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These days, digital images are one of the most profound methods used to represent 

information. Still, various images are obtained with a low-light effect due to numerous 

unavoidable reasons. It may be problematic for humans and computer-related applications 

to perceive and extract valuable information from such images properly. Hence, the 

observed quality of low-light images should be ameliorated for improved analysis, 

understanding, and interpretation. Currently, the enhancement of low-light images is a 

challenging task since various factors, including brightness, contrast, and colors should be 

considered effectively to produce results with adequate quality. Therefore, a retinex-based 

multiphase algorithm is developed in this study, in that it computes the illumination image 

somewhat similar to the single-scale retinex algorithm, takes the logs of both the original 

and the illumination images, subtract them using a modified approach, the result is then 

processed by a gamma-corrected sigmoid function and further processed by a normalization 

function to produce to the final result. The proposed algorithm is tested using natural low-

light images, evaluated using specialized metrics, and compared with eight different 

sophisticated methods. The attained experiential outcomes revealed that the proposed 

algorithm has delivered the best performances concerning processing speed, perceived 

quality, and evaluation metrics. 
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1. INTRODUCTION

Digital images used with contemporary imaging- and 

vision-related applications must be of high quality so that the 

tasks of such applications can be accomplished efficiently [1]. 

Images captured in an inappropriate lighting environment have 

a low-light effect, deficient contrast, and improper colors [2]. 

Therefore, it is uneasy to capture images with high-quality in 

such an environment, in that the low-light effect may decrease 

the performance of applications related to image processing 

and computer vision [3, 4]. Moreover, such images usually 

comprise of vast dark regions with reduced visibility [5]. Low-

light images are images that are captured at nighttime, have 

uneven illumination, captured in a shadowed environment, 

have a general dark appearance [6], in that samples of images 

in such conditions are shown in Figure 1. 

This makes the application of low-light image enhancement 

methods a key necessity to reveal the latent information [7] 

since the observed quality of these images should be 

ameliorated for improved analysis, understanding, and 

interpretation [8]. The key goal of low-light enhancement 

methods is to restore well-perceived images with adequate 

quality that most of their important details are revealed 

properly without generating unwanted artifacts [9]. In recent 

years, significant attention has been made to develop methods 

related to low-light image enhancement. Still, many of these 

methods introduced artifacts to the restored images [10]. 

Therefore, this field remains active for research and new 

research works are being presented constantly. It is important 

to highlight some of the recent related works in this field to 

gain the essential knowledge on how to develop a proper 

algorithm that can well-process low-light images. 

Figure 1. Different types of low-light images. (a) nighttime; 

(b) uneven illumination; (c) captured in a shadowed

environment; (d) own a general dark appearance

Accordingly, Fu et al. [11] developed an algorithm that 

employs a bright channel prior (BCP) approach. It begins by 

determining the bright channel of the input and the luminance 

part using guided and Gaussian low-pass filters. Next, the 

reflectance part is determined and by a quadratic function. The 

luminance and reflectance are then further refined 

concurrently depending on channel priors and alternating 
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optimization to create the final output. In another research, 

Wang et al. [12] introduced an algorithm that implements 

naturalness preserved enhancement (NPE). It starts by 

decomposing an image into illumination and reflectance by 

using a bright-pass filter. Then, the illumination part is filtered 

by a bi-log transform approach. Finally, the reflectance part is 

synthesized, and the illumination part is mapped to get the 

enhanced image. 

Besides, Fu et al. [13] introduced a probabilistic and 

simultaneous illumination and reflectance estimation (PSIRE) 

method that ameliorates the standard retinex model through 

the application of a probabilistic approach to determine the 

reflectance and illumination of the image simultaneously by 

utilizing the concept of maximum a posteriori (MAP). Next, 

the logarithmic features are analyzed to recognize the 

reliability of the determined reflectance and illumination. 

Then, a transformation process is applied on the MAP to 

change it to minimized energy to acquire the reflectance and 

illumination, whereas an alternating direction approach is 

applied for simultaneous estimation of illumination and 

reflectance. Likewise, Yu et al. [14] proposed a physical 

lighting model (PLM) based method that includes four main 

processing phases. As an initial step, the retinex theory is 

applied to approximate the environmental light (EL). Next, the 

loss of information is determined locally based on the pre-

determined EL and a given rate of light-scattering (LS). Then, 

a condition is checked that is if the rate of information loss is 

higher than a given threshold and the maximum number of 

iterations is not reached, the EL and LS are fine-tuned. 

Otherwise, the iteration process will terminate and further 

processing on EL and LS will occur through the application of 

a weighted guide filter to generate the result. 

Furthermore, Park et al. [15] provided an algorithm that 

utilizes the concepts of BCP and retinex, in that it initially 

determines the bright channel to tune the level of brightness 

enhancement. After that, a variational retinex method is 

applied to approximate reflectance and illumination by 

utilizing the BCP concept. Next, the determined illumination 

is further processed by histogram equalization and gamma 

correction to decrease the appearance of noise and color 

distortions. Moreover, Ren et al. [16] proposed a method that 

uses a joint enhancement with denoising through sequential 

decomposition (JEDSD). The main aim of this method is to 

provide a simultaneous process that improves the illumination 

and attenuates the noise. Initially, a successive sequence 

approach is followed to determine the reflectance and 

illumination parts. Next, the reflectance is purified depending 

on the original image and the illumination component by using 

weighted matrices for noise attenuation. The result is 

generated by combining the purified reflectance with the 

gamma-adjusted illumination. As for Li et al. [17], another 

concept is utilized that is the robust retinex model (RRM) 

which works in the HSV color domain. This method 

determines the illumination part by using the standard retinex 

approach. The reflectance part, on the other hand, is estimated 

via a structure revealing approach. In this method, the 

illumination part is smoothed to prevent unwanted noise 

appearance. Also, an augmented Lagrange multiplier method 

is used to optimize the determined reflectance and illumination 

parts and generate the output.  

Moreover, Tian et al. [18] introduced a variational-based 

fusion (VBF) method that tries to enhance the non-uniform 

image illumination through contrast enhancement and color 

correction. In the beginning, the input image is processed by a 

specified global enhancement method that preserves the hue 

element. Then, the input image is processed again by another 

local enhancement method that also preserves the hue element. 

The outcome is attained by applying a fusion method that 

utilizes a variational approach that includes contrast and color 

adjustments. Besides, Tang et al. [19] proposed an algorithm 

that improves the weak illumination while suppresses the halo 

artifact and noise generation. In this algorithm, the concept of 

BCP is initially implemented to weaken the highly illuminated 

parts of the image. Next, a specialized dehazing algorithm is 

applied to improve the entire image. Lastly, a modified non-

local means denoising algorithm is used to attenuate the 

appeared noise. Moreover, Tanaka et al. [20] proposed an 

algorithm that implements gradient-based enhancement 

(GBE). It begins by changing the input to a luminance–

chrominance color domain. After that, the luminance part has 

its gradients extracted by a distinct operation to improve the 

visibility of the details in the dark areas of the image. Next, the 

gradients are filtered for details enhancement. Then, a final 

integration operation with limited range consideration is 

implemented to create the output image.  

Likewise, Dai et al. [21] introduced a fractional-order fusion 

model (FFM), in that it initially applies a fractional mask to 

determine the illumination part of the image. Next, an image 

exposure adjustment method is implemented to increase the 

visibility of the weakly illuminated regions. Lastly, a 

specialized image fusion method is applied to produce the 

resulting image. Xie et al. [22] on the other hand developed an 

algorithm that depends on a fusion map, in that it initially 

applies semantic segmentation to extract regions in an image 

with specific semantic features. Next, these regions are further 

refined and combined jointly using an estimated map of 

illumination-awareness that is determined from the image’s 

illumination. Using the semantic information, this algorithm 

becomes able to well-improve the dark regions of the image 

and provide fewer artifacts with better appearance. As 

aforementioned, many algorithms are used to enhance low-

light images. However, various algorithms may introduce 

artifacts, halos, shadows around edges, extra smoothness, 

deficient contrast, and/or colors. Moreover, some algorithms 

are noticeably slow in producing the output image. Thus, 

providing a low-intricacy algorithm that produces adequate 

quality images is highly demanded.  

In this study, a retinex-based multiphase (RBMP) algorithm 

is developed for the rapid enhancement of low-light images. 

The RBMP computes the illumination image. Then, the 

logarithms for both the original and illumination images is 

determined and subtracted using a modified approach. Next, 

the outcome is filtered by a gamma-corrected sigmoid function 

and further refined by a normalization function. This allows 

preserving the highly illuminated parts while increasing the 

illumination in the dark parts of the image. In the experiments 

and comparisons, only natural distorted low-light images are 

utilized, a comparison with eight algorithms is made, and three 

image evaluation metrics are used. By doing intensive tests 

and comparisons, the RBMP is proved to well-process various 

low-light images rapidly and outpaced the comparatives in 

several traits. The remaining sections of the manuscript are 

organized in the following manner: Section 2 explains the 

proposed algorithm in detail. Section 3 describes the acquired 

results. Section 4 provides a brief conclusion. 
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2. PROPOSED ALGORITHM 

 

The key motivation behind developing the RBMP algorithm 

is to process the low-light images efficiently with the lowest 

possible calculations’ involvement. Accordingly, different 

low-intricacy concepts that try to improve the image 

illumination have been researched. Among such, the single-

scale retinex (SSR) model proposed by Jobson et al. [23] was 

examined because it involves low-calculations and can 

improve the illumination of images. In brief, the SSR model 

works by estimating an illumination image from its degraded 

counterpart by performing a discrete convolution (*) between 

a degraded image I(x,y) and a discrete 2D Gaussian surround 

function (DGSF) G(x,y). The log of the output of this operation 

is taken then subtracted from the log of the degraded image to 

produce the reflectance image R(x,y) which represents an 

enhanced observation of the degraded image [24]. More 

specifically, to apply the SSR model on a degraded image, the 

DGSF is first computed as follows [25]: 
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where, x and y are image coordinates, W and Q signify the 

vertical and horizontal grayscale gradients, in that they both 

have the same size as I(x,y), F is a normalization factor, N and 

M represent the image dimensions, (·) is a multiplication 

operator, σ is a numerical parameter that controls the 

illumination, in that it should be as (σ > 1), where a greater 

value delivers more image illumination. Next, the SSR model 

is determined using the following equation [23]: 
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The discrete convolution is implemented by converting G(x,y) 

and I(x,y) to the frequency domain using the discrete Fourier 

transform, shift their zero-frequency elements to the 

spectrum’s center, multiply the shifted results, shift the zero-

frequency elements again for the multiplication result, then 

utilize the inverse Fourier transform to get the resulting image 

in the spatial domain. The SSR algorithm has been used 

previously to improve the contrast and/or illumination of 

different types of images. As explained in the study [23], the 

SRR has some defects as it may fail to produce images with 

adequate visual quality since degradations may present such 

as color inconstancy and improper dynamic range. Therefore, 

it is tested intensively with different types of low-light color 

images, and samples of the obtained results are demonstrated 

in Figure 2. 

 

 
 

Figure 2. Samples of the SSR results using different real low-light images. (a1-e1) real degraded images; (a2-e2) processed by 

the traditional SSR algorithm 

 

As seen in Figure 2, the SSR algorithm enhanced the 

illumination yet several notes are recorded. First, it darkened 

some areas in the processed images leading to loss of visible 

information. Second, it amplified the brightness in other image 

regions leading to an abnormal look. Third, it darkened the 

colors and provided an overall unnatural appearance. Despite 

the mentioned drawback, the SSR algorithm has a great 

potential to be further developed since it showed the ability to 

be applied with low-light images and it involves simple 

calculations. Therefore, a new multiphase algorithm is 

developed in this study, in that it depends on the SRR model 

and other statistical and numerical methods to produce 

adequate quality results. The innovation of the proposed 

algorithm lies in the use of the simple approach of the SSR 

algorithm to detect the illumination image. Then, it utilizes 

additional low intricacy methods to deliver better quality 

results rapidly. The additional methods are simply a modified 

subtraction process, adapted gamma-corrected sigmoid 

function, and a standard normalization function. The proposed 

multiphase algorithm starts by determining the DGSF using 

Eq. (1) and Eq. (2), with (σ = M·N). The second phase involves 

determining the log of the illumination and the original images 

L(x,y) and O(x,y) using the following equations: 

 

( , ) ( , )logx y x yO I  = +   
(4) 
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where, (ε = 0.001) is a small value that is added to the image 

to avoid computing the log of zero. Next, instead of 

subtracting the images as in the standard SSR in Eq. (3), a new 

subtraction method is utilized as the third phase. Jourlin and 

Pinoli [26] proposed a logarithmic image processing approach 

to add two images and form a third one J(x,y) that has the 

features of both images as in the subsequent equation:  
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Here U(x,y) and V(x,y) are two distinct images. In this study, 

this approach is modified experimentally to be used as a 

subtraction approach. The modified subtraction approach can 

be described as follows: 
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where, P(x,y) is the reflectance image that its values are limited 

by a narrow dynamic range. Thus, a modified version of a 

sigmoid function is utilized to adjust the contrast of the 

reflectance image as the fourth phase. The sigmoid is an S-

shape transformation function that has been utilized previously 

in various research works related to contrast enhancement [27-

29]. The standard sigmoid function can be computed as 

follows [30]: 
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where, z is the inputted array to be processed. In this study, a 

gamma-corrected sigmoid (GCS) function is introduced and 

utilized to control the amount of visible enhancement and 

suppress the highly illuminated areas of the image. The GCS 

function is simply the standard sigmoid function raised to the 

power of γ. This practice allowed to control the apparent 

enhancement and has been followed previously in the power-

law transformation function to adjust the contrast [31]. The 

developed GCS function can be computed using the following 

equation: 
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where, S(x,y) is the output of the GCS function, γ is a tuning 

parameter that is responsible for the amount of enhancement. 

As for γ, it should satisfy (γ > 0), where a higher value leads 

to less illumination enhancement but better contrast. Besides, 

intensive experiments revealed that acceptable quality results 

are obtained when the γ value is between 0.1 and 0.4. The 

dynamic range of S(x,y) is improved but remains not fit to the 

entire interval. Thus, the standard linear normalization method 

is applied as the fifth and final phase to reallocate the image 

intensities to the entire range. The reason for using this method 

is it can linearly stretch the limited range rapidly without 

involving high computations or requiring extra variables to be 

inputted. The used normalization method is determined via the 

subsequent equation [32]: 
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where, E(x,y) is the algorithm output; min, max denote the 

lowest, highest pixel values in S(x,y). To properly describe the 

proposed algorithm, a block diagram that explains its 

operation specifics is given in Figure 3. Besides, the 

performance of the proposed algorithm with different gamma 

values is illustrated in Figure 4 and Figure 5. 

 

 
 

Figure 3. Block diagram of the proposed RBMP algorithm 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

 

Figure 4. The outcomes of processing a low-light image using different gamma values: (a) real low-light image; (b) γ =0.1, (c) γ 

=0.15, (d) γ =0.2, (e) γ =0.25, (f) γ =0.3, (g) γ =0.35, (h) γ =0.4 
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 5. The outcomes of processing another low-light image using different gamma values: (a) real low-light image; (b) γ=0.1, 

(c) γ=0.15, (d) γ=0.2, (e) γ=0.25, (f) γ=0.3, (g) γ=0.35, (h) γ=0.4 
 

As mentioned earlier, when the gamma value is between 0.1 

and 0.4, the results will be obtained with satisfactory visual 

quality. When increasing gamma, the brightness is reduced 

while the contrast is enhanced. Selecting the proper gamma 

value leads to obtain the desired results. Still, this also depends 

on the type of the processed image, in that if the image is 

extremely dark (ex. a nighttime image), the proper gamma 

value to produce satisfactory results can be around 0.1. If other 

types of low-light images are given, the proper gamma value 

can be around 0.25.  

This means that choosing the appropriate gamma value 

from the given range (0.1 to 0.4) rests with the operator, as the 

value of gamma is chosen and inputted manually. In Figure 4, 

the optimal performance is obtained when gamma γ=0.25 as 

the natural brightness and contrast are attained with a pleasant 

overall appearance, whereas in Figure 5, the optimal 

performance is obtained when gamma γ=0.1, as the 

information becomes better observed with acceptable 

brightness and contrast. This indicates that selecting a suitable 

gamma value depends on the illumination nature of the low-

light image being processed. 
 

 

3. RESULTS AND DISCUSSION 
 

All the information regarding the experiments and 

comparisons are stated in this part of the study. Regarding the 

datasets, more than one dataset is used in this study to assess 

the performance of the developed RBMP algorithm in the 

experiments and comparisons, in that all datasets have real-

degraded images. The first dataset contains images that are 

collected from different internet websites. The second dataset 

is the exclusive dark (ExDARK) [33], which includes more 

than seven thousand images captured in extremely low-light 

situations. The third dataset is provided by Bychkovsky et al. 

[34], in that it contains more than five thousand unprocessed 

images taken by different photographers to depict different 

lighting conditions, subjects, and scenes. The reason behind 

using only real-degraded images is to reveal its proficiency in 

enhancing images with low-light effects. Besides, a 

comparison is made with eight methods that are, JEDSD [16], 

BCP [11], GBE [20], RRM [17], NPE [12], PSIRE [13], PLM 

[14], and VBF [18], and the outcomes of such comparisons are 

evaluated by three dedicated metrics that are, lightness order 

error (LOE) [12], blind tone-mapped quality index (BTMQI) 

[35], and blind multiple pseudo reference images (BMPRI) 

[36].  

The LOE is a method used to assess the lightness order 

relativity which is a key feature for preserving the naturalness 

in an image. The assessment happens between the degraded 

image and its recovered version; thus, this is a reduced-

reference metric. Besides, the BTMQI assesses the quality by 

analyzing its naturalness, important information, and structure. 

For such a task, the entropy, local statistics, and Sobel 

operators have been utilized and their outcomes are combined 

using a dedicated regression module. Likewise, the BMPRI 

utilizes the local binary pattern (LBP) with a distortion 

aggravation (DA) approach to detect the change in the quality 

of the image. After applying five levels of DA, LBP is used to 

extract the features of the image. Next, these features are 

evaluated, and the results are pooled together using multiple 

PRIs to produce the final quality measure. The BMPRI metric 

is useful in detecting the visibility of image details with the 

presence of degradations and processing artifacts, in that it is 

better if they appear less in the resulting images. The BTMQI 

and BMPRI are no-reference metrics, while the LOE is a 

reduced-reference metric, in that all metrics output a numerical 

value, where smaller values indicate better quality results [12, 

17]. Regarding the computer specs and the programming 

environment, all experiments have been made by utilizing a 

computer with 4 GB of RAM and a CPU of Core I5-7200U 

2.7 GHz, and MATLAB 2018a environment.  

Figures 6-11 show the outcomes of applying the RBMP 

algorithm to different real-degraded low-light images, 

whereas Figures 12-14 demonstrate the comparison results. 

Table 1 to Table 4 exhibit the recorded metrics scores and 

processing times of the conducted comparisons. Figures 15-17 

represent the graphs of the average scores in Tables 1-3. From 

Figures 6-11, it is clear that the proposed RBMP algorithm 

successfully enhanced the perceived quality of different low-

light images as more details are perceived from the resulting 

images that have balanced brightness, acceptable contrast, and 

satisfactory colors. Besides, the dark area of the image appears 

in a better way, and the bright areas are preserved from being 

highly brightened. Besides, no processing flaws appear on the 

recovered images which appear more genuine to the viewer. 

Moreover, as observed in the experimental results, the 

proposed algorithm did not provide any smoothness or affect 

the smooth regions in the processed images. As for the edge 

information, the remained intact in terms of acutance 

modification, which indicates that the proposed algorithm only 

modifies the illumination and does not change the smoothness 

or the acutance when processing an image. 
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(a1) (b1) (c1) (d1) 

    
(a2) (b2) (c2) (d2) 

 

Figure 6. Enhancing different low-light images obtained from the internet by the proposed algorithm (batch -1-) 

(a1)–(d1) real low-light images, (a2)–(d2) enhanced by the proposed algorithm with γ=0.25 
 

    
(a1) (b1) (c1) (d1) 

    
(a2) (b2) (c2) (d2) 

 

Figure 7. Enhancing different low-light images obtained from the internet by the proposed algorithm (batch -2-) 

(a1)–(d1) real low-light images, (a2)–(d2) enhanced by the proposed algorithm with γ=0.25 
 

    
(a1) (b1) (c1) (d1) 

    
(a2) (b2) (c2) (d2) 

 

Figure 8. Enhancing different low-light images obtained from Ref. [33] by the proposed algorithm (batch -1-) 

(a1)–(d1) real low-light images, (a2)–(d2) enhanced by the proposed algorithm with γ values of (0.2, 0.2, 0.23, and 0.3) 

 

    
(a1) (b1) (c1) (d1) 
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(a2) (b2) (c2) (d2) 

 

Figure 9. Enhancing different low-light images obtained from Ref. [33] by the proposed algorithm (batch -2-) 

(a1)–(d1) real low-light images, (a2)–(d2) enhanced by the proposed algorithm with γ values of (0.2, 0.2, 0.25, and 0.25) 

 

    
(a1) (b1) (c1) (d1) 

    
(a2) (b2) (c2) (d2) 

 

Figure 10. Enhancing different low-light images obtained from Ref. [34] by the proposed algorithm (batch -1-)  

(a1)–(d1) real low-light images, (a2)–(d2) enhanced by the proposed algorithm with γ values of (0.25, 0.25, 0.3, and 0.25) 

 

    
(a1) (b1) (c1) (d1) 

    
(a2) (b2) (c2) (d2) 

 

Figure 11. Enhancing different low-light images obtained from Ref. [34] by the proposed algorithm (batch -2-)  

(a1)–(d1) real low-light images, (a2)–(d2) enhanced by the proposed algorithm with γ values of (0.4, 0.3, 0.25, and 0.3) 

 

Such findings are significant because visually pleasing 

outcomes are obtained with an uncomplicated algorithm that 

utilizes a few calculations to produce the results rapidly. From 

Figures 12-17 and Tables 1-4, it is obvious that dissimilar 

results were obtained by the comparatives, in that all the 

compared algorithms showed the ability to recover the latent 

details. However, each algorithm produced results that own 

remarks that needed to be discussed. The JEDSD algorithm 

introduced extra smoothness to the processed images with 

acceptable brightness, contrast, and colors. Therefore, its LOE 

readings were somewhat close to the proposed algorithm but 

its BTMQI readings were far due to the introduced smoothness 

and its BMPRI readings were moderate because the extra 

smoothness reduced the visibility of the image details, as well 

as, its processing time was somewhat high. The BCP algorithm 

introduced halo effects in some regions, some smoothness, and 

unnatural colors to the processed images. Therefore, its LOE 

readings were the worst yet its BTMQI scores were good due 

to brightness preservation. Its BMPRI readings were 

somewhat moderate because the smoothness and halo effects 

changed the visibility of the image details. As well, it provided 

reasonable implementation times. 
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Figure 12. The comparison outcomes (batch -1-) (a) real low-light image; The following images are enhanced by: (b) JEDSD 

[16], (c) BCP [11], (d) GBE [20], (e) RRM [17], (f) NPE [12], (g) PSIRE [13], (h) PLM [14], (i) VBF [18], (j) Proposed 

algorithm 

 

 
 

Figure 13. The comparison outcomes (batch -2-) (a) real low-light image; The following images are enhanced by: (b) JEDSD 

[16], (c) BCP [11], (d) GBE [20], (e) RRM [17], (f) NPE [12], (g) PSIRE [13], (h) PLM [14], (i) VBF [18], (j) Proposed 

algorithm 

 

 
 

Figure 14. The comparison outcomes (batch -3-) (a) real low-light image; The following images are enhanced by: (b) JEDSD 

[16], (c) BCP [11], (d) GBE [20], (e) RRM [17], (f) NPE [12], (g) PSIRE [13], (h) PLM [14], (i) VBF [18], (j) Proposed 

algorithm 
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Table 1. The recorded LOE scores for the comparatives 
 

Methods Figure 12 Figure 13 Figure 14 Average 

JEDSD 131.6043 238.4949 111.0603 160.386 

BCP 808.9075 1213.3000 977.0385 999.748 

GBE 621.8173 623.5491 531.0359 592.134 

RRM 140.7097 245.2698 116.6800 167.553 

NPE 382.7056 399.1507 394.4125 392.089 

PSIRE 159.7837 232.7425 279.4458 223.990 

PLM 610.7681 952.2582 542.1336 701.719 

VBF 265.9945 329.3802 165.6737 253.682 

Proposed 

algorithm 
105.4116 148.1967 60.8376 104.815 

 

Table 2. The recorded BTMQI scores for the comparatives 
 

Methods Figure 12 Figure 13 Figure 14 Average 

JEDSD 5.1941 4.1306 3.1455 4.156 

BCP 3.1568 2.8919 4.8833 3.644 

GBE 3.9176 3.7113 4.2802 3.969 

RRM 4.9183 4.2115 3.2473 4.125 

NPE 5.0161 3.4610 3.2655 3.914 

PSIRE 5.5620 6.1918 3.3940 5.049 

PLM 4.3399 3.2375 4.1796 3.919 

VBF 3.2899 3.2787 3.6265 3.398 

Proposed 

algorithm 
3.5205 3.3014 3.2627 3.361 

 

Table 3. The recorded BMPRI scores for the comparatives 
 

Methods Figure 12 Figure 13 Figure 14 Average 

JEDSD 18.072 18.2215 40.1647 25.486 

BCP 15.341 11.2373 48.9137 25.164 

GBE 14.9591 16.1218 44.6264 25.235 

RRM 19.9949 18.604 41.7961 26.798 

NPE 12.0183 10.3096 34.8238 19.050 

PSIRE 13.4798 10.5558 40.083 21.372 

PLM 13.11 11.896 45.6818 23.562 

VBF 13.9619 11.3874 37.4736 20.940 

Proposed 

algorithm 
12.9822 8.1572 31.115 17.418 

 

Table 4. The recorded processing times (in seconds) for the 

comparatives 
 

Methods Figure 12 Figure 13 Figure 14 Average 

JEDSD 48.296482 4.500845 62.103574 38.300 

BCP 3.358511 1.617899 2.816158 2.597 

GBE 3.115001 1.342931 2.751193 2.403 

RRM 91.791681 32.007914 91.269488 71.689 

NPE 12.423719 6.390939 17.560474 12.125 

PSIRE 1.838996 0.835211 4.328055 2.334 

PLM 2.679451 1.313764 4.429379 2.807 

VBF 461.173469 98.561583 908.229094 489.321 

Proposed 

algorithm 
0.385495 0.200304 0.486872 0.357 

 

 
 

Figure 15. The graph of the average LOE scores 

 
 

Figure 16. The graph of the average BTMQI scores 

 

 
 

Figure 17. The graph of the average BMPRI scores 

 

The GBE produced saturation in certain areas, halos around 

edges, and color distortion. Therefore, its LOE and BTMQI 

readings were unsatisfactory but it provided reasonable 

implementation times. As well, its BMPRI readings were 

relatively moderate because of the generated artifacts. The 

RRM algorithm produced high smoothness to the processed 

images with high processing times resulting in moderate LOE 

and BTMQI scores with the worst BMPRI readings. As for the 

remaining methods, the NPE introduced smoothness, 

somewhat dark colors, relatively slow processing times, while 

the PSIRE did not provide sufficient illumination for some of 

the processed images but its processing times where practical. 

The PLM introduced noticeable halos and color distortions 

where some processed images were severely distorted, but its 

processing times were relatively moderate, while the VBF was 

the slowest among the competitors and its results have 

noticeable processing errors. That is why the LOE, BTMQI, 

and BMPRI scores were dissimilar and did not reach the 

performance of the developed RBMP algorithm. On the other 

hand, the proposed algorithm performed the best in terms of 

processing speed, visual quality, and recorded accuracy as its 

resulting images appear with acceptable brightness, adequate 

colors, and satisfactory contrast with no visible processing 

flaws. In terms of processing speed, it was the fastest among 

the competitors. This is a true indication that the proposed 

RBMP algorithm has been developed successfully and it can 

efficiently process different images with low-light effects. It is 

uneasy to develop an algorithm that can process different low-

light images rapidly. This task is done as witnessed by the 

quality of the resulting images, the readings of the image 

evaluation method, and the processing speed records. 

 

 

4. CONCLUSIONS 

 

A retinex-based multiphase algorithm is developed in this 
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article to enhance images with low-light effects. The proposed 

algorithm determines the illumination image somewhat 

similar to the SSR algorithm, computes the logs of the original 

and the illumination images, subtract the aforesaid images via 

a modified approach, the outcome is then processed by a 

gamma-corrected sigmoid function and further refined by a 

normalization function. As for the performance appraisal, 

numerous real low-light images have been used for empirical 

trials, eight algorithms have been utilized as comparison 

methods, and three specialized methods have been employed 

as the designated image evaluation metrics, as well as, the 

processing times of the proposed and the comparative 

algorithms have been considered. Using the obtained 

outcomes, adequate results have been given by the proposed 

algorithm, in that its resulting images have acceptable contrast, 

satisfying brightness, and adequate colors, as well as, it 

provided the best scores according to the used evaluation 

metrics with the least processing times. Future works on this 

algorithm can include implementing further development on it 

to be utterly automated or can be better adapted to process 

images related to specific modalities and have the same 

problem. 
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