance between the 

traditional calibration method and the self-calibration method. 

Unlike the traditional method, this method only requires a 

checkerboard, eliminating the need for high precision 

calibrator. Compared with the self-calibration method, this 

method is accurate and easy to operate. That is why Zhang’s 

method was selected in this research. 

 

 
(a) Mirror pose 

 
(b) The checkerboard captured by the camera in mirror 

reflection 

 

Figure 4. The calibration of the CCD camera 

 

The geometric calibration focuses on the positions of the 

reference plane and LCD screen, trying to establish the 

correspondence between the two items. First, a checkerboard 

was placed on the high-precision reflecting surface, treating 

the latter as the reference surface (Figure 5). Then, the image 

of the checkerboard was captured by the calibrated camera, 

and presented on the LCD. After that, the camera was used to 

capture the checkerboard image on the reference surface that 

can reflect the display. Next, the physical coordinates and 

pixel coordinates of the corners of the two images were 

calculated in the small hole imaging model of the camera. 

Finally, the rotation vector RV, rotation relationship RR, 

translation vector TV, and translation relationship TR of the 

display and reference plane relative to the camera were derived 

from the internal parameters of the camera. 

 

  

 
 

Figure 5. The calibration of reference surface and display 

 

2.3 Analysis of wrapped phase and dephasing algorithm 

 

The stripe reflection measurement was implemented in the 

following steps: secure the wrapped and absolute phases with 

transverse and longitudinal stripes; solve the gradient based on 

the phase-gradient relationship; integrate the gradient to 

reconstruct the 3D shape of the mirror object.  

To obtain the gradient information of the 3D surface, the 

phase information of the points on the LCD screen, the 

reflection points of the object surface, and the imaging points 

of the corresponding image must be acquired through phase 

unwrapping from the deformed stripe pattern modulated by the 

measured surface. 

The phase shifting method was adopted to extract the 

required data [8, 9, 13]. This method is more accurate than the 

traditional Fourier transform in phase calculation. It can 

achieve a high accurate, even if the structure is complicated by 

noises, high reflectivity, and varied materials. The measuring 

accuracy of this method mainly depends on the number of 

phase-shifting gratings and the quality of projection gratings 

(which is determined by hardware). Assuming that the 

intensity of the stripe image obeys the standard sine 

distribution, the light intensity distribution can be described as:  

 

I(x, y) = I′(x, y) + I′′(x, y)cos⁡[φ(x, y) + δ] (1) 

 

where, I'(x, y) is the mean gray value of the stripe image; I''(x, 

y) is the gray level modulation of the stripe image; δ is the 

phase shift; φ(x, y) is the phase principal value of the target 

stripe pattern.  

To compute the values of I'(x, y), I''(x, y) and φ(x, y), at least 

three stripe images are needed to obtain the phase principal 

value of the deformed stripe pattern. Considering the high 

accuracy and noise suppression effect of standard n-step 

phase-shifting, this paper applies the standard four-step phase-

shifting method to extract the phase principal value. The 

standard phase difference can be calculated by three-step 

phase unwrapping: 
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𝐼1 = 𝑎 + 𝑏 𝑐𝑜𝑠(𝜑(𝑥, 𝑦)) 
𝐼2 = 𝑎 + 𝑏 𝑐𝑜𝑠(𝜑(𝑥, 𝑦) + 𝜋/2) 
𝐼3 = 𝑎 + 𝑏 𝑐𝑜𝑠(𝜑(𝑥, 𝑦) + 𝜋) 
𝐼4 = 𝑎 + 𝑏 𝑐𝑜𝑠(𝜑(𝑥, 𝑦) + 3𝜋/2) 

(2) 

 

The phase principal value of the grating stripes image is 

calculated by: 

 

𝜑(𝑥, 𝑦) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐼4 − 𝐼2
𝐼1 − 𝐼3

) (3) 

 

The traditional way of combing gray value coding and 

phase-shift algorithm is simple and easy to implement. 

However, this approach is sensitive to the color of the object 

surface, calling for high accuracy of image binarization. For 

example, if the object has rich or dark surface colors, white 

powder should be sprayed over the surface. What is worse, the 

projected coded image can only be used for phase unwrapping, 

and gray value coding is not helpful to the accuracy of phase 

calculation.  

 

 

 

 
 

Figure 6. The phases corresponding to the multi-frequency 

heterodyne method  

 

After comprehensive consideration, the multi-frequency 

heterodyne principle was chosen for phase calculation, thanks 

to its good stability and accuracy. This principle superimposes 

two phase functions with different frequencies into a phase 

function with lower frequency, and combines the merits of 

three-frequency unwrapping and heterodyne method, namely, 

high measuring efficiency and excellent phase unwrapping 

accuracy [14-16]. The phase principal value p12 can be 

calculated by: 

 

𝑝12 =
𝑝1 ∗ 𝑝2
𝑝1 − 𝑝2

 (4) 

 

where, p1 and p2 are the fundamental frequency and 

superposition frequency corresponding to the p12, 

respectively. The phases (PH12, PH23 and PH123) 

corresponding to the multi-frequency heterodyne method are 

shown in Figure 6. The results of three-band four-step 

horizontal unwrapping are displayed in Figure 7. It can be seen 

that the proposed method can achieve the purpose of graphical 

phase transform. 

 

 

 
 

Figure 7. The results of three-band four-step horizontal 

unwrapping 

 

2.4 Local blur analysis and super pixel segmentation 

 

In the field of 3D reconstruction of mirror object, the camera 

with low focal length in traditional physical imaging system is 

sensitive to defocusing. The sensitivity, coupled with the 

shallow focusing depth, causes the defocusing blur of sine 

stripes during the capture of deformed stripes. At different 

distances, the field depth of the camera leads to multiple 

defocusing blurring, which varies with the depth of the scene. 

In addition, the blur map provides important information for 

depth estimation.  

In the light of the above, it is particularly important to 

establish and remove spatially varying defocusing blur based 

on the blur of a single stripe pattern [17]. Our method of 

defocusing blur establishment and removal is illustrated in 

Figure 8. First, the local and global blur images were estimated 

by the blur detected on edge information. Then, the 

deformation blur stripe was handled by super-pixel 

segmentation and BM3D deconvolution [18-20]. 
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Figure 8. The workflow of defocusing blur establishment 

and removal 

 

Based on the analysis of spatially varying local blur, the 

defocusing blur degradation can be modeled as convolution 

process. In general, defocusing reduces the edge sharpness and 

contrast of the image. Once the defocused image is re-blurred, 

the amount of high-frequency blur will change significantly. 

The edges in a sharp image can be modeled as: 

 

𝑓(𝑥, 𝑦) = 𝐴𝑢(𝑥, 𝑦) + 𝐵 (5) 

 

where, u(x,y) is the step function; A and B are amplitude and 

offset, respectively. Based on A and B, the changes of edge 

information were recalculated, and used to estimate the edge 

sharpness: 

 

𝑆 =
|𝛻𝐼| − |𝛻𝐼𝑅|

|𝛻𝐼| + 𝜀
 (6) 

 

where, |∇I| and |IR| are the gradients of the blur image and the 

re-blurred image, respectively; ε is a small regular number. In 

addition, we have: 
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where, σ0is the standard deviation of blur kernel. The edges 

were detected by Canny edge detection operators. Then, the 

edge sharpness S can be expressed as S = 1 − √
σ2

σ2+σ0
2. The 

blur amounts of all edges were combined into a sparse edge 

blur map (Figure 9). 

 

 
 

Figure 9. The sparse edge blur map 

After the bur amounts of all edges had been estimated, the 

k-nearest neighbors (KNN) [21] was introduced to predict the 

blur amount of the unknown region, creating a complete blur 

map. By the KNN, the non-local principle was applied to 

image matting, and the complete blur map represents the 

change of scene depth: 

 

𝐸(m') = 𝑚′𝑇(𝐿 + 𝜆𝐷)𝑚′ − 2𝜆𝑟𝑇𝑚′ + 𝜆|𝑟′| (8) 

 

where, m' and r' are global and local blur maps, respectively; λ 

is the regularization parameter; L is the Laplacian matrix of 

sparse affinity matrix A. According to prior knowledge, matrix 

L can be expressed as: 

 

𝐿(𝑖, 𝑗) = 𝐷(𝑖, 𝑗) − 𝐴(𝑖, 𝑗) (9) 

 

where, D=diag(r). For each pixel, the k-nearest neighbors were 

found by the non-local principle of KNN. Specifically, A was 

made equivalent to B, and the blur kernel function was defined 

as 

 

K(i, j) = 1 −
‖X(i) − X(j)‖

C
 (10) 

 

where, X(i)is the eigenvector calculated by the pixels around 

i; C is a constraint that limits the bur kernel within [0, 1]. 

By the preconditioned conjugate gradient (PCG) method, 

the global blur map was obtained with the optimal solution 

m′ =
r′

L+D
 on MATLAB. 

As mentioned above, the blur amount is closely related to 

the field depth. The greater the field depth, the larger the blur 

amount. For most depth varying images, the pixels in the 

object have similar depths. To uniformize local depth and 

eliminate outliers, the full blur mapping was divided into 

several super-pixel modules. The mean of all pixels in each 

super-pixel was taken as the blur amount of that super-pixel: 

 

𝜎𝑛 =
∑ 𝑚𝑗𝑗∈𝑀𝑛

𝑡
, 𝑛 ∈ [1, 𝑙] (11) 

 

where, n is the number of super-pixel modules; σn and mj are 

the blur amount of the nth super-pixel blur and the total blur 

amount, respectively; n is serial number of super-pixel module; 

t is the exact number of pixels in the module. The number of 

super-pixels l can be self-selected. The blur kernel of the nth 

super-pixel module can be defined as: 

 

𝑘𝑛(𝑥, 𝑦, 𝜎𝑛) =
1

√2𝜋𝜎𝑛
𝑒
−𝑥2+𝑦2

2𝜎𝑛
2 , 𝑛 ∈ [1, 𝑙] (12) 

 

In this way, spatial variation deblurring is transformed into 

a local spatially invariant deblurring problem in each super-

pixel. Then, each hyper-pixel was restored separately, and the 

deblurring effect was included to obtain a focused image. 

Figure 10 shows the super-pixel segmentation blur map. 

After segmenting the full blur mapping, the local kernel of 

each hyper-pixel was obtained. The full focus stripes pattern 

was formed by random deconvolution of each super-pixel 

module: 

 

𝐿 =∑𝐿′𝑛(𝑥, 𝑦)

𝑙

𝑛=𝑙

 (13) 
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Figure 10. The super-pixel segmentation blur map 

 

2.5 Integral reconstruction algorithm 

 

In traditional structured light means (e.g. phase 

measurement profilometry (PMP)), the height information is 

directly obtained from the phase information. In the PMD, the 

two vertical gradients need to be integrated before obtaining 

the height distribution of the object; then, the 3D topography 

can be obtained according to the gradient integral [22]. Hence, 

the accuracy of the integral is related to the quality of surface 

reconstruction. The relationship between gradient and height 

can be expressed as: 

 

𝑔𝑥(𝑥, 𝑦) =
𝜕𝑧(𝑥, 𝑦)

𝜕𝑥
 

𝑔𝑦(𝑥, 𝑦) =
𝜕𝑧(𝑥, 𝑦)

𝜕𝑥
 

(14) 

 

Let 𝑔𝑥
𝑟(𝑥, 𝑦) and 𝑔𝑦

𝑐(𝑥, 𝑦) be the gradients of the measured 

surface in the direction of Xr and Yr, respectively. For direct 

integration on the pixel plane, the gradients were converted 

into gc
x
(x, y)  and gc

y
(x, y) , and the camera coordinates of 

each pixel were obtained. To realize high-precision integration, 

the common ways include Fourier transform and regional 

wavefront reconstruction algorithm [23, 24]. 

The Fourier transform is a typical global integration method. 

The advantages include the fast computation for 

reconstructing the gradient of massive data, and the highly 

accurate reconstruction of smooth and small local deformation 

surfaces. However, the successful implementation of Fourier 

transform has a precondition: the boundary must conform to 

the periodic extension condition, and lies in the middle 

between the two integral directions. Otherwise, the 

reconstructed edge will have a large error, or the 

reconstruction will simply fail. Moreover, if the measured data 

have poor integrity, it would be difficult to restore the 3D 

surface of the object, in the presence of complex connected 

regions and data of non-equidistant distribution (Figure 11). 

 
(a) Equal spacing in X and Y directions 

 
(b) Equal spacing in X or Y direction 

 
(c) unequal spacing in X and Y directions 

 

Figure 11. The distribution of gradient data points 
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In contrast, the regional wavefront reconstruction method 

[25] can effectively process the data of arbitrary shape and 

non-equidistant distribution gradient. This method not only 

suppresses high-frequency noise, but also achieves high 

reconstruction accuracy. The regional wavefront can be 

expressed as: 

 
𝑧𝑚,𝑛+1 − 𝑧𝑚,𝑛
𝑥𝑚,𝑛+1 − 𝑥𝑚,𝑛

≈ 𝑓
𝑚,𝑛+

1
2
(𝑔𝑥) =

𝑔𝑚,𝑛
𝑥 + 𝑔𝑚,𝑛+1

𝑥

2
 

𝑧𝑚+1,𝑛 − 𝑧𝑚,𝑛
𝑦𝑚+1,𝑛 − 𝑦𝑚,𝑛

≈ 𝑓
𝑚+

1
2
,𝑛
(𝑔𝑦) =

𝑔𝑚,𝑛
𝑦

+ 𝑔𝑚+1,𝑛
𝑦

2
 

(15) 

 

where, xm,n, ym,n and zm,n are the physical coordinates of pixel 

(m, n); gx, and⁡⁡gy are the gradients of pixel (m, n); f
m,n+

1

2

(gx) 

and f
m+

1

2
,n
(gy) are the values of gradient gx on pixel (m, n +

1

2
) and gradient gy on pixel (m +

1

2
, n), respectively. 

 

 
(a) Equal spacing in X or Y direction 

 
(b) Unequal spacing in X and Y directions 

 

Figure 12. The neighboring pixels 

 

In the case of Figure 12(b), the relationship between height 

and gradient should be reconsidered: 

 

{

𝑧𝑚,𝑛+1 − 𝑧𝑚,𝑛 ≈ 𝛥ℎ𝑚,𝑛+1
2

𝑥 + 𝛥ℎ
𝑚,𝑛+

1
2

𝑦

𝑧𝑚+1,𝑛 − 𝑧𝑚,𝑛 ≈ 𝛥ℎ𝑚+1
2
,𝑛

𝑥 + 𝛥ℎ
𝑚+

1
2
,𝑛

𝑦  (16) 

 

where, ∆hx
m,n+

1

2

 and ∆hy
m,n+

1

2

 are the height increments from 

point a to point b along the direction of x and y, respectively; 

∆hx
m+

1

2
,n

 and ∆hy
m+

1

2
,n

 are the height increments from point a 

to point c along the direction of x and y, respectively: 

 

{
  
 

  
 
𝛥ℎ

𝑚,𝑛+
1
2

𝑥 = 𝑓
𝑚,𝑛+

1
2
(𝑔𝑥)(𝑥𝑚,𝑛+1 − 𝑥𝑚,𝑛)

𝛥ℎ
𝑚,𝑛+

1
2

𝑦
= 𝑓

𝑚,𝑛+
1
2
(𝑔𝑦)(𝑦𝑚,𝑛+1 − 𝑦𝑚,𝑛)

𝛥ℎ
𝑚+

1
2,𝑛

𝑥 = 𝑓
𝑚+

1
2
,𝑛
(𝑔𝑥)(𝑥𝑚+1,𝑛 − 𝑥𝑚,𝑛)

𝛥ℎ
𝑚+

1
2
,𝑛

𝑦
= 𝑓

𝑚+
1
2
,𝑛
(𝑔𝑦)(𝑦𝑚+1,𝑛 − 𝑥𝑚,𝑛)

 (17) 

 

 

3. EXPERIMENTS AND RESULTS ANALYSIS 

 

For experimental verification, a circular plane mirror was 

constructed with a diameter of 100mm, and a rectangular high-

precision mirror was made of reinforced aluminum with a 

chamfer of 70*100mm. The results of mirror reconstruction by 

our method is recorded in Figure 13. 

 

 
(a)Horizontal grating stripes 

 
(b)Vertical grating stripes 

 
(c) Circular reconstruction results 

 
(d) Rectangular reconstruction results 

 
(e) Circular reconstruction error 

 
(f) Rectangular reconstruction error 

 

Figure 13. The results of mirror reconstruction 
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The left and right columns of Figure 13 are the 

reconstruction result and error of circular and rectangular 

surfaces, respectively. The fitting plane was obtained by 

optimizing the discrete points in the space, that is, minimizing 

the sum of the distances between these points and a certain 

plane. Under the prior knowledge that the plane must pass 

through the mean of the scattered points, the normal vector of 

the fitting plane was found. Through the singular value 

decomposition (SVD) of the covariance matrix, the singular 

vector corresponding to the minimum singular value was taken 

as the normal vector of the plane. The errors (e) and (f) were 

obtained by subtracting the reconstruction planes (c) and (d) 

with their respective fitting planes. The maximum plane error 

of the circular mirror was 22μm, the minimum was -27μm, 

and the standard deviation was 9.1μm. The maximum error of 

rectangular mirror was 11μm, the minimum was -27μm, and 

the standard deviation was 7.8μm. The experimental results 

show that the precision of phase resolution can be improved 

by preprocessing the captured deformed stripes, and the 

reconstruction accuracy of mirror object can be enhanced by 

the super pixel segmentation module, which leads to the target 

reconstruction at micro precision. 

 

 

4. CONCLUSIONS 

 

Under the framework of the PMD, a 3D reconstruction 

system was developed for highly reflective mirrors. By 

comparing the key algorithms of the PMD system, the 

defocusing blur model of spatially varying deformed stripe 

pattern was proposed to improve the accuracy of phase 

measurement, facilitating the subsequent 3D target 

reconstruction. The proposed method was verified through 

experiments on the 3D reconstruction of two mirrors, 

including a circular plane mirror with a diameter of 100mm, 

and a rectangular reinforced aluminum high-precision mirror 

with a chamfer of 70*100mm. The experimental results show 

that our method achieved an accuracy on the micron level. The 

future research will probe deep into integral reconstruction, 

and further improve the reconstruction speed and accuracy of 

our method. 
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