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In the current era, the implementation of automated security video surveillance systems is 

particularly needy in terms of human violence recognition. Nevertheless, the latter 

encounters various interlinked difficulties which require efficient solutions as well as 

feasible methods that provide a relevant distinction between normal human actions and 

abnormal ones. In this paper, we present an overview of these issues and a literature review 

of the related works and current research on-going efforts on this field and suggests a novel 

prediction model for violence recognition, based on a preliminary spatio-temporal features 

extraction using the material derivative which describes the rate of change of a particle while 

in motion with respect to time. The classification algorithm is then carried out using a deep 

learning LSTM technique to classify generated features into eight specified violent and non-

violent categories and a prediction value for each class of action is calculated. The whole 

model is trained on a public dataset and its classification capacity is evaluated on a confusion 

matrix which assembles all the predictions made by the system with their actual labels. The 

obtained results are promising and show that the proposed model can be potentially useful 

for detecting human violence. 
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1. INTRODUCTION

Violence in its many different forms is pervasive in the lives 

of many people around the world. No nation is immune from 

its reaches and we are all affected to varying degrees. Many 

protect themselves by locking their homes and avoiding unsafe 

places. For others, there is no escape and the danger of 

violence exists even behind these closed doors far away from 

eyes.  

According to the World Health Organization (WHO: World 

report on violence and health), violence is defined as follows: 

"The threat or intentional use of physical force or power 

against oneself, against another or against a group or 

community that causes or is at high risk of causing trauma, 

death, psychological damage, maldevelopment or 

deprivation." 

The WHO report on violence and health uses a typology 

which divides violence into three broad categories, according 

to who commits the violent act: Self-directed violence, 

interpersonal violence and collective violence. 

Moreover, the Web is currently the information channel 

most frequently used by the young people wherever they are, 

and the mobility handicaps the vigilance of parents regarding 

websites content which is plagued with violence and harming 

children. Violence has widespread impacts which are not 

limited to physical injuries but also extend to psychological 

effects. 

The global human toll of violence is nearly two million lives 

lost each year, and so many others, innumerable, devastated in 

ways that are not always apparent. Violence is among the main 

death reasons worldwide for people aged 15 to 44. 

Furthermore, a large UN study says that, worldwide, criminal 

activities claim more victims than terrorism and armed conflict 

combined. In particular, homicide (in any form whatsoever: 

war, murder ...) is the most extreme form of violence, and also 

the most measurable. 

The 2019 UNODC Homicide Report 

(https://www.unodc.org/documents/data-and-

analysis/gsh/Booklet2.pdf) states that intentional homicide 

generated the death of 464,000 persons around the world in 

2017.  The Americas registered the highest proportion (37%), 

and then comes Africa which shares over a third (35%) of the 

total. Although Asia has a large population, it registered less 

than a quarter (23%) of the total. Europe registered lower rates 

(4.7%) and Oceania accounted for the lowest share (0.2%). 

Such rates are alarming and simply hard to ignore. Thereby, 

video surveillance systems became a daily priority in public 

spaces around the world inasmuch as they help enhance 

citizens’ security and, hence, reduce risks of becoming a 

victim of crime. Most of the researches that have been 

conducted during the last years were devoted to focusing on 

automatic Human Action Recognition (HAR) [1-4]. However, 

the automatic characterization of aggressive activities has been 

comparatively less studied [5, 6]. Furthermore, combined with 

the ever-increasing amount of captured video content and the 

growing need to appropriately describe such sensitive 

information, recognizing suspicious behaviour is more and 

more challenging and depends on different factors. Indeed, 

several constraints [6, 7] impede automatic detection of 

violence due to its complexity and its ambiguous aspect which 
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inflict certain obstacles in defining what should be specified as 

aggressive actions [8]. 

In this paper, we present a problem that has a serious impact 

on human security. We mainly focus on the suspicious 

behaviour such as assaults between individuals. Therefore, we 

suggest a novel framework based on material derivative and 

LSTM neural network to deal with violence recognition in 

surveillance videos. The proposed framework starts by taking 

a set of successive images as input. The first step is a 

preliminary spatio-temporal features extraction using the 

material derivative which describes the rate of change of a 

particle while in motion over time. Further, a classification 

step is carried out using a deep learning neural network LSTM 

technique to classify generated features into specified violent 

and non-violent categories. Our work contributed to the 

following three aspects: 

• We suggest a novel framework to recognize violent 

actions based on spatio-temporal features extraction using 

the material derivative concept and a classification 

technique based on the LSTM neural networks.  

• We detail the main challenges likely to be faced by 

violence detection in video sequences as well as the 

techniques suggested to overcome such issues.  

• We conduct an extensive characterization of the related 

works in the evolving field of human violence detection.  

 

 

2. ISSUES OF VIOLENCE DETECTION IN VIDEO 

 

Capturing moving individuals in a video presents various 

challenges depending on the environment where the video is 

recorded and the camera used. If the environment is not 

controllable in terms of lighting and composition, issues are 

numerous such as complex backgrounds [9], sudden 

movements [10], occlusions [11] and moving shadows. If a 

video is filmed with a moving camera [10], objects may appear 

blurry or the lens may be partially distorted. In the following, 

we examine in detail some frequent challenges. 

 

2.1 Lighting variations 

 

Lighting conditions of a scene may vary. This can be 

gradual such as in an outdoor scene, when a cloud passes over 

the sun or changes from bright sunlight to cloudy or rainy 

weather. It can be sudden when turning on or off lights inside 

or a possible motion of the light source. Therefore, it is painful 

to guarantee a good video quality under varying lighting 

conditions as shown in Figure 1. To enhance night video, 

Soumya et al. [13] implemented a daytime coloring transfer 

method. They used moving pixel-based background 

estimation approach during night time. Then, a tone mapping 

is performed to prepare the night video pixels enhancement. 

This allowed dissociating the illumination and reflectance map 

from images with day and night background. Finally, the 

preprocessed night video is fused with background 

illuminations and a statistical color transfer is applied.  

Zhou et al. [14] tackled illumination variation using a local 

histogram of oriented gradient descriptor. To deal with 

lighting changes, they adopted two techniques: Going halfway 

through the block, and then normalizing each LHOG. Recently, 

Kim et al. [15] suggested a new tip to enhance low-light image 

by considering as an illumination component the maximal 

value resulting from the diffusion process. Such value 

represents the bright pixel which adapts well to the 

illumination property in the dark. Thus, in accordance with the 

Retinex theory, the selection of the highest value at each pixel 

position of diffusion spaces allows separating the estimated 

illumination component from the scene reflectance. 

 

 
 

Figure 1. Examples of violent scenes from RLVS dataset 

[12] showcasing a great diversity of lighting conditions 

 

2.2 Moving background 

 

Among the causes giving rise to a moving background, may 

be mentioned camera motion or change of the ambient light, 

which requires removing the noise. Dynamic background 

might be defined as a set of image sequences of complex 

scenes which includes moving elements such as patterned 

grounds, or sea waves and moving trees [9]. For example, as 

shown in Figure 2, in hockey games and movies, non-

stationary backgrounds are due to filming tips and tricks like 

zoom in/out [16]. In an attempt to resolve this issue, the optical 

flow approach is used by Fu et al. [17] to analyze the 

movement, as its vector’s magnitude provides a very useful 

indication to measure the motion. Also, the direction of the 

flow gives further information about the motion. A 

background algorithm which is motion-resilient was deployed 

for an efficient determination of optical flow between each 

couple of successive images. The movement of the camera 

produces a relative background motion at a uniform speed and 

actions seem to change position less uniformly. This made it 

possible to filter background movement noise. 

Various techniques were described such as using a 3x3 

Gaussian kernel in order to minimize noise effect, or a 

histogram equalization which is an enhancement of the image 

contrast through a better use of the range of possible pixel 

values, or a background subtraction to separate objects that are 

not related to the scene [19]. 

 

 
 

Figure 2. Sample fight-scene from Hockey dataset [18] with 

background motion 

 

2.3 Camera motion 

 

A camera may be handled manually and shaken by the 

person holding the device or mounted on something that 

moves. Its displacement makes that everything appears 

moving (egomotion) as shown in Figure 3. In such situation, it 

is less easy to separate moving objects and static ones. The 

background subtraction methods previously presented and 

usually conceived for static cameras do not apply directly to 
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the moving ones. Consequently, in case of moving camera, 

most of the commonly known methods are adaptations of 

background subtraction concept [10]. To deal with this 

challenge, certain works [20-24] opted for selecting points 

from a grid then using an optical flow or several tracking 

approaches such as Kanade-Lucas-Tomasi (KLT) feature 

tracker. Zhao et al. [23] suggested a new framework named 

IFB (Integration of Foreground and Background cues). They 

used the GMM (Gaussian Mixture Model) and then image 

alignment to extract foreground cues. They got the background 

cues from spatio-temporal characteristics which have been 

filtered by the homography transformation. To check videos, 

Febin et al. [25] filtered the movement by means of temporal 

derivative and did not extract features from most of the non-

violent activities. 

 

 
 

Figure 3. Example of moving camera effect seen on a sample 

fight from Peliculas dataset [18] 

 

2.4 Occlusion 

 

Occlusion is an issue that cannot be avoided in any tracking 

system. When a person moves, it may become hidden behind 

trees or other obstacles. These individuals in motion may be 

fully or partially occluded in a video stream and their actions 

may not be fully visible. Figure 4 shows some samples of 

partially occluded persons fighting each other.  

 

 
 

Figure 4. Sample fight-scenes of persons occluded behind 

trees or vehicles from RLVS dataset [12] 

 

Since the scene geometry has a fundamental impact on 

handling occlusion [26], Geiger et al. [27] applied the 

technique of epipolar lines and disparity map as well as 

ordering constraint [28]. To deal with occlusion, several 

techniques have been proposed such as those reported in the 

review presented by Chandel et al. [11] for object detection 

under occlusions. They used a couple of occlusion maps to 

describe occluded regions, and presented the field of 

movement between frames as a main element. Besides, cross 

checking and extrapolation are among the simplest techniques 

that were adopted for this issue. Fehrman et al. [29] completely 

removed the occluding objects to observe their background. 

They used a canny edge detector, and then generated the 

disparity map. Occlusion is properly addressed by using the 

classical Kalman filtering method. Niknejad et al. [30] used 2-

layers classifiers based on CRF (conditional random field) and 

DPM (deformable parts model). Zhang et al. [31] adopted an 

approach using KLT (Kanade-Lucas-Tomasi) technique. Later, 

MoWLD (Motion Weber local descriptor) was suggested [32]. 

In fact, it offers better tolerance to partial occlusion by 

capturing local aspect using a histogram group of gradients 

from neighbour regions.  Li et al. [33] tackled detecting human 

actions through walls and occlusions using Wi-Fi signals 

together with deep learning techniques. Relying on radio 

signals, they could precisely distinguish actions and 

interactions despite limited lighting conditions using solely 

radio frequency (RF) signals as input.  

 

2.5 Motion blur 

 

Motion blur is a well-known phenomenon that results from 

shooting moving objects or individuals with long shutter 

speeds. It arises if the exposure time is great relatively to the 

movement velocity. Indeed, motion blur occurs if singular 

images are displayed with persistence of important parts of the 

image duration. Figure 5 shows an example of motion blur. To 

resolve this issue, Marziliano et al. [34] presented an approach 

to estimate perceptual blur. They measured the average width 

of the frame’s vertical edges. Such blur measurement is 

described in the spatial domain. Sometimes, it is obvious along 

edges and prominent in textured areas. First, a vertical edge 

detector is applied (such as vertical Sobel filter) to extract 

vertical edges in the frame. Next, each line of the edge image 

is scanned to get the edge position. At last, the total measure 

of the blur for the whole image results from the average of 

local values over all edge positions. Later, Kadim et al. [35] 

suggested another approach to estimate the blurriness of the 

image. They merged the Wrońskian’s change detection 

technique [36] and the concept of neighbouring pixels to 

attenuate the noise generated by the imperfect arrangement of 

consecutive images. Deniz et al. [37] presented another 

approach without resorting to either tracking process or optical 

flow. They suggested a technique based on extreme 

acceleration patterns and then performed the Radon transform 

to the power spectrum of successive images. They noticed that 

great acceleration causes image blur and therefore tracking 

becomes less relevant or not feasible. To remove the blur, they 

carried out a deconvolution pre-processing step after 

performing an initial correlation to extract motion between 

each two successive images. More recently, Pujol et al. [38] 

computed acceleration between images assuming that their 

movement generates blur. They applied Radon transform to 

determine eccentricity related to acceleration that arises in fast 

Fourier transform if blur occurs. 

 

 
 

Figure 5. Motion blur in three successive images in a battle 

clip from HMDB51 dataset [39] 

 

2.6 Body shapes  

 

In reality, all objects are three-dimensional, and may change 

their appearance when they move. For example, the front view 

differs from the side view as shown in Figure 6. Besides, there 

can be non-rigid objects like human hands whose shape 

changes over time. Many methods used two-dimensional body 

parts positions in a monocular image in order to estimate three-
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dimensional human pose [40, 41]. Several studies have been 

carried out by considering manually labelled two-dimensional 

body parts positions. Later, numerous two-dimensional CNN-

based pose estimation approaches have been suggested [42-

45] and could be used to estimate three-dimensional human 

pose. The two-dimensional poses of multiple persons were 

successfully detected thanks to a non-parametric description 

which helped to learn body parts combinations. Elhayek et al. 

[40] automatically estimated the people number in the scene, 

and for each image, every three-dimensional skeleton was 

fitted to equivalent two-dimensional body parts positions 

calculated thanks to a well-known CNN based two-

dimensional pose estimation approach. Their method is used 

to track many individuals in outdoor scenes and in case of low-

quality scenes filmed with mobile-phone cameras. 
 

 
 

Figure 6. Example of different body shapes from real time 

fight detection dataset [46] 
 

2.7 Varying scales and multi-views 
 

Individuals may appear at different scales in different 

videos yet perform the same action. Figure 7 highlights an 

example of varying scale for a sample of fight scene. Scale 

variance issues are mainly related to the distance that separates 

a subject from the camera [1]. Depending on such distance, 

many scales and descriptions of the same subject could exist. 

Aiming to tackle these challenges, many techniques have been 

proposed. Zhu et al. [47] presented an extended Random 

transform for invariant representation to geometrical 

transformations such as rotation, scaling and translation. They 

used binary silhouette information to recognize human action. 

Their approach can be used when the camera is unstable. 

Goudelis et al. [48] used various Trace transform 

functionals to compute robust features for human action 

recognition that are efficient and invariant to scaling. Later, a 

recent method to detect real-time multi-scale action was 

presented by Sharaf et al. [49] using a descriptor relying on 

angular velocities of the three-dimensional joint data taken 

from depth sensors. To handle the intra-class actions variations, 

like temporal scale variations, the descriptor is calculated 

using various window scales per action. To recognize actions, 

Chen et al. [50] proposed a temporal scale-invariant deep 

learning model. Assuming that an action is made up of a 

number of ordered sub-actions, they found that sampling 

keyframes from every sub-action sequence is temporal scale-

invariant to action quickness and helps to better recognize 

actions than the traditional serial keyframe sampling strategy. 
 

 
 

Figure 7. Example of a varying scale for a sample of fight 

scene extracted from BEHAVE dataset [51] 

More recently, Singh et al. [52] presented another model to 

recognize view-invariant human activities. During extraction 

step, they combined some tricks with the uniform LBP (local 

binary patterns) which is invariant to rotation and thus offers a 

view-invariant recognition of multi-views activity (Figure 8). 

The scale invariance is obtained, while calculating distance 

signal feature. The last module includes the use of HMMs 

(Hidden Markov models) which helped to provide view-

invariant action recognition as well as time-scale invariability. 

 

 
 

Figure 8. Multi-views of a kicking action from WVU dataset 

[53] 

 

2.8 Changes in execution rate of activity 

 

Each person conducts an action at their own pace. Besides, 

nothing guarantees that an individual will redo the action at the 

same speed each time. This change in the execution rate of an 

action is described in Figure 9 and should be considered in a 

violence action recognition system. According to 

Veeraraghavan et al. [54], few has been achieved to correct the 

effect of changes in the execution rate of an activity. So, they 

provided a systematic model-based method to learn such 

variations. They designed a Bayesian algorithm that considers 

the execution rate function as a variable of nuisance and 

integrates it out through a Monte Carlo sampling, in order to 

produce estimates of posterior classes. To deal with the 

variation in temporal execution rate, Abdelkader et al. [55] 

used an advanced DTW (dynamic time warping) algorithm for 

learning warping functions between various occurrences of 

each action based on geodesic distances on the shape space 

when calculating the temporal warping functions. Moreover, 

Amor et al. [56, 57] presented a comprehensive framework for 

analysing human actions using shapes of skeletons, based on 

relevant geometric tools which help maintain desired 

invariances based on elastic distance. The latter is invariant to 

random execution rates of activities. Ghorbel et al. [58] 

suggested a human action descriptor which relies on 

interpolating the joints kinematics such as position, velocity 

and acceleration. To deal with execution rate variations, they 

used skeleton normalization as well as temporal normalization. 

A recap of the challenges previously explained is provided 

in Table 1, as well as the works that tackled the issues that have 

been addressed. 

 

 
 

Figure 9. Variation in the execution rate of pushing activity 

from SBU Kinect interaction dataset [59] 
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Table 1. Main violence detection issues and related works 

 
Challenge Related work Year 

1. Lighting Variations - Soumya et al. [13] 

- Zhou et al. [14] 

- Kim et al. [15] 

-2010 

-2018 

-2019 

2. Moving Background - Fu et al. [17] 

- De Souza et al. [19] 

- Akti et al. [16] 

-2015 

-2017 

-2019 

3. Camera Motion - Minematsu et al. [20] 

- Kurnianggoro et al. [21] 

- Minematsu et al. [22] 

- Zhao et al. [23] 

- Yu et al. [24] 

- Febin et al. [25] 

-2015 

-2016 

-2017 

-2018 

-2019 

-2020 

4. Occlusion - Cho et al. [28] 

- Zhang et al. [31] 

- Niknejad et al. [30] 

- Fehrman et al. [29] 

- Chandel et al. [11] 

- Zhang et al. [32] 

- Li et al. [33] 

-2012 

-2012 

-2013 

-2014 

-2015 

-2015 

-2019 

5. Motion Blur - Marziliano et al. [34] 

- Kadim et al. [36] 

- Deniz et al. [37] 

- Pujol et al. [38] 

-2002 

-2013 

-2014 

-2019 

6. Body Shapes  - Toshev et al. [45] 

- Insafutdinov et al. [43] 

- Bulat et al. [44] 

- Cao et al. [42] 

- Elhayek et al. [40] 

- Chen et al. [41] 

-2014 

-2016 

-2016 

-2017 

-2018 

-2020 

7. Varying Scales and 

Multi-Views 

- Zhu et al. [47] 

- Goudelis et al. [48] 

- Sharaf et al. [49] 

- Chen et al. [50] 

- Singh et al. [52] 

-2009 

-2013 

-2015 

-2017 

-2019 

8. Changes in execution 

rate of activity 

-Veeraraghavan et al. [54] 

- Abdelkader et al. [55] 

- Amor et al. [56] 

- Ghorbel et al. [58] 

- Amor et al. [57] 

-2009 

-2011 

-2016 

-2016 

-2019 

 

 

3. RELATED WORKS  

 

Over the past several years, various violence recognition 

and detection approaches have been proposed. We can 

basically gather them into five categories detailed as follows: 

approaches relying on local descriptors, approaches using 

optical flow descriptors, approaches using acceleration 

descriptors, approaches using dynamic textures and 

approaches using deep learning models. 

 

3.1 Approaches relying on local descriptors 

 

Such approaches commonly use the standard Scale 

Invariant Feature Transform algorithm [60] which detects and 

describes images local features and extracts remarkable 

interest points in the spatial domain. Afterwards, there is a 

rejection of candidate points which have limited optical flow 

around the neighbourhood. Nievas et al. [18] assessed the 

performance of the approaches of recognizing violence in 

videos using two current approaches: STIP (Space-Time 

Interest Points) [61] as an improvement of Harris corner 

detector, and MoSIFT (Motion Scale Invariant Feature 

Transform) as an extension of SIFT with an aggregated 

Histogram of Optical Flows which defines local motion. A 

versatile fight detector is built by local descriptors method 

which efficiently detects violence, even in case of a moving 

camera. It demonstrated encouraging results retaining 90% 

accuracy levels using MoSIFT features. Xu et al. [62] 

presented a reliable method of violent video detection that uses 

MoSIFT algorithm as well as sparse coding. They employed 

many techniques to generate an extremely distinctive video 

representation based on local features: MoSIFT detects the 

local shape and motion patterns of an action. The most 

indicative features of this descriptor are selected using a KDE 

(Kernel Density Estimation) based feature selection technique. 

Interesting results are obtained using two datasets: The 

violence detection performance of this approach reaches 

94.3% on the first violence dataset and 89.05% on the second 

one. Senst et al. [63] proposed a local descriptor that uses SIFT 

algorithm which incorporates motion models based on 

appearance and Lagrangian. They evaluated the LaSIFT 

algorithm using a Bag-of-Words technique and great 

improvements were achieved in comparison with SIFT and 

MoSIFT approaches. The obtained accuracies are very good 

on a pair of datasets reserved for violent video detection: 

93.32% on the first violence dataset and 92.42% on the second 

one. Later, Senst et al. [64] proposed a particular Lagrangian 

approach to automatically detect video footage violent scenes. 

They used Lagrangian direction fields relying on spatio-

temporal representation and then applied an extended bag-of-

words technique in a late-fusion way for classification. They 

demonstrated that capturing the temporal scale via the 

Lagrangian integration time parameter is a main key to detect 

violence. They tested LaSIFT algorithm with Bag-of-Words 

on four various violence datasets. The obtained results are very 

encouraging: 94.42% on the first dataset, 94.95% on the 

second one, 93.12% on the third one and 84.00% on the last 

one. Recently, Febin et al. [25] proposed a cascaded approach 

to detect violence thanks to a MoBSIFT algorithm, i.e. a mix 

between motion SIFT and motion boundary histogram. In this 

approach, this algorithm of movement filtering relying on 

temporal derivative allows to check the videos. Accuracy 

obtained using individual features of MoBSIFT with Random 

Forest classifier reached 98.2% on the first dataset. Using 

combinations of MoBSIFT and MF with Adaboost as well as 

Random Forest classifiers, it reached 98.9 % on the second 

dataset.  

In general, MoSIFT features are shown to be mighty and 

employed for generic action recognition. Nevertheless, 

extracting such features is a computationally expensive 

process which takes almost one second per image if running 

on a high-performance CPU, and thus prevents exploiting 

them in heuristic contexts, if several camera streams need a 

real-time processing. 

 

3.2 Approaches using optical flow descriptors 

 

Optical flow methods are widely employed for action 

recognition, as they are very common for assessing motion 

detection from a set of images. Several approaches have been 

developed. To detect violence in crowded scenes, Hassner et 

al. [65] suggested an approach based on statistics describing 

flow-vector magnitudes change over time. Such statistics are 

presented through the Violent Flows (ViF) descriptors 

produced when calculating the optical flow between pairs of 

successive images, then a classification as either violent or 

non-violent is performed thanks to a linear SVM. This 

approach is computationally effective to detect violence in 
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crowded contexts and its accuracy rate is impressive (around 

82.9%). Huang et al. [66] studied the optical flow and found 

that its variance change increases in case of a crowd violence. 

Therefore, they suggested a statistical approach relying on 

optical flow fields to detect the behaviours of a violent crowd. 

Their approach exploits the optical flow fields’ statistical 

properties to obtain a SCOF (statistical characteristic of the 

optical flow) descriptor for images. Then, actions are 

classified thanks to a linear SVM. This method showed a 

competitive accuracy of 86.9% on the first dataset and 83.35% 

on the second one. To localize violence in surveillance scenes, 

Zhang et al. [67] proposed a robust framework based on 

GMOF (Gaussian Model of Optical Flow) to withdraw 

violence areas that were represented as a deflection from an 

ordinary behaviour of crowd noticed in the video. They 

densely sampled the candidate violence areas using an OHOF 

(Orientation Histogram of Optical Flow) descriptor then a 

linear SVM to classify events. The detection accuracy found 

on three different datasets (82.79%, 85.29% and 86.75%) 

demonstrated that this method is very efficient. However, it is 

discriminatorily inefficient in case of a disordered and 

dynamic background. Fu et al. [17] presented a method to 

identify violence using motion analysis tricks, which are 

reliable in case of low video resolution. They applied an 

optical flow approach to get motion information, and 

performed a two-level statistical aggregation to build high-

level features from simple motion signals. Machine learning 

classifiers were employed to detect fights. The accuracies 

obtained on two public datasets are quite reasonable for the 

first one (84.5%) and quite encouraging for the second one 

(98.5%). A performance of 85.4% is obtained for the 

combined dataset with a drop of 6%, then 89.0% with a 

degradation of only 2.5%. Later, an OViF (Oriented Violent 

Flows) feature extraction approach using this same descriptor 

is proposed by Gao et al. [68] who attempted to make some 

improvements using combined features and multi-classifier 

combination strategies (AdaBoost+Linear-SVM) to achieve a 

better performance: The best rates of violence detection are 

87.50% and 88.00% on the first and second datasets. Zhou et 

al. [14] suggested a novel approach using low-level features. 

To simplify the features and decrease the noise, they 

segmented the motion areas according to the optical flow 

fields’ distribution. Then, LHOG descriptor was extracted 

from RGB images to capture the appearance information, and 

LHOF descriptor was extracted from optical flow images to 

obtain dynamic information of the objects. Finally, a late-

fusion classification strategy was performed using BoW (bag-

of-words) model, and then both vectors were combined and a 

SVM classifier was utilized. Such approach reached high 

accuracies on different datasets: 95.1%, 100% and 94.31%. 

Mahmoodi et al. [69] proposed HOMO (Histogram of Optical 

flow Magnitude and Orientation) descriptor to identify violent 

behaviour in both crowded and uncrowded situations, and a 

SVM classifier was adopted to get the classification. Accuracy 

rates of this approach are generally satisfying: (89.3% and 

76.83% for the first and second dataset). Overall, optical flow 

methods are the best motion representation for action 

recognition and represent the best way to consider the 

temporal motion of the video. Nevertheless, almost of them 

are computationally demanding, sensitive to brightness 

change, and would need a specially designed hardware for 

real-time applications.  

 

 

3.3 Approaches using acceleration descriptors 

 

The concept of acceleration is closely related to motion, 

speed, and velocity. More precisely, acceleration is the rate of 

change of an object velocity. To detect violence, Datta et al. 

[70] exploited human limbs motion trajectory and orientation 

information during violence to compute jerk which is an 

effective mean to identify such behaviour. They presented an 

Acceleration Measure Vector where a jerk represents its 

temporal derivative. They merged analysis of two separate 

methods tested on eight different persons with various 

physical builds and under different backdrop conditions and 

which gave reliable results (around 87%) when combined. 

Deniz et al. [37] proposed an approach that considers intensive 

acceleration models as an essential distinctive feature of 

violent behaviour. These patterns were efficiently evaluated 

using the Radon transform to the power spectrum of two 

successive images through the 2D Fast Fourier Transform. 

Indeed, they assumed that when a sudden motion occurs 

between a pair of images, the power spectrum frame of the 

second one depicts an ellipse. The proposed approach aspires 

to detect the sudden presence of this ellipse and to estimate its 

eccentricity. The latter defines the acceleration magnitude. 

Impressive accuracy results of the presented method were 

obtained on first and second datasets using Adaboost classifier 

(98.9% and 90.1%), and on the third dataset using SVM 

classifier (93.4%). Mohammadi et al. [71] presented a new 

video descriptor using substantial derivative which represents 

a crucial point in fluid mechanics. They exploited the spatio-

temporal characteristics of the substantial derivative when 

calculating convective and local accelerations estimated from 

the optic flow for each video. Then, each video was described 

using the bag-of-words, and SVM classifier is used with 

Histogram intersection kernel to form the final descriptor. The 

effectiveness of the suggested method was extensively 

evaluated on five benchmarks, including three standard 

datasets and a couple of YouTube video-surveillance 

sequences. The average accuracies obtained on the first and 

second datasets were very satisfactory (96.89 % and 85.43%) 

and prove that such descriptor performs well in the densely 

crowded situations.  

Generally, acceleration patterns are highly informative in 

the task of violence recognition. However, few works studied 

them experimentally in developing violence detectors. 

 

3.4 Approaches using dynamic textures 

 

Dynamic texture recognition techniques were successfully 

applied to different scenes. For instance, Kellokumpu et al. 

[72] developed the Local Binary Patterns (LBP) technique, 

initially suggested to recognize texture in two-dimensional 

images and extended for three-dimensional videos, and it has 

shown its efficiency for dealing with recognizing motion 

patterns. Indeed, texture is extracted thanks to local 

comparisons between a pixel and those surrounding it. Such 

relations are encoded as short binary strings whose frequencies 

are merged to represent the describe image area. Yeffet and 

Wolf [73] suggested LTP (local trinary patterns) and encoded 

local motion information by considering self-similarity in 

three neighbourhood circles at a specific spatial position. 

Lloyd et al. [74] noticed that violence in city centre 

environments mainly happens in crowded places and 

consequently, human actions are occluded by other crowd 

individuals. Hence, they proposed the VCT (violent crowd 
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texture) method by modelling crowd dynamics using GLCM 

matrix typically used to estimate crowd density and which 

applies temporal encoding to represent crowd dynamics. A 

classification using Random Forest was performed to assess 

the VCT approach’s power to distinguish violent and non-

violent behaviour. This approach provides regularly high 

performance across various kinds of data. It attained ROC 

performance values of 0.98, 0.91, 0.97 and 0.93 for the four 

datasets respectively. Later, Lloyd et al. [75] improved the 

previous work by temporal summaries of GLCM matrix 

features. Indeed, they measured inter-image uniformity and 

demonstrated that the violent behaviour appearance varies in a 

less uniform way in comparison with other kinds of crowd 

behaviour. Evaluating their approach with a privately held 

dataset and three public datasets, they reported a ROC score of 

0.9782, 0.9403, 0.8218 and 0.9956. Recently, one more 

texture feature descriptor approach is suggested by 

Lohithashva et al. [76] and based on LBP (Local Binary 

Pattern) and GLCM (Gray Level Co-occurrence Matrix). 

Prominent features were used with five different supervised 

classifiers on two standard benchmark datasets. Their 

proposed texture features fusion descriptor achieved better 

results than other existing approaches and showed that SVM 

was superior the other classifiers, with an accuracy and AUC 

results of respectively 91.51% and 93.60% on the first dataset, 

then, 89.06% and 93% on the second dataset. Overall, this kind 

of approach is computationally cheap and provides real-time 

description. 

 

3.5 Approaches using deep learning models 

 

The recent development of machine learning methods, 

especially deep learning, provided new opportunities to boost 

violence recognition. Xu et al. [77] presented the AMDN 

(Appearance and Motion DeepNet) framework using deep 

neural networks for an automatic learning of feature 

descriptions. They exploited the additional information of 

appearance and motion patterns through a double fusion 

framework. Many one-class SVM models were applied to 

forecast each input’s anomaly scores. This method was 

evaluated on a pair of public datasets and showed promising 

performance in terms of Equal Error Rate (16% on the first 

dataset) and AUC (Area under ROC) (92%). Fang et al. [78] 

used a deep learning approach by respectively extracting 

saliency information (SI) and optical flow of images as main 

spatio-temporal features. They used PCANet deep learning 

network to imitate the human brain in extracting high-level 

features from SI and MHOF for suspicious event detection. 

Classification rates exceeded 99% on the used dataset for a 

PCANet with a filter size 5 × 5. To detect intensive violent 

actions, Dong et al. [79] presented a descriptor relying on a 3-

stream deep neural network framework with LSTM (Long 

Short-Term Memory) to describe long-term temporal 

information. The resulting accuracy, applied on a public 

dataset and based on three streams and LSTM, was impressive 

(93.9%). Sudhakaran et al. [80] developed an end-to-end 

trainable deep neural network model. They used a CNN 

(convolutional neural network) for frame level features 

extraction. An agregation of frame level features is then 

carried out in the temporal domain thanks to a convLSTM 

which adopts convolutional gates. The CNN along with the 

convLSTM can capture the localized spatio-temporal 

characteristics and enable analyzing local motion taking place 

in the video. The suggested method was assessed on three 

public datasets and showed high performance in terms of 

accuracy that attained 97.1% on the first dataset, 100% on the 

second one and 94.57% on the third one. Carneiro et al. [81] 

suggested a model using a multi-stream classification and 

high-level features. They adopted a multi-stream learner 

where the streams are Visual Geometry Group (VGG-16) 

networks, i.e., each one is a highly optimized neural network 

trained on the ImageNet set of data. This approach is evaluated 

on two public datasets. On the first one, the combinations had 

an above 80% in metrics (reaching 89.10%) in case of an 

ordered dataset division, which indicates their pertinence 

considering a classification problem. Accuracies reached 

95.76% with random dataset division. On the orderly divided 

second dataset, ideal rates were achieved (100%) and 99.67% 

in case of a random dataset division. Overall, the achieved 

results showed that combining correlated descriptor 

information with a multi-stream approach improves the 

classification accuracies of the deep learning method. A 

summary of the five-direction reference related works 

previously explained is provided in Table 2. 

 

Table 2. Main groups of violence detection related works 

 
Group of violence 

detection methods 

Related work Year 

1. Local descriptors - Nievas et al. [18] 

- Xu et al. [62] 

- Senst et al. [63] 

- Zhang et al. [32] 

- Senst et al. [64] 

- Febin et al. [25] 

-2011  

-2014 

-2015 

-2015 

-2017 

-2019 

2.  Optical flow descriptors - Hassner et al. [65] 

- Huang et al. [66] 

- Zhang et al. [67] 

- Fu et al. [17] 

- Gao et al. [68] 

- De Souza et al. [19] 

- Zhou et al. [14] 

- Mahmoodi et al. [69] 

-2012 

-2014 

-2015 

-2015 

-2016 

-2017 

-2018 

-2019 

3. Acceleration descriptors - Datta et al. [70] 

- Deniz et al. [37]  

- Mohammadi et al. [71] 

-2002 

-2014 

-2015 

4. Dynamic textures 

techniques 

- Kellokumpu et al. [72] 

- Yeffet and Wolf [73] 

- Lloyd et al. [74] 

- Lloyd et al. [75] 

- Lohithashva et al. [76] 

-2008 

-2009 

-2016 

-2017 

-2020 

5. Deep learning models - Xu et al. [77] 

- Fang et al. [78] 

- Dong et al. [79] 

- Sudhakaran et al. [80] 

- Carneiro et al. [81] 

-2015 

-2016 

-2016 

-2017 

-2019 

 

 

4. PROPOSED METHOD 

 

Due to the little number of descriptors relying on the 

acceleration concept summarized in the previous Table 2, the 

idea underlying our approach is inspired from the movement 

of a particle in fluid mechanics [82] using optical flow and a 

material derivative in order to calculate local (L) and 

convective (Cv) accelerations.  

Further, we will classify the extracted features using a deep 

learning RNN (Recurrent Neural Network) which is LSTM 

(Long-Short Term Memory). The general layout of the 

suggested approach is shown in Figure 10. 
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Figure 10. General layout of the suggested approach 

 

4.1 Features extraction 

 

This first step consists in computing the optical flow of each 

video sequence, then, using the material derivative we 

calculated the local acceleration ( aL ) and convective 

acceleration (aCv). The extraction of primitives is performed 

using the Histogram of Oriented Gradient (HOG) for each kind 

of acceleration. The total acceleration (aTot) is then obtained 

by concatenating histograms of both accelerations. 

To make reference easy, we listed in Table 3 the main 

mathematical notations adopted in the next section. 

 

4.1.1 Material derivative as a physical concept of fluid 

mechanics 

Fluid mechanics is a physics branch that often deals with 

properties which vary in space and change over time. A fluid 

particle velocity is defined as a position and time function 

(Figure 11). Thus, we need to consider the differentials of 

multivariable functions. If we consider the scalar function 

f(x,y,z,t) as a physical characteristic of the fluid at coordinates 

(x,y,z) where t is time, it is possible to describe the fluid 

motion by following a parcel along its trajectory [x(t), y(t), 

z(t)]. The material derivative is physically defined as the rate 

of change of a quantity being experienced by an observer who 

moves along with the flow [82, 84]. Indeed, what is observed 

is influenced by the stationary time-rate of change of the 

property (
∂f

∂t
), but is also depending on where the observer 

goes as it floats along with the flow. A material derivative 

notation is a derivative written with a capital D: 

 
Df

Dt
=

∂f

∂x
∗ vx +

∂f

∂y
∗ vy +

∂f

∂t
=

∂f

∂t
+ v⃗  grad⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗ f (1) 

We may apply this derivative to any fluid property, scalar 

or vector. This is the Gibbs notation of the material derivative:  

 
Df

Dt
≡

∂f

∂t
+ v. ∇f (2) 

 

We notice that this full rate of increase 
Df

Dt
 for a certain 

particle defines the sum of two terms: 
∂f

∂t
 defines the local or 

temporal acceleration, i.e., the velocity’s rate of increase over 

time at a specific point in the flow. It results when the flow is 

unsteady. The second term (v. ∇f) represents the convective 

acceleration, i.e., the rate velocity’s rate of increase due to the 

particle’s change of position. It results when the flow is non-

uniform, i.e., if the velocity changes along a streamline. 

 

 
 

Figure 11. A fluid element moving in a flow field [83] 
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4.1.2 Local and convective accelerations estimation from 

videos  

By analogy to the material derivative arising from the 

physics of fluid mechanics explained above, we estimated 

local and convective accelerations from a video. 

 

Table 3. Mathematical notations adopted in this article 

 
Mathematical notation  Definition 

f(x, y, z, t) Physical characteristic of the fluid 

at coordinates (x, y, z) and time t 
Df

Dt
≡

∂f

∂t
+ v . ∇f 

Material derivative notation  

(General notation) 
Df

Dt

=
∂f

∂x
∗ vx +

∂f

∂y
∗ vy +

∂f

∂t

=
∂f

∂t
+ v⃗  grad⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗ f 

Material derivative  

(Gibbs notation) 

∇f =

[
 
 
 
 
 
𝜕f

𝜕𝑥
𝜕f

𝜕y
…
 ]
 
 
 
 
 

 

Gradient operator of the scalar-

valued multivariable f function, 

called “nabla” 

∂f

∂t
 

Temporal or local acceleration 

(Lagrangian) 

(v · ∇f ) Convective acceleration (Eulerian) 

I(x,y, t)=I(x+dx,  y+dy,  

t+dt) 

Brightness Conservation Equation 

fxU + fyV + ft= 0 Optical flow equation 

fx, fy Pixel intensity gradients 

U , V Flow vector maps for perceived 

motion in x and y coordinate plane 

(vx
t , vy

t  ) Velocity v of each pixel in “x” and 

“y” directions 

ax
t = vx

t − vx
t−1 Local acceleration in an “x” 

direction 

ay
t  = vy

t − vy
t−1 Local acceleration in a “y” 

direction 

aL = √ax
t 2

+ ay
t 2

 
Magnitude of local acceleration of 

two successive optical flows 

ax  =  (
∂vx

 ∂x 
+

∂vy

∂y 
)  ∗  vx 

Convective acceleration in an “x” 

direction 

a𝑦  =  (
∂vx

 ∂x 
+

∂vy

∂y 
)  ∗  vy 

Convective acceleration in a “y” 

direction 

aCv = √ ax
2 + ay

2  
Magnitude of the convective 

acceleration 

 

First, we need to calculate the optical flow of the video 

sequences. An optical flow represents a group of vector fields 

which relates a frame to an upcoming one. Each vector field 

describes the obvious movement of each pixel from frame to 

frame. Assuming that pixels intensity is conserved, we apply 

the “Brightness Conservation Theorem” which means that 

"The brightness of an object is constant from one image to 

another.” To seek the displacement vector [dx, dy] at an 

x position of the image, so that the following one allows 

getting the same luminance and consequently the same 

grayscale, this concept can be written as follows: 

 

I(x, y, t) = I(x +  dx, y + dy, t + dt) (3) 

 

where, I is an image sequence, dy and dx are the displacement 

vectors for the pixel with coordinates [x, y] and t and dt are the 

frame and temporal displacement of the image sequence. To 

calculate the optical flow, a standard Horn-Schunck method 

[85] is used. The optical flow equation is derived from the Eq. 

(3) as follows:  

 

fxU + fyV + ft= 0 (4) 

 

where, fx, fy are pixel intensity gradients and ft  is the first 

temporal derivative. Solving Eq. (4), we get two flow vector 

maps U and V that dictate perceived motion in both the x and 

y coordinate plane. In general, for each frame {It}t=1
N  of the 

video, the optical flow {f t}t=1
N−1 represents each pixel’s velocity 

in x and y directions: 

 

ft(x, y) = (vx
t , vy

t ) (5) 

 

By applying (5), the local acceleration gets the value of the 

rate of velocity change over time at a fixed point in a flow field. 

We consider ax
t  as the local acceleration in an “x” direction and 

ay
t  as the local acceleration at “y” direction as detailed below: 

 

ax
t  = vx

t − vx
t−1 (6) 

 

ay
t  = vy

t − vy
t−1 (7) 

 

The local acceleration of two successive optical flows is 

calculated as the following magnitude:  
 

aL = √ax
t 2

+ ay
t 2

 (8) 

 

To get the rate of a velocity change with respect to position 

at a fixed time in a flow field, we calculate the convective 

acceleration. It is combined with spatial velocity gradients in 

the flow field. We consider ax as the convective acceleration 

in an “x” direction and ay as the convective acceleration in a 

“y” direction: 
 

ax = (
∂vx

∂x 
+

∂vy

∂y 
) ∗ vx (9) 

 

ay = (
∂vx

∂x 
+

∂vy

∂y 
) ∗ vy (10) 

 

The convective acceleration magnitude is defined as 

follows: 
 

aCv = √ax
2 + ay

2  (11) 

 

Given the accelerations calculated for each video, we 

extracted features using the Histogram of Oriented Gradient 

feature descriptor. The HOG algorithm divides an image into 

many small connected regions, i.e. cells. For each region, 

HOG counts occurrences of gradient orientation. To help a 

descriptor to be invariant to illumination and shadowing, the 

gradient values are contrast-normalized over larger 

overlapping spatial blocks. The groups of adjacent cells 

correspond to spatial regions called blocks. The final HOG 

descriptor is built by grouping all normalized groups of 

histograms into a single feature vector. We chose HOG 

features extraction with a 2×2 block size and 16×16 cell size. 

 

4.2 Classification 

 

To classify our data sequence, we trained a deep neural 
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network [86]. Thus, we created an LSTM classification 

network [87]. It is a model that extends the memory of 

recurrent neural networks (RNN). Typically, recurrent neural 

networks have 'short-term memory' as they use determined 

previous information to be employed in the current neural 

network. Besides the advantages of using neural networks for 

time series, LSTM offers the capability of learning the items 

temporal dependencies in a sequence. This is appropriate for a 

time-series forecasting problem. As shown in Figure 12, an 

LSTM unit consists of a cell, an input gate, an output gate, and 

a forget gate. A cell remembers values over arbitrary time 

intervals and the three gates regulate the flow of information 

into and out of the cell. Thus, computing ft and it at each time 

step depends on the outputs (ht-1, Ct-1) of its previous time step. 

 

 
 

Figure 12. Computational graph of an LSTM block [88] 

 

An LSTM layer can look at the time sequence in the forward 

direction. However, BiLSTM layer can look at the time 

sequence in both forward and backward directions. We mainly 

focus on the bidirectional LSTM layer. LSTM architecture is 

illustrated in Figure 13. During the classification phase, the 

extracted features are concatenated and fed to a Softmax 

classifier via a fully-connected operator. 

 

 
 

Figure 13. LSTM network architecture 

 

 

5. EXPERIMENTS AND RESULTS  

 

We used MATLAB R2019a software to perform 

experimental work on an Intel (R) Core (TM) i-7 6500U, 

2.5GHz and 8GB RAM under Windows 10 operating system 

(64-bit). 

 

5.1 Dataset 

 

To evaluate the proposed approach, we used a public dataset 

named SBU (Stony Brook University) Kinect Interaction 

dataset [59] that represents the collection of interactions of two 

people using the Microsoft Kinect sensor. Eight kinds of 

interactions are filmed between two persons indoor and belong 

to the following classes of activity: Approaching, Departing, 

Pushing, Kicking, Punching, Object exchanging, Hugging and 

Shaking hands. The videos have been filmed in the same 

environment. Seven actors accomplished these actions and this 

dataset consists of 21 sets where each one includes videos of a 

different pair of humans performing the eight interactions. In 

most interactivities, an individual acts and the other reacts. 

Each set includes one or two sequences per action category. 

We have a total of about 300 interactions. The depth map is 

640×480 pixels. A commonly used split is to assign three-

quarters of the data for training and the remaining one-quarter 

for tests. Thereby, for classification step, as the SBU Kinect 

Interaction dataset is composed of 21 sets, we used 16 

sequences of the dataset for the learning phase and the five 

remaining sequences for the test. We noticed that the eighth 

action is missing for the second test sample.  
 

5.2 Parameters and settings 
 

First, we loaded both data sequences used for training and 

test. Then, we defined the network architecture and the 

training options: Indeed, we specified a sequence-to-sequence 

LSTM classification network with 500 hidden units. We set 

the feature dimension of training data as the input size, and the 

number of categories in the responses as the output size of the 

fully connected layer. We specified the solver as ‘sgdm’ and 

set the maximum number of training epochs to ‘100’ with an 

initial default learning rate ‘0.01’. To prevent the gradients 

from exploding, we set the gradient threshold to ‘1’. We 

avoided shuffling the data every epoch by setting the ‘Shuffle’ 

option to ‘never’. Given that mini batches are small with short 

sequences, a typical CPU is better suited for training. We 

specified a mini-batch size that evenly divides the data to 

ensure that the function uses all observations for training. 

Otherwise, the function ignores observations that do not 

complete a mini batch. We set the mini-batch size to 200. We 

trained the network, predicted the labels of the data and 

calculated the classification accuracy.  
 

5.3 Results and discussion 
 

We evaluated our suggested approach against three 

previous approaches tested on the same dataset. We 

recapitulate the results in terms of recognition rates in Table 4. 

As depicted in Table 4, using LSTM classifier, our 

descriptor achieved the highest classification accuracy of 

84.62% over eight action classes, which outperforms SURF, 

STIP and Hierarchical Bidirectional Recurrent Neural 

Network (HBRNN) descriptors previously evaluated on this 

same dataset. To examine the recognition rate of each action 

and thus better understand the performance of the proposed 

method, we generated three confusion matrices (Figures 14, 

15, 16). By analyzing the final confusion matrix (Figure 16) 

we find that the model can better differentiate between the 

classes. However, there is some confusion between similar 

actions. The latter are challenging since they are non-periodic 

with very resembling body movements. We explain below the 

origin of the errors presented in this confusion matrix: For 

instance, the confusion between "Kicking" and "Punching" or 

"Pushing" is due to the similarity of the bodies’ behavior when 

performing such activities. The confusion between "Pushing" 

and "Shaking hands" is partially explained by the identical 

behavior of the hands. Indeed, these actions differ in the speed 

of execution which varies from person to person. Similarly, 

"Exchanging" could be confused with "Punching" as these 

actions contain joint body movements where both people 

extend and withdraw their arms. Generally, the system 

managed to completely identify these four actions and to 

relevantly recognize them: “Approaching”, “Departing”, 

“Shaking hands”, “Hugging”.  
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Table 4. Classification results using SVM then LSTM 

 
Features descriptor SURF [8] STIP [89] HBRNN [90] 𝐚𝐂𝐯  𝐚𝐋 𝐚𝐓𝐨𝐭 

Classifier SVM SVM  LSTM LSTM LSTM 

Recognition rate (%) 42.42 72 80.4 76.92 64.1 84.62 

 
 

Figure 14. Confusion matrix after extracting aCv features 

 

 
 

Figure 15. Confusion matrix after extracting aL features 

 

 
 

Figure 16. Final confusion matrix for aTot features 

 

Comparing the results presented in Table 4, we notice that 

our method outperforms SURF descriptor which suffers from 

locality and long computation time despite its great number of 

detected features, and outstrips STIP and HBRNN descriptors 

which are not visibly as discriminative as the total acceleration 

descriptor. Moreover, LSTM classifier allows an almost clear 

discrimination between the actions and offers better 

performance for this dataset than SVM classifier which only 

uses local features and does not consider spatio-temporal ones. 

The specific advantages of our work consist in enhancing the 

limited number of descriptors based on the acceleration 

concept by exploiting some particle properties used in fluid 

mechanics with a deep learning classifier. The disadvantages 

are a lack of recognizing some actions such as "Kicking" (40%) 

and a significant computation time needed for LSTM 

compared to other methods. Possible future works which 

motivate further investigating violence classification are 

visual attention models based on deep learning. 

 

 

6. CONCLUSION  

 

After carrying out an exhaustive presentation of the issues 

mainly related to the field of violence detection and the 

solutions to counteract them as well as the broad groups of 

related works including the existing methods commonly 

employed in violence detection, we conceptualized a novel 

prediction framework for violent scenes recognition, based on 

a preliminary spatio-temporal features extraction using the 

material derivative which describes the rate of change of a 

particle while in motion with respect to time. Then, a 

classification algorithm was conducted using a deep learning 

neural network LSTM method to classify generated features 

of input images into specific violent and non-violent classes 

and a prediction value for each class of action was calculated. 

We trained the model on a public dataset and to evaluate its 

classification capacity some confusion matrices were then 

calculated according to the actual classes and gathering all the 

predictions made by the system with their actual labels. 
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NOMENCLATURE 

 

∂ The partial derivative “del”, the rate of change of a 

multi-variable function when we allow only one of the 

variables to change. 

 

Subscripts 

 

L Local 
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Tot Total 
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