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Despite its popularity, the hyperspectral image compression algorithm recommended by the 

Consultative Committee for Space Data Systems (CCSDS) faces a long delay of the 

feedback loop and complex computations in the modes of band sequential (BSQ) and band 

interleaved by line (BIL). After analyzing the features of the CCSDS algorithm, this paper 

proposes a forward prediction method based on the xc7k325tffg9000 field programmable 

gate array (FPGA) chip (Xilinx Inc.), and adjusts the calculation flow of the CCSDS 

algorithm, aiming to shorten the time delay in the feedback loop. In addition, full-pipeline 

construction was implemented on FPGA board to realize real-time processing of data, and 

dynamic configuration of image parameters. Through functional simulation and off-board 

test, it is learned that, for the speed-insensitive path, the optimized algorithm can realize the 

complex operations of the original algorithm with less hardware resources; for hyperspectral 

image data with an effective input bit width of 12bit, the proposed method can reach a 

maximum operating frequency of 103MHz, and the data throughput of 103M samples per 

second (1.237Gbps).  
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1. INTRODUCTION

The resolution of spectral images has been increasing, 

owing to the advancement of aerospace science. As a result, 

there is an exponential growth in the amount of information in 

optical remote sensing images [1, 2]. The massive amount of 

data overloads the limited transmission bandwidth and 

hardware resources of satellite-borne devices. Thus, it is 

particularly important to effectively compress the massive data. 

Lossless compression is a suitable way to reduce the size of 

hyperspectral images [3]. For this reason, the Consultative 

Committee for Space Data Systems (CCSDS) has 

recommended a lossless compression standard for satellite-

borne hyperspectral images (CCSDS123.0-B-1) [4]. With low 

computing complexity, this standard is very conducive to 

hardware implementation [5, 6], and internationally adopted 

for lossless compression of satellite-borne hyperspectral 

images [7]. 

The compression of hyperspectral images has long been a 

research hotspot. Many hyperspectral image compression 

algorithms have emerged, roughly falling into prediction 

method, transform method and vector quantization method [8, 

9]. The following are some representative studies on multi- 

and hyper-spectral image compression. Valsesia and Magli [3] 

effectively controlled the onboard predictive coding of 

hyperspectral images, using multiple spectrum bands and 

Kalman filter. Wu and Memon [10] improved the context-

based adaptive lossless image coding (CALIC) algorithm to 

compress hyperspectral images. To reduce complexity, Song 

et al. [11] introduced least squares filtering to the prediction 

process. Aiazzi et al. [12] proposed a multi-spectral prediction 

method based on a lookup table. Lin and Hwang [13] divided 

the prediction into two steps: computing the initial value of the 

prediction, and calculating the final predicted value. 

Mielikainen and Huang [14] implemented adaptive prediction 

length in linear prediction.  

On field programmable gate array (FPGA), the CCSDS 

algorithm is mostly employed based on the mode of band 

interleaved by pixel (BIP). In this mode, the feedback loop is 

not necessarily related to the running speed of the hardware, 

and prone to a long calculation delay. But the large throughput 

of the mode can meet the needs of real-time processing. In both 

BIP mode and band sequential (BSQ) mode, the speed of 

hardware operation hinges on the calculation delay of the 

feedback loop, which is lengthened by the huge amount of 

internal calculations [15].  

In fact, the traditional hardware structure can no longer 

satisfy the current demand of satellite communications with 

data throughput greater than 1Gbps [16]. BSQ and band 

interleaved by line (BIL) are two inevitable data formats of 

hyperspectral images. A huge amount of hardware resources 

will be consumed by processing BSQ and BIL images, 

whether the two formats are processed in parallel or converted 

into BIP before processing [17]. Considering the extremely 

limited resources of space-borne equipment, it is significant to 

develop a real-time compression technology for hyperspectral 

images in BSQ and BIL modes [18]. 

After detailed analysis on CCSDS algorithm, this paper 

proposes a forward prediction method based on the features of 

the feedback loop, which reduces the computing load inside 

the critical path. Then, the authors realized the full-pipeline 

construction of the hardware. Achieving a core data 

throughput of 1.237Gbps, the proposed method meets the 

needs of real-time compression, and supports dynamic 

configuration of the parameters.
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2. ALGORITHM ANALYSIS 

 

The CCSDS algorithm divides the columns, rows, and 

spectral segments of hyperspectral image data according to 

their coordinates (x, y, z) in a three-dimensional (3D) space. 

In the light of spectrum band, the image data are arranged in 

the z direction, forming a data cube. As shown in Figure 1, the 

data in BSQ, BIP, and BIL are processed in different orders: x, 

y, z for BSQ data, z, x, y for BIP data, and x, z, y for BIL data. 
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Figure 1. The processing orders of BSQ, BIP, and BIL 

images 

 

Let Nx, Ny, and Nz be the number of image data in x, y, and 

z directions, respectively. That is, the value ranges of x, y, and 

z coordinates are  [0, Nx-1], [0, Ny-1], and [0, Nz-1], 

respectively. In addition, it is defined that t=y*Nx+x. Then, 

each pixel can be described as: 

 

𝑆𝑧,𝑦,𝑥 = 𝑆𝑧(𝑡) (1) 

 

The CCSDS compression consists of two parts: prediction 

and encoding. Since the entire system only has one prediction 

module with a feedback structure, this paper only analyzes the 

prediction part (Figure 2). The current pixel Sz,y,x needs to be 

processed, using its peripheral pixels and the corresponding 

pixels of the previous P spectrum bands. 
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Figure 2. The 3D prediction model 

 

The sum σz,y,x of pixel weights in each spectral band can be 

computed pixel by pixel. The CCSDS algorithm defines two 

compression modes, namely, the proximity mode and the line 

mode. The calculation methods of σz,y,x in the two modes can 

be respectively described as: 

 

𝜎𝑧,𝑦,𝑥 =

{
 
 

 
 
𝑆𝑧,𝑦−1,𝑥−1 + 𝑆𝑧,𝑦−1,𝑥 + 𝑆𝑧,𝑦−1,𝑥+1 + 𝑆𝑧,𝑦,𝑥−1, 𝑦 > 0,0 < 𝑥 < 𝑁𝑥 − 1

4 ∗ 𝑆𝑧,𝑦,𝑥−1,                                         𝑦 = 0, 𝑥 > 0

2 ∗ (𝑆𝑧,𝑦−1,𝑥 + 𝑆𝑧,𝑦−1,𝑥+1),               𝑦 > 0, 𝑥 = 0

𝑆𝑧,𝑦,𝑥−1 + 𝑆𝑧,𝑦−1,𝑥−1 + 2 ∗ 𝑆𝑧,𝑦−1,𝑥,           𝑦 > 0, 𝑥 = 𝑁𝑥 − 1

 
(2) 

𝜎𝑧𝑦𝑥 = {
4 ∗ 𝑆𝑧,𝑦−1,𝑥, 𝑦 > 0             

4 ∗ 𝑆𝑧,𝑦,𝑥−1, 𝑦 = 0, 𝑥 > 0
 (3) 

 

In each spectrum band, local differences in all directions are 

defined by the pixel positions, including central local 

differences dz,y,x, N-direction local differences 𝑑𝑧,𝑦,𝑥
𝑁 , W-

direction local differences 𝑑𝑧,𝑦,𝑥
𝑊 , and NW-direction local 

differences (Figure 3). 
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Figure 3. The calculation of local differences 

 

The above local differences can be respectively computed 

by: 

 

𝑑𝑧,𝑦,𝑥 = 4 ∗ 𝑆𝑧,𝑦,𝑥 − 𝜎𝑧,𝑦,𝑥 , 𝑥 + 𝑦 ≠ 0 (4) 

 

𝑑𝑧,𝑦,𝑥
𝑁 = {

4 ∗ 𝑆𝑧,𝑦−1,𝑥 − 𝜎𝑧,𝑦,𝑥,, 𝑦 > 0

0,                                           𝑦 = 0
 (5) 

𝑑𝑧,𝑦,𝑥
𝑊 = {

4 ∗ 𝑆𝑧,𝑦,𝑥−1 − 𝜎𝑧,𝑦,𝑥, 𝑥 > 0, 𝑦 > 0

4 ∗ 𝑆𝑧,𝑦−1,𝑥 − 𝜎𝑧,𝑦,𝑥, 𝑥 = 0, 𝑦 > 0

0,                                         𝑦 = 0            

 (6) 

 

𝑑𝑧,𝑦,𝑥
𝑁𝑊 = {

4 ∗ 𝑆𝑧,𝑦−1,𝑥−1 − 𝜎𝑧,𝑦,𝑥 , 𝑥 > 0, 𝑦 > 0

4 ∗ 𝑆𝑧,𝑦−1,𝑥 − 𝜎𝑧,𝑦,𝑥 ,             𝑥 = 0, 𝑦 > 0

0,                                               𝑦 = 0            

 (7) 

 

After obtaining the local differences of each spectrum band, 

the central local differences �̂�𝑧(𝑡) can be predicted based on 

the difference vector Uz(t) and weight vector Wz(t), under 𝑃𝑧
∗ =

min {𝑧, 𝑃}: 
 

�̂�𝑧(𝑡) =  𝑊𝑧
𝑇(𝑡)𝑈𝑧(𝑡)  =

[
 
 
 
 
 
 
 
𝜔𝑧
𝑁(𝑡)

𝜔𝑧
𝑊(𝑡)

𝜔𝑧
𝑁𝑊(𝑡)

𝜔𝑧
(1)(𝑡)

𝜔𝑧
(2)(𝑡)
⋮

𝜔𝑧
(𝑃𝑧
∗)
(𝑡)]
 
 
 
 
 
 
 
𝑇

∗  

[
 
 
 
 
 
 
 
𝑑𝑧
𝑁(𝑡)

𝑑𝑧
𝑊(𝑡)

𝑑𝑧
𝑁𝑊(𝑡)

𝑑𝑧−1(𝑡)

𝑑𝑧−2(𝑡)
⋮

𝑑𝑧−𝑃𝑧∗(𝑡)]
 
 
 
 
 
 
 

 (8) 
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The initial value of Wz(t) can be expressed as: 

 

𝜔𝑧
(1)(1) =

7

8
2Ω，𝜔𝑧

(i)(1) = ⌊
1

8
𝜔𝑧
(i−1)(1)⌋, 

𝑖 = 2,3, … , 𝑃𝑧
∗ 

(9) 

 

𝜔𝑧
𝑁(1) = 𝜔𝑧

𝑊(1) = 𝜔𝑧
𝑁𝑊(1) = 0 (10) 

 

Then, �̃�(𝑡) is derived from �̂�𝑧(𝑡) and σz,y,x, provided that its 

value falls in the specified range, and the error ez(t) is obtained 

by subtracting �̂�(𝑡) from the current pixel value Sz(t). Next, 

the value of sgn can be determined by: 

 

𝑠𝑔𝑛 = {
1, 𝑒𝑧(𝑡) ≥ 0

−1, 𝑒𝑧(𝑡) < 0
 (11) 

 

Let ρ(t) be the weight update factor. The weight vector Wz(t) 

can be updated by: 

 

𝑊𝑧(𝑡 + 1) 

= 𝑐𝑙𝑖𝑝 (𝑊𝑧(𝑡) + ⌊
1

2
(𝑠𝑔𝑛 ∗ 2−𝜌(𝑡) ∗ 𝑈𝑧(𝑡)

+ 1)⌋ , {𝜔𝑚𝑖𝑛 , 𝜔𝑚𝑎𝑥}) 

(12) 

 

The clip function can be defined as: 

 

𝑐𝑙𝑖𝑝(𝑥, {𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥}) = {

𝑥𝑚𝑖𝑛 , 𝑥 < 𝑥𝑚𝑖𝑛
𝑥, 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥
𝑥𝑚𝑎𝑥 , 𝑥 > 𝑥𝑚𝑎𝑥

 (13) 

 

The update of the weight vector Wz(t) directly bears on the 

adaptability of the CCSDS algorithm.  

If the predicted value is greater than the actual value, then 

the sgn is positive, and the weight vector needs to be properly 

increased; If the predicted value is smaller than the actual 

value, the weight vector needs to be properly decreased to 

reduce the predicted value; If the predicted value is equal to 

the actual value, the parameters are in line with image 

information, but the weight will still grow, making the 

compression unstable.  

The sgn and Wz(t+1) can be respectively expressed as: 

 

𝑠𝑔𝑛 = {

1, 𝑒𝑧(𝑡) > 0

0, 𝑒𝑧(𝑡) = 0

−1, 𝑒𝑧(𝑡) < 0

 (14) 

 

𝑊𝑧(𝑡 + 1) 

= 𝑐𝑙𝑖𝑝 (𝑊𝑧(𝑡) + ⌊
1

2
(𝑠𝑔𝑛 ∗ 2−𝜌(𝑡)

∗ 𝑈𝑧(𝑡))⌋ , {𝜔𝑚𝑖𝑛 , 𝜔𝑚𝑎𝑥}) 

(15) 

 

By formulas (14) and (15), when the predicted value is equal 

to the actual value, i.e. the error is zero, the weight will remain 

unchanged, thereby ensuring the compression stability. 

After prediction, the low-bit data of the image data are 

similar to noises. Direct encoding of these data will cause code 

expansion. The solution is to divide the encoder into two parts: 

K value selection and encoding. Any bit smaller or equal to K 

bit is not coded, while any bit greater than K bit is subject to 

Rice coding. 

 

 

3. SYSTEM DESIGN 

 

Under the scan mode of camera imaging, the data in all 

spectra were scanned line by line. To match the data output 

method of the camera, the BIL mode was adopted to process 

the image data. For the camera, the valid bit width, maximum 

width, and maximum number of spectrum bands are 12bit, 

1280, and 160, respectively. 

According to the CCSDS algorithm, the data of the previous 

rows and the previous P bands are required to process the data 

in the current row. The relevant data were cached in the BIL 

mode. If the height of each data entry is 32, then at least 2.46M 

of space is needed. The space demand exceeds the capacity of 

on-chip storage resources, which cannot be satisfied by 

general FPGA chips. To solve the problem, an off-chip 

memory DDR3 was selected for data caching. 

 

 
 

Figure 4. The architecture of the system 

 

 
 

Figure 5. The workflow of the prediction module 
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As shown in Figure 4, the system caches the image data via 

the DDR control module, which dynamically configures the 

parameters and controls the working state of the compressor. 

The row cache module caches the input data, calculates the 

pixel values needed to predict the current pixel, and outputs 

the results to the prediction module. The prediction module 

predicts the pixel value, and calculates the prediction error. 

The k-value calculation module computes the parameter k 

required for encoding the current predicted value. Finally, the 

encoding module relies on the error and k-value to realize 

entropy encoding of the error. In the entire system, prediction 

module is the only module to have a feedback structure, that 

is, a full-pipeline construction can be directly implemented for 

all the other modules. 

 

 

4. DESIGN AND IMPLEMENTATION OF FPGA 

 

4.1 Limitations of traditional prediction modules  

 

The prediction module calculates the difference vector Uz(t) 

based on the values of the current pixel and its peripheral 

pixels, derives the predicted value �̂�𝑧(𝑡) of the center local 

difference from the weight vector Wz(t), and computes 

predicted value �̂�(𝑡) and thus the error ez(t). After mapping, 

ez(t) is outputted to the encoding module, and used to calculate 

the value of sgn, for the update of the weight vector Wz(t). The 

updated weight vector will be used in the next operation [19]. 

Figure 5 explains the workflow of the prediction module. In 

the same spectrum band, the prediction of the next pixel value 

depends on the updated value of the current pixel. Thus, there 

is a long feedback loop from the prediction �̂�𝑧(𝑡) of center 

local difference to the update of weight vector Wz(t+1). 

In BIL and BSQ modes, the data must be processed 

continuously in the same spectrum. To ensure full-pipeline 

construction, the calculation delay of the feedback loop was 

limited to one cycle. For the 12-bit data input from the camera, 

when ρ(t)=12, the following operations are required at the 

most to update the weight vector in the next cycle: one 24-bit 

multiplication, one 12-bit addition, two 24-bit additions, one 

25-bit addition, and two 26-bit additions. Too many 

calculations in one cycle slows down the running speed of the 

hardware. What is worse, the computing speed of the 

traditional structure can only reach 66M samples per second. 

Although the running speed could be accelerated by adding 

registers to the feedback loop, the corresponding data 

throughput will drop exponentially due to the lack of full 

pipeline construction, failing to meet the actual requirements. 

 

4.2 Implementation of the new prediction module 

 

Under the improved CCSDS algorithm, there are only three 

cases for each update of weight vector Wz(t): 

 

𝑊𝑧(𝑡 + 1) =

{
 
 

 
 𝑐𝑙𝑖𝑝 (𝑊𝑧(𝑡) + ⌊

1

2
(2−𝜌(𝑡) ∗ 𝑈𝑧(𝑡))⌋ , {𝜔𝑚𝑖𝑛 , 𝜔𝑚𝑎𝑥}) , 𝑠𝑔𝑛 = 1  

𝑐𝑙𝑖𝑝 (𝑊𝑧(𝑡) + ⌊
1

2
(−2−𝜌(𝑡) ∗ 𝑈𝑧(𝑡))⌋ , {𝜔𝑚𝑖𝑛 , 𝜔𝑚𝑎𝑥}) , 𝑠𝑔𝑛 = −1

𝑊𝑧(𝑡),                                                                                       𝑠𝑔𝑛 = 0

 (16) 

 

In formula (16), the calculation of ⌊
1

2
(±2−𝜌(𝑡) ∗ 𝑈𝑧(𝑡))⌋ is 

independent of the feedback loop. On this basis, this paper 

designs a forward prediction structure. 

If the update of Wz(t) is not completed in the current cycle, 

three possible results Wzp1(t+1), Wzp2(t+1), and Wzp3(t+1) 

derived from Wz(t+1) can be used simultaneously to predict 

the center local difference. In this way, �̂�𝑧𝑝1(𝑡 + 1), �̂�𝑧𝑝2(𝑡 +

1), and �̂�𝑧𝑝3(𝑡 + 1) are obtained. Once Wz(t) is updated in the 

next cycle, the correct Wz(t+1) and �̂�𝑧(𝑡 + 1) can be selected 

after the corresponding sgn is obtained, ensuring the continuity 

of the calculation.  

Under the new structure, the maximum number of cycles to 

limit the update of Wz(t) is increased from one to two. 

Meanwhile, the new structure meets the condition of full-

pipeline construction. Hence, an additional register can be 

added to the feedback loop. The workflow of the forward 

prediction of weight vector is illustrated in Figure 6. 

Moreover, the prediction of the center local difference is 

split into two parts to balance the delay at both ends of the 

register induced by multiplications. First, the weight vector 

Wz(t+1) is multiplied by the corresponding element in the 

difference vector Uz(t+1). Then, the addition is performed to 

obtain �̂�𝑧(𝑡 + 1) after the data pass through the register. 

To further reduce the computing load of the critical path in 

the feedback loop, the following variables Mz(t), Az(t), Bz(t) 

and Cz(t) can be defined: 

 

𝑀𝑧(𝑡) = (�̂�𝑧(𝑡) − ⌊
�̂�𝑧(𝑡)

2𝜌(𝑡)+2
⌋ ∗ 4) + (𝜎𝑧𝑦𝑥 − ⌊

𝜎𝑧𝑦𝑥

4
⌋ ∗ 4) (17) 

𝐴𝑧(𝑡) = {
4 ∗ 𝑆𝑧(𝑡) − ⌊

𝜎𝑧𝑦𝑥

4
⌋ ∗ 4,𝑀𝑧(𝑡) < 4

4 ∗ 𝑆𝑧(𝑡) − ⌊
𝜎𝑧𝑦𝑥

4
⌋ ∗ 4 − 1,𝑀𝑧(𝑡) ≥ 4

 (18) 

 

𝐵𝑧(𝑡) = 2 ∗ 𝑆𝑚𝑎𝑥 + 1 − 𝜎𝑧𝑦𝑥 (19) 

 

𝐶𝑧(𝑡) = 2 ∗ 𝑆𝑚𝑖𝑛 − 𝜎𝑧𝑦𝑥 (20) 

 

In addition, sgn1, sgn2, and sgn3 can be respectively defined 

as: 

 

𝑠𝑔𝑛1 =

{
 
 

 
 1, 𝑆𝑧(𝑡) > ⌊

𝑆𝑚𝑎𝑥
2
⌋

0, 𝑆𝑧(𝑡) = ⌊
𝑆𝑚𝑎𝑥
2
⌋

−1, 𝑆𝑧(𝑡) < ⌊
𝑆𝑚𝑎𝑥
2
⌋

 (21) 

 

𝑠𝑔𝑛2 =

{
 
 
 

 
 
 1, ⌊

�̂�𝑧(𝑡)

2𝜌(𝑡)+2
⌋ ∗ 4 < 𝐴𝑧(𝑡)

0, ⌊
�̂�𝑧(𝑡)

2𝜌(𝑡)+2
⌋ ∗ 4 = 𝐴𝑧(𝑡)

−1, ⌊
�̂�𝑧(𝑡)

2𝜌(𝑡)+2
⌋ ∗ 4 > 𝐴𝑧(𝑡)

 (22) 

 

𝑠𝑔𝑛3 = {

1, 𝑆𝑧(𝑡) > 0

0, 𝑆𝑧(𝑡) = 0

−1, 𝑆𝑧(𝑡) < 0

 (23) 
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Hence, sgn can be expressed as: 

 

𝑠𝑔𝑛 =

{
 
 
 

 
 
 𝑠𝑔𝑛1, ⌊

�̂�𝑧(𝑡)

2𝜌(𝑡)
⌋ > 𝐵𝑧(𝑡)

𝑠𝑔𝑛2, 𝐵𝑧(𝑡) ≤ ⌊
�̂�𝑧(𝑡)

2𝜌(𝑡)
⌋ ≤ 𝐶𝑧(𝑡)

𝑠𝑔𝑛3, ⌊
�̂�𝑧(𝑡)

2𝜌(𝑡)
⌋ < 𝐶𝑧(𝑡)

 (24) 

 

The calculations of 4 ∗ 𝑆𝑧(𝑡) − ⌊
𝜎𝑧𝑦𝑥

4
⌋ ∗ 4, Bz(t), Cz(t), sgn1, 

and sgn3, which are not related to �̂�𝑧(𝑡), can be performed 

outside the feedback loop through simple shifting, addition, 

and subtraction. 

Through the above optimization, for input data with 12bit 

width, the 26bit and 12bit additions required to compute the 

sgn value in the critical path of the feedback loop are 

simplified to one 2bit addition during the prediction of Mz(t). 

More importantly, the bid width required to compute Mz(t) 

does not change, even if the bit width of the input data 

increases. In other words, the delay will not increase with the 

bit width of the input data. Therefore, the optimization greatly 

shortens the delay in the feedback loop. The sgn calculation 

structure is displayed in Figure 7, where delta, pcld, and ohm 

represent σzyx, �̂�𝑧(𝑡), and ρ(t), respectively; the bit width is 

R+1. 
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Figure 6. The workflow of forward prediction of weight vector 

 

 
 

Figure 7. The structure of sgn calculation 

 

4.3 Design of encoding module 

 

The encoding module encompasses two sub-modules: K-

value calculation module, and code stream splice module. The 

former mainly determines the k-value, while the latter 

generates a variable-length code, and splices the code to output 

a code stream of fixed 16-bit width. 

 

4.3.1 K-value calculation module 

The calculation of kz(t) value depends on the values of the 

counter Γ(t) and the error accumulator ∑ (𝑡)𝑧 . If 2 ∗ Γ(𝑡) >

∑ (𝑡)𝑧 + ⌊
49

27
Γ(𝑡)⌋, then kz(t)=0; otherwise, kz(t) is the largest 

positive integer that satisfies: 

 

𝑘𝑧(𝑡) ≤ 𝐷 − 2 (25) 

 

2𝑘𝑧(𝑡) ∗ 𝛤(𝑡) ≤ ∑𝑧(𝑡) + ⌊
49

27
𝛤(𝑡)⌋ (26) 

 

where, D is the bit width of the input data. 

If the bit width D equals 16, the determination of kz(t) 

requires up to 14 comparisons. Suppose only one comparison 

is completed per cycle. It takes 14 cycles to obtain the final 

result. The long delay wastes a lot of time. If all data are 

compared in one cycle, the relatively high bit width of ∑𝑧(𝑡) 
and the fan-out effect will make it impossible to finish the 

comparisons in time.  

After comprehensive consideration, dichotomy was 

adopted to optimize the calculation of kz(t). Let (n, m] be the 

value range of each kz(t) value. Then, k𝑧(𝑡) = ⌊
𝑛+𝑚

2
⌋  was 

substituted into formula (26). If the condition is satisfied, then 
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𝑚 = ⌊
𝑛+𝑚

2
⌋; otherwise, 𝑛 = ⌊

𝑛+𝑚

2
⌋. This process is repeated 

iteratively until kz(t) is determined.  

After the optimization, when the bit width D equals 16, the 

value of kz(t) can be identified within 4 judgements. Each time, 

∑𝑧(𝑡)  will only fan out to two areas. This means the 

optimization manages to shorten the delay, and ease hardware 

implementation.  

To further save resources, the step size was set to 49, and 

the counter Γ '(t) was made equivalent to Γ(t). Then, formula 

(26) can be rewritten as: 

 

2𝑘𝑧(𝑡) ∗ 𝛤(𝑡) ≤ ∑𝑧(𝑡) + ⌊
𝛤′(𝑡)

27
⌋ (27) 

 

With the help of a counter Γ '(t), the multiplication between 

Γ(t) and 49 in formula (17) was converted into the addition of 

49 at each accumulation of Γ '(t). In this way, all the 

calculations in formula (18) can be realized through simple 

addition and shifting.  

The hardware structure of single dichotomy judgment at 

kz(t)=k is explained in Figure 8, where acc, cnt49, and pcnt 

represent ∑𝑧(𝑡), Γ(t), and Γ '(t), respectively. 

Next, the single dichotomy judgements with different k 

values were cascaded into the partial block diagram for kz(t) 

calculation (Figure 9). 

 

4.3.2 Code stream splice module 

Figure 10 presents the block diagram of the code stream 

splice module. If the coding is performed right after the K-

value calculation, many consecutive zeros will appear in the 

code stream, dragging down the compression efficiency. To 

solve the problem, a comparator was added to the module. The 

comparator compares the size between the highest bit to the K 

bit of the mapping values and the threshold of 64 bits. Then, 

only the mapping values equal to or below the threshold were 

encoded. Those above the threshold were not encoded, but 

written as raw data.  
 

 
 

Figure 8. The hardware structure of a single dichotomy 

judgment 

 

 
 

Figure 9. The partial block diagram for kz(t) calculation 

 

Encoding 

module
Comparator

Code 

stream 

splicing 

module
K

The mapping value of 
the predicted value

Irregular code stream
16bit encoded output

 
 

Figure 10. The block diagram of code stream splice module 

 

 

5. PERFORMANCE VERIFICATION 

 

The proposed hyperspectral image compression system was 

verified through functional simulation and off-board test. The 

environment and excitation files of the functional simulation 

were built on ModelSim. The off-board test was conducted on 

the xc7k325tffg900 chip of Xilinx, Inc., using Verilog 

language and Vivado 2020.1. 

In the off-board test, the correct program verified by 

functional simulation was written to the FPGA board, and 

hyperspectral image data were imported to the board via the 

host computer. Since the transmission speed of the serial port 

is below 103MHz, the data received by the serial port were 

stored in a buffer zone. Every 32 rows of the received data 

were outputted to the compressor module at a working 

frequency of 103MHz. After compression, the code stream of 

the compressed image data was fed back to the host computer 

via the serial port. Then, the host computer compares the 

feedback with the compression result of the software. If the 

two are consistent, then the compressor must have been 

running normally on the hardware. 

The test data were selected from the actual images shot by 

the camera. Dozens of G data were compiled into continuous 

data of different widths and spectral bands. In addition, 

different test data were employed to test the boundary 

conditions, such that the data do not overflow. In addition to 

comparing against the software compression result, the 

hardware compression result was decompressed and 

contrasted with the original data to verify the correctness of 

the system. 

The test data are of various data formats with different 

number of columns. To ensure the reliability of the test, the 

number of rows was fixed at 32. The test results show that the 

compression ratio is about 1:2. 

 

Table 1. The comparison of hardware compression results 

 

Data mode (32 rows) Compression ratio 

79 bands 320 columns 1:2.2 

79 bands 1,280 columns 1:2.16 

10 bands 80 columns 1:1.85 

10 bands 1,280 columns 1:1.84 

105 bands 1,280 columns 1:2.09 

126 bands 640 columns 1:2.25 
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Through the off-board test, it was learned that our system 

supports the maximum valid bit width of image data of 12bit, 

the maximum width of 1,280, and the maximum number of 

spectral bands of 160. The highest operating frequency was 

achieved at 103MHz by reducing the computing load in the 

critical path. In addition, the full-pipeline construction 

guaranteed a throughput rate of 103M samples per second. 

From the input of image data to the output of encoded data, the 

system only took 33 cycles, i.e. 320ns at 103MHz. Vivado 

analysis shows that the power consumption of the system 

stood at a low level of 0.465W.  

Table 2 shows the resource occupancy rate of the 

compressor. Using double data rate (DDR) 3 to cache image 

data, the compressor occupied less than 3% of on-chip 

random-access memory (RAM). The falling computing load 

on the critical path pushes up the loads on the other paths. 

Compared with that (12) of other structures, our system 

occupied 63 digital signal processors (DSPs). Nevertheless, 

the occupancy rate of on-chip resources remained low at only 

7.5%. Besides, our system improved the processing speed by 

over 56% with a small resource cost. 

 

Table 2. The resource occupancy rate of compressor 

 

Resource type 
Occupied 

number/total 

Resource 

occupancy rate/% 

LUT 6,228/203,800 3.06 

LUTRAM 7/64,000 0.01 

FF 7,252/407,600 1.78 

BRAM 10/445 2.25 

DSP 63/840 7.50 

Note: LUT, LUTRAM, FF, and DSP stand for lookup table, flip-flop, lookup 

table random-access memory, and block random-access memory, respectively. 

 

 

6. CONCLUSIONS 

 

Based on the BIL mode of CCSDS algorithm, this paper 

designs a prediction module and an encoding module, and 

implements them on FPGA board. The main innovations of the 

proposed system are as follows: 

(1) To enhance system resilience, the block compression 

was adopted to process the data source. Through the 

processing, the compression error of a single pixel will not 

propagate into compression errors across the system. 

(2) In the prediction module, forward prediction and the 

full-pipeline construction were introduced, such that the 

algorithm speed is no longer limited by the delay of the 

feedback loop in weight update. 

(3) The optimized feedback loop can adapt to the BSQ mode, 

making it possible to compress BIL and BSQ data in real time. 

The proposed system is faster, more flexible, and more 

resource-efficient than the existing technology. In addition, the 

system parameters can be configured dynamically at a low 

resource cost, meeting the needs of satellite-borne missions. 
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