
Design and Implementation of a Lossless Compression System for Hyperspectral Images

Qizhi Fang*, Yuxuan Liu, Lili Zhang

College of Electronic and Information Engineering, Shenyang Aerospace University, Shenyang 110136, China

Corresponding Author Email: arinc2006@sau.edu.cn

https://doi.org/10.18280/ts.370506 ABSTRACT

Received: 8 May 2020

Accepted: 19 September 2020

Despite its popularity, the hyperspectral image compression algorithm recommended by the

Consultative Committee for Space Data Systems (CCSDS) faces a long delay of the

feedback loop and complex computations in the modes of band sequential (BSQ) and band

interleaved by line (BIL). After analyzing the features of the CCSDS algorithm, this paper

proposes a forward prediction method based on the xc7k325tffg9000 field programmable

gate array (FPGA) chip (Xilinx Inc.), and adjusts the calculation flow of the CCSDS

algorithm, aiming to shorten the time delay in the feedback loop. In addition, full-pipeline

construction was implemented on FPGA board to realize real-time processing of data, and

dynamic configuration of image parameters. Through functional simulation and off-board

test, it is learned that, for the speed-insensitive path, the optimized algorithm can realize the

complex operations of the original algorithm with less hardware resources; for hyperspectral

image data with an effective input bit width of 12bit, the proposed method can reach a

maximum operating frequency of 103MHz, and the data throughput of 103M samples per

second (1.237Gbps).

Keywords:

field programmable gate array (FPGA),

hyperspectral image, lossless compression,

forward prediction, full-pipeline

construction

1. INTRODUCTION

The resolution of spectral images has been increasing,

owing to the advancement of aerospace science. As a result,

there is an exponential growth in the amount of information in

optical remote sensing images [1, 2]. The massive amount of

data overloads the limited transmission bandwidth and

hardware resources of satellite-borne devices. Thus, it is

particularly important to effectively compress the massive data.

Lossless compression is a suitable way to reduce the size of

hyperspectral images [3]. For this reason, the Consultative

Committee for Space Data Systems (CCSDS) has

recommended a lossless compression standard for satellite-

borne hyperspectral images (CCSDS123.0-B-1) [4]. With low

computing complexity, this standard is very conducive to

hardware implementation [5, 6], and internationally adopted

for lossless compression of satellite-borne hyperspectral

images [7].

The compression of hyperspectral images has long been a

research hotspot. Many hyperspectral image compression

algorithms have emerged, roughly falling into prediction

method, transform method and vector quantization method [8,

9]. The following are some representative studies on multi-

and hyper-spectral image compression. Valsesia and Magli [3]

effectively controlled the onboard predictive coding of

hyperspectral images, using multiple spectrum bands and

Kalman filter. Wu and Memon [10] improved the context-

based adaptive lossless image coding (CALIC) algorithm to

compress hyperspectral images. To reduce complexity, Song

et al. [11] introduced least squares filtering to the prediction

process. Aiazzi et al. [12] proposed a multi-spectral prediction

method based on a lookup table. Lin and Hwang [13] divided

the prediction into two steps: computing the initial value of the

prediction, and calculating the final predicted value.

Mielikainen and Huang [14] implemented adaptive prediction

length in linear prediction.

On field programmable gate array (FPGA), the CCSDS

algorithm is mostly employed based on the mode of band

interleaved by pixel (BIP). In this mode, the feedback loop is

not necessarily related to the running speed of the hardware,

and prone to a long calculation delay. But the large throughput

of the mode can meet the needs of real-time processing. In both

BIP mode and band sequential (BSQ) mode, the speed of

hardware operation hinges on the calculation delay of the

feedback loop, which is lengthened by the huge amount of

internal calculations [15].

In fact, the traditional hardware structure can no longer

satisfy the current demand of satellite communications with

data throughput greater than 1Gbps [16]. BSQ and band

interleaved by line (BIL) are two inevitable data formats of

hyperspectral images. A huge amount of hardware resources

will be consumed by processing BSQ and BIL images,

whether the two formats are processed in parallel or converted

into BIP before processing [17]. Considering the extremely

limited resources of space-borne equipment, it is significant to

develop a real-time compression technology for hyperspectral

images in BSQ and BIL modes [18].

After detailed analysis on CCSDS algorithm, this paper

proposes a forward prediction method based on the features of

the feedback loop, which reduces the computing load inside

the critical path. Then, the authors realized the full-pipeline

construction of the hardware. Achieving a core data

throughput of 1.237Gbps, the proposed method meets the

needs of real-time compression, and supports dynamic

configuration of the parameters.

Traitement du Signal
Vol. 37, No. 5, October, 2020, pp. 745-752

Journal homepage: http://iieta.org/journals/ts

745

https://crossmark.crossref.org/dialog/?doi=10.18280/ts.370506&domain=pdf

2. ALGORITHM ANALYSIS

The CCSDS algorithm divides the columns, rows, and

spectral segments of hyperspectral image data according to

their coordinates (x, y, z) in a three-dimensional (3D) space.

In the light of spectrum band, the image data are arranged in

the z direction, forming a data cube. As shown in Figure 1, the

data in BSQ, BIP, and BIL are processed in different orders: x,

y, z for BSQ data, z, x, y for BIP data, and x, z, y for BIL data.

y

x

z

y

x

y

x

z

0 0 0

(a) BSQ

y

x

z

y

x

z

y

x

z

0 0 0

(b) BIP (c) BIL

Figure 1. The processing orders of BSQ, BIP, and BIL

images

Let Nx, Ny, and Nz be the number of image data in x, y, and

z directions, respectively. That is, the value ranges of x, y, and

z coordinates are [0, Nx-1], [0, Ny-1], and [0, Nz-1],

respectively. In addition, it is defined that t=y*Nx+x. Then,

each pixel can be described as:

𝑆𝑧,𝑦,𝑥 = 𝑆𝑧(𝑡) (1)

The CCSDS compression consists of two parts: prediction

and encoding. Since the entire system only has one prediction

module with a feedback structure, this paper only analyzes the

prediction part (Figure 2). The current pixel Sz,y,x needs to be

processed, using its peripheral pixels and the corresponding

pixels of the previous P spectrum bands.

Sz,y-1,x-1 Sz,y-1,x Sz,y-1,x+1

Sz,y,x-1 Sz,y,x

Sz-1,y-1,x-1 Sz-1,y-1,x Sz-1,y-1,x+1

Sz-1,y,x-1 Sz-1,y,x

Sz-p,y-1,x-1 Sz-p,y-1,x Sz-p,y-1,x+1

Sz-p,y,x-1 Sz-p,y,x

x

z

y
Current

band

Figure 2. The 3D prediction model

The sum σz,y,x of pixel weights in each spectral band can be

computed pixel by pixel. The CCSDS algorithm defines two

compression modes, namely, the proximity mode and the line

mode. The calculation methods of σz,y,x in the two modes can

be respectively described as:

𝜎𝑧,𝑦,𝑥 =

{

𝑆𝑧,𝑦−1,𝑥−1 + 𝑆𝑧,𝑦−1,𝑥 + 𝑆𝑧,𝑦−1,𝑥+1 + 𝑆𝑧,𝑦,𝑥−1, 𝑦 > 0,0 < 𝑥 < 𝑁𝑥 − 1

4 ∗ 𝑆𝑧,𝑦,𝑥−1, 𝑦 = 0, 𝑥 > 0

2 ∗ (𝑆𝑧,𝑦−1,𝑥 + 𝑆𝑧,𝑦−1,𝑥+1), 𝑦 > 0, 𝑥 = 0

𝑆𝑧,𝑦,𝑥−1 + 𝑆𝑧,𝑦−1,𝑥−1 + 2 ∗ 𝑆𝑧,𝑦−1,𝑥, 𝑦 > 0, 𝑥 = 𝑁𝑥 − 1

(2)

𝜎𝑧𝑦𝑥 = {
4 ∗ 𝑆𝑧,𝑦−1,𝑥, 𝑦 > 0

4 ∗ 𝑆𝑧,𝑦,𝑥−1, 𝑦 = 0, 𝑥 > 0
 (3)

In each spectrum band, local differences in all directions are

defined by the pixel positions, including central local

differences dz,y,x, N-direction local differences 𝑑𝑧,𝑦,𝑥
𝑁 , W-

direction local differences 𝑑𝑧,𝑦,𝑥
𝑊 , and NW-direction local

differences (Figure 3).

Sz,y-1,x-1 Sz,y-1,x Sz,y-1,x+1

Sz,y,x-1 Sz,y,x

NW N

W central

Figure 3. The calculation of local differences

The above local differences can be respectively computed

by:

𝑑𝑧,𝑦,𝑥 = 4 ∗ 𝑆𝑧,𝑦,𝑥 − 𝜎𝑧,𝑦,𝑥 , 𝑥 + 𝑦 ≠ 0 (4)

𝑑𝑧,𝑦,𝑥
𝑁 = {

4 ∗ 𝑆𝑧,𝑦−1,𝑥 − 𝜎𝑧,𝑦,𝑥,, 𝑦 > 0

0, 𝑦 = 0
 (5)

𝑑𝑧,𝑦,𝑥
𝑊 = {

4 ∗ 𝑆𝑧,𝑦,𝑥−1 − 𝜎𝑧,𝑦,𝑥, 𝑥 > 0, 𝑦 > 0

4 ∗ 𝑆𝑧,𝑦−1,𝑥 − 𝜎𝑧,𝑦,𝑥, 𝑥 = 0, 𝑦 > 0

0, 𝑦 = 0

 (6)

𝑑𝑧,𝑦,𝑥
𝑁𝑊 = {

4 ∗ 𝑆𝑧,𝑦−1,𝑥−1 − 𝜎𝑧,𝑦,𝑥 , 𝑥 > 0, 𝑦 > 0

4 ∗ 𝑆𝑧,𝑦−1,𝑥 − 𝜎𝑧,𝑦,𝑥 , 𝑥 = 0, 𝑦 > 0

0, 𝑦 = 0

 (7)

After obtaining the local differences of each spectrum band,

the central local differences �̂�𝑧(𝑡) can be predicted based on

the difference vector Uz(t) and weight vector Wz(t), under 𝑃𝑧
∗ =

min {𝑧, 𝑃}:

�̂�𝑧(𝑡) = 𝑊𝑧
𝑇(𝑡)𝑈𝑧(𝑡) =

[

𝜔𝑧
𝑁(𝑡)

𝜔𝑧
𝑊(𝑡)

𝜔𝑧
𝑁𝑊(𝑡)

𝜔𝑧
(1)(𝑡)

𝜔𝑧
(2)(𝑡)
⋮

𝜔𝑧
(𝑃𝑧
∗)
(𝑡)]

𝑇

∗

[

𝑑𝑧
𝑁(𝑡)

𝑑𝑧
𝑊(𝑡)

𝑑𝑧
𝑁𝑊(𝑡)

𝑑𝑧−1(𝑡)

𝑑𝑧−2(𝑡)
⋮

𝑑𝑧−𝑃𝑧∗(𝑡)]

 (8)

746

The initial value of Wz(t) can be expressed as:

𝜔𝑧
(1)(1) =

7

8
2Ω，𝜔𝑧

(i)(1) = ⌊
1

8
𝜔𝑧
(i−1)(1)⌋,

𝑖 = 2,3, … , 𝑃𝑧
∗

(9)

𝜔𝑧
𝑁(1) = 𝜔𝑧

𝑊(1) = 𝜔𝑧
𝑁𝑊(1) = 0 (10)

Then, �̃�(𝑡) is derived from �̂�𝑧(𝑡) and σz,y,x, provided that its

value falls in the specified range, and the error ez(t) is obtained

by subtracting �̂�(𝑡) from the current pixel value Sz(t). Next,

the value of sgn can be determined by:

𝑠𝑔𝑛 = {
1, 𝑒𝑧(𝑡) ≥ 0

−1, 𝑒𝑧(𝑡) < 0
 (11)

Let ρ(t) be the weight update factor. The weight vector Wz(t)

can be updated by:

𝑊𝑧(𝑡 + 1)

= 𝑐𝑙𝑖𝑝 (𝑊𝑧(𝑡) + ⌊
1

2
(𝑠𝑔𝑛 ∗ 2−𝜌(𝑡) ∗ 𝑈𝑧(𝑡)

+ 1)⌋ , {𝜔𝑚𝑖𝑛 , 𝜔𝑚𝑎𝑥})

(12)

The clip function can be defined as:

𝑐𝑙𝑖𝑝(𝑥, {𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥}) = {

𝑥𝑚𝑖𝑛 , 𝑥 < 𝑥𝑚𝑖𝑛
𝑥, 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥
𝑥𝑚𝑎𝑥 , 𝑥 > 𝑥𝑚𝑎𝑥

 (13)

The update of the weight vector Wz(t) directly bears on the

adaptability of the CCSDS algorithm.

If the predicted value is greater than the actual value, then

the sgn is positive, and the weight vector needs to be properly

increased; If the predicted value is smaller than the actual

value, the weight vector needs to be properly decreased to

reduce the predicted value; If the predicted value is equal to

the actual value, the parameters are in line with image

information, but the weight will still grow, making the

compression unstable.

The sgn and Wz(t+1) can be respectively expressed as:

𝑠𝑔𝑛 = {

1, 𝑒𝑧(𝑡) > 0

0, 𝑒𝑧(𝑡) = 0

−1, 𝑒𝑧(𝑡) < 0

 (14)

𝑊𝑧(𝑡 + 1)

= 𝑐𝑙𝑖𝑝 (𝑊𝑧(𝑡) + ⌊
1

2
(𝑠𝑔𝑛 ∗ 2−𝜌(𝑡)

∗ 𝑈𝑧(𝑡))⌋ , {𝜔𝑚𝑖𝑛 , 𝜔𝑚𝑎𝑥})

(15)

By formulas (14) and (15), when the predicted value is equal

to the actual value, i.e. the error is zero, the weight will remain

unchanged, thereby ensuring the compression stability.

After prediction, the low-bit data of the image data are

similar to noises. Direct encoding of these data will cause code

expansion. The solution is to divide the encoder into two parts:

K value selection and encoding. Any bit smaller or equal to K

bit is not coded, while any bit greater than K bit is subject to

Rice coding.

3. SYSTEM DESIGN

Under the scan mode of camera imaging, the data in all

spectra were scanned line by line. To match the data output

method of the camera, the BIL mode was adopted to process

the image data. For the camera, the valid bit width, maximum

width, and maximum number of spectrum bands are 12bit,

1280, and 160, respectively.

According to the CCSDS algorithm, the data of the previous

rows and the previous P bands are required to process the data

in the current row. The relevant data were cached in the BIL

mode. If the height of each data entry is 32, then at least 2.46M

of space is needed. The space demand exceeds the capacity of

on-chip storage resources, which cannot be satisfied by

general FPGA chips. To solve the problem, an off-chip

memory DDR3 was selected for data caching.

Figure 4. The architecture of the system

Figure 5. The workflow of the prediction module

747

As shown in Figure 4, the system caches the image data via

the DDR control module, which dynamically configures the

parameters and controls the working state of the compressor.

The row cache module caches the input data, calculates the

pixel values needed to predict the current pixel, and outputs

the results to the prediction module. The prediction module

predicts the pixel value, and calculates the prediction error.

The k-value calculation module computes the parameter k

required for encoding the current predicted value. Finally, the

encoding module relies on the error and k-value to realize

entropy encoding of the error. In the entire system, prediction

module is the only module to have a feedback structure, that

is, a full-pipeline construction can be directly implemented for

all the other modules.

4. DESIGN AND IMPLEMENTATION OF FPGA

4.1 Limitations of traditional prediction modules

The prediction module calculates the difference vector Uz(t)

based on the values of the current pixel and its peripheral

pixels, derives the predicted value �̂�𝑧(𝑡) of the center local

difference from the weight vector Wz(t), and computes

predicted value �̂�(𝑡) and thus the error ez(t). After mapping,

ez(t) is outputted to the encoding module, and used to calculate

the value of sgn, for the update of the weight vector Wz(t). The

updated weight vector will be used in the next operation [19].

Figure 5 explains the workflow of the prediction module. In

the same spectrum band, the prediction of the next pixel value

depends on the updated value of the current pixel. Thus, there

is a long feedback loop from the prediction �̂�𝑧(𝑡) of center

local difference to the update of weight vector Wz(t+1).

In BIL and BSQ modes, the data must be processed

continuously in the same spectrum. To ensure full-pipeline

construction, the calculation delay of the feedback loop was

limited to one cycle. For the 12-bit data input from the camera,

when ρ(t)=12, the following operations are required at the

most to update the weight vector in the next cycle: one 24-bit

multiplication, one 12-bit addition, two 24-bit additions, one

25-bit addition, and two 26-bit additions. Too many

calculations in one cycle slows down the running speed of the

hardware. What is worse, the computing speed of the

traditional structure can only reach 66M samples per second.

Although the running speed could be accelerated by adding

registers to the feedback loop, the corresponding data

throughput will drop exponentially due to the lack of full

pipeline construction, failing to meet the actual requirements.

4.2 Implementation of the new prediction module

Under the improved CCSDS algorithm, there are only three

cases for each update of weight vector Wz(t):

𝑊𝑧(𝑡 + 1) =

{

 𝑐𝑙𝑖𝑝 (𝑊𝑧(𝑡) + ⌊

1

2
(2−𝜌(𝑡) ∗ 𝑈𝑧(𝑡))⌋ , {𝜔𝑚𝑖𝑛 , 𝜔𝑚𝑎𝑥}) , 𝑠𝑔𝑛 = 1

𝑐𝑙𝑖𝑝 (𝑊𝑧(𝑡) + ⌊
1

2
(−2−𝜌(𝑡) ∗ 𝑈𝑧(𝑡))⌋ , {𝜔𝑚𝑖𝑛 , 𝜔𝑚𝑎𝑥}) , 𝑠𝑔𝑛 = −1

𝑊𝑧(𝑡), 𝑠𝑔𝑛 = 0

 (16)

In formula (16), the calculation of ⌊
1

2
(±2−𝜌(𝑡) ∗ 𝑈𝑧(𝑡))⌋ is

independent of the feedback loop. On this basis, this paper

designs a forward prediction structure.

If the update of Wz(t) is not completed in the current cycle,

three possible results Wzp1(t+1), Wzp2(t+1), and Wzp3(t+1)

derived from Wz(t+1) can be used simultaneously to predict

the center local difference. In this way, �̂�𝑧𝑝1(𝑡 + 1), �̂�𝑧𝑝2(𝑡 +

1), and �̂�𝑧𝑝3(𝑡 + 1) are obtained. Once Wz(t) is updated in the

next cycle, the correct Wz(t+1) and �̂�𝑧(𝑡 + 1) can be selected

after the corresponding sgn is obtained, ensuring the continuity

of the calculation.

Under the new structure, the maximum number of cycles to

limit the update of Wz(t) is increased from one to two.

Meanwhile, the new structure meets the condition of full-

pipeline construction. Hence, an additional register can be

added to the feedback loop. The workflow of the forward

prediction of weight vector is illustrated in Figure 6.

Moreover, the prediction of the center local difference is

split into two parts to balance the delay at both ends of the

register induced by multiplications. First, the weight vector

Wz(t+1) is multiplied by the corresponding element in the

difference vector Uz(t+1). Then, the addition is performed to

obtain �̂�𝑧(𝑡 + 1) after the data pass through the register.

To further reduce the computing load of the critical path in

the feedback loop, the following variables Mz(t), Az(t), Bz(t)

and Cz(t) can be defined:

𝑀𝑧(𝑡) = (�̂�𝑧(𝑡) − ⌊
�̂�𝑧(𝑡)

2𝜌(𝑡)+2
⌋ ∗ 4) + (𝜎𝑧𝑦𝑥 − ⌊

𝜎𝑧𝑦𝑥

4
⌋ ∗ 4) (17)

𝐴𝑧(𝑡) = {
4 ∗ 𝑆𝑧(𝑡) − ⌊

𝜎𝑧𝑦𝑥

4
⌋ ∗ 4,𝑀𝑧(𝑡) < 4

4 ∗ 𝑆𝑧(𝑡) − ⌊
𝜎𝑧𝑦𝑥

4
⌋ ∗ 4 − 1,𝑀𝑧(𝑡) ≥ 4

 (18)

𝐵𝑧(𝑡) = 2 ∗ 𝑆𝑚𝑎𝑥 + 1 − 𝜎𝑧𝑦𝑥 (19)

𝐶𝑧(𝑡) = 2 ∗ 𝑆𝑚𝑖𝑛 − 𝜎𝑧𝑦𝑥 (20)

In addition, sgn1, sgn2, and sgn3 can be respectively defined

as:

𝑠𝑔𝑛1 =

{

 1, 𝑆𝑧(𝑡) > ⌊

𝑆𝑚𝑎𝑥
2
⌋

0, 𝑆𝑧(𝑡) = ⌊
𝑆𝑚𝑎𝑥
2
⌋

−1, 𝑆𝑧(𝑡) < ⌊
𝑆𝑚𝑎𝑥
2
⌋

 (21)

𝑠𝑔𝑛2 =

{

 1, ⌊

�̂�𝑧(𝑡)

2𝜌(𝑡)+2
⌋ ∗ 4 < 𝐴𝑧(𝑡)

0, ⌊
�̂�𝑧(𝑡)

2𝜌(𝑡)+2
⌋ ∗ 4 = 𝐴𝑧(𝑡)

−1, ⌊
�̂�𝑧(𝑡)

2𝜌(𝑡)+2
⌋ ∗ 4 > 𝐴𝑧(𝑡)

 (22)

𝑠𝑔𝑛3 = {

1, 𝑆𝑧(𝑡) > 0

0, 𝑆𝑧(𝑡) = 0

−1, 𝑆𝑧(𝑡) < 0

 (23)

748

Hence, sgn can be expressed as:

𝑠𝑔𝑛 =

{

 𝑠𝑔𝑛1, ⌊

�̂�𝑧(𝑡)

2𝜌(𝑡)
⌋ > 𝐵𝑧(𝑡)

𝑠𝑔𝑛2, 𝐵𝑧(𝑡) ≤ ⌊
�̂�𝑧(𝑡)

2𝜌(𝑡)
⌋ ≤ 𝐶𝑧(𝑡)

𝑠𝑔𝑛3, ⌊
�̂�𝑧(𝑡)

2𝜌(𝑡)
⌋ < 𝐶𝑧(𝑡)

 (24)

The calculations of 4 ∗ 𝑆𝑧(𝑡) − ⌊
𝜎𝑧𝑦𝑥

4
⌋ ∗ 4, Bz(t), Cz(t), sgn1,

and sgn3, which are not related to �̂�𝑧(𝑡), can be performed

outside the feedback loop through simple shifting, addition,

and subtraction.

Through the above optimization, for input data with 12bit

width, the 26bit and 12bit additions required to compute the

sgn value in the critical path of the feedback loop are

simplified to one 2bit addition during the prediction of Mz(t).

More importantly, the bid width required to compute Mz(t)

does not change, even if the bit width of the input data

increases. In other words, the delay will not increase with the

bit width of the input data. Therefore, the optimization greatly

shortens the delay in the feedback loop. The sgn calculation

structure is displayed in Figure 7, where delta, pcld, and ohm

represent σzyx, �̂�𝑧(𝑡), and ρ(t), respectively; the bit width is

R+1.

Calculate

Wz1(t+1)

Calculate

Wz2(t+1)

Calculate

Wz3(t+1)

Scalar

multiplication

Scalar

multiplication

Scalar

multiplication

Select
Calculate

sgn

Select

Register Register

Register

Calculate predicated

central local difference

Calculate predicated

central local difference

Calculate predicated

central local difference

Figure 6. The workflow of forward prediction of weight vector

Figure 7. The structure of sgn calculation

4.3 Design of encoding module

The encoding module encompasses two sub-modules: K-

value calculation module, and code stream splice module. The

former mainly determines the k-value, while the latter

generates a variable-length code, and splices the code to output

a code stream of fixed 16-bit width.

4.3.1 K-value calculation module

The calculation of kz(t) value depends on the values of the

counter Γ(t) and the error accumulator ∑ (𝑡)𝑧 . If 2 ∗ Γ(𝑡) >

∑ (𝑡)𝑧 + ⌊
49

27
Γ(𝑡)⌋, then kz(t)=0; otherwise, kz(t) is the largest

positive integer that satisfies:

𝑘𝑧(𝑡) ≤ 𝐷 − 2 (25)

2𝑘𝑧(𝑡) ∗ 𝛤(𝑡) ≤ ∑𝑧(𝑡) + ⌊
49

27
𝛤(𝑡)⌋ (26)

where, D is the bit width of the input data.

If the bit width D equals 16, the determination of kz(t)

requires up to 14 comparisons. Suppose only one comparison

is completed per cycle. It takes 14 cycles to obtain the final

result. The long delay wastes a lot of time. If all data are

compared in one cycle, the relatively high bit width of ∑𝑧(𝑡)
and the fan-out effect will make it impossible to finish the

comparisons in time.

After comprehensive consideration, dichotomy was

adopted to optimize the calculation of kz(t). Let (n, m] be the

value range of each kz(t) value. Then, k𝑧(𝑡) = ⌊
𝑛+𝑚

2
⌋ was

substituted into formula (26). If the condition is satisfied, then

749

𝑚 = ⌊
𝑛+𝑚

2
⌋; otherwise, 𝑛 = ⌊

𝑛+𝑚

2
⌋. This process is repeated

iteratively until kz(t) is determined.

After the optimization, when the bit width D equals 16, the

value of kz(t) can be identified within 4 judgements. Each time,

∑𝑧(𝑡) will only fan out to two areas. This means the

optimization manages to shorten the delay, and ease hardware

implementation.

To further save resources, the step size was set to 49, and

the counter Γ '(t) was made equivalent to Γ(t). Then, formula

(26) can be rewritten as:

2𝑘𝑧(𝑡) ∗ 𝛤(𝑡) ≤ ∑𝑧(𝑡) + ⌊
𝛤′(𝑡)

27
⌋ (27)

With the help of a counter Γ '(t), the multiplication between

Γ(t) and 49 in formula (17) was converted into the addition of

49 at each accumulation of Γ '(t). In this way, all the

calculations in formula (18) can be realized through simple

addition and shifting.

The hardware structure of single dichotomy judgment at

kz(t)=k is explained in Figure 8, where acc, cnt49, and pcnt

represent ∑𝑧(𝑡), Γ(t), and Γ '(t), respectively.

Next, the single dichotomy judgements with different k

values were cascaded into the partial block diagram for kz(t)

calculation (Figure 9).

4.3.2 Code stream splice module

Figure 10 presents the block diagram of the code stream

splice module. If the coding is performed right after the K-

value calculation, many consecutive zeros will appear in the

code stream, dragging down the compression efficiency. To

solve the problem, a comparator was added to the module. The

comparator compares the size between the highest bit to the K

bit of the mapping values and the threshold of 64 bits. Then,

only the mapping values equal to or below the threshold were

encoded. Those above the threshold were not encoded, but

written as raw data.

Figure 8. The hardware structure of a single dichotomy

judgment

Figure 9. The partial block diagram for kz(t) calculation

Encoding

module
Comparator

Code

stream

splicing

module
K

The mapping value of
the predicted value

Irregular code stream
16bit encoded output

Figure 10. The block diagram of code stream splice module

5. PERFORMANCE VERIFICATION

The proposed hyperspectral image compression system was

verified through functional simulation and off-board test. The

environment and excitation files of the functional simulation

were built on ModelSim. The off-board test was conducted on

the xc7k325tffg900 chip of Xilinx, Inc., using Verilog

language and Vivado 2020.1.

In the off-board test, the correct program verified by

functional simulation was written to the FPGA board, and

hyperspectral image data were imported to the board via the

host computer. Since the transmission speed of the serial port

is below 103MHz, the data received by the serial port were

stored in a buffer zone. Every 32 rows of the received data

were outputted to the compressor module at a working

frequency of 103MHz. After compression, the code stream of

the compressed image data was fed back to the host computer

via the serial port. Then, the host computer compares the

feedback with the compression result of the software. If the

two are consistent, then the compressor must have been

running normally on the hardware.

The test data were selected from the actual images shot by

the camera. Dozens of G data were compiled into continuous

data of different widths and spectral bands. In addition,

different test data were employed to test the boundary

conditions, such that the data do not overflow. In addition to

comparing against the software compression result, the

hardware compression result was decompressed and

contrasted with the original data to verify the correctness of

the system.

The test data are of various data formats with different

number of columns. To ensure the reliability of the test, the

number of rows was fixed at 32. The test results show that the

compression ratio is about 1:2.

Table 1. The comparison of hardware compression results

Data mode (32 rows) Compression ratio

79 bands 320 columns 1:2.2

79 bands 1,280 columns 1:2.16

10 bands 80 columns 1:1.85

10 bands 1,280 columns 1:1.84

105 bands 1,280 columns 1:2.09

126 bands 640 columns 1:2.25

750

Through the off-board test, it was learned that our system

supports the maximum valid bit width of image data of 12bit,

the maximum width of 1,280, and the maximum number of

spectral bands of 160. The highest operating frequency was

achieved at 103MHz by reducing the computing load in the

critical path. In addition, the full-pipeline construction

guaranteed a throughput rate of 103M samples per second.

From the input of image data to the output of encoded data, the

system only took 33 cycles, i.e. 320ns at 103MHz. Vivado

analysis shows that the power consumption of the system

stood at a low level of 0.465W.

Table 2 shows the resource occupancy rate of the

compressor. Using double data rate (DDR) 3 to cache image

data, the compressor occupied less than 3% of on-chip

random-access memory (RAM). The falling computing load

on the critical path pushes up the loads on the other paths.

Compared with that (12) of other structures, our system

occupied 63 digital signal processors (DSPs). Nevertheless,

the occupancy rate of on-chip resources remained low at only

7.5%. Besides, our system improved the processing speed by

over 56% with a small resource cost.

Table 2. The resource occupancy rate of compressor

Resource type
Occupied

number/total

Resource

occupancy rate/%

LUT 6,228/203,800 3.06

LUTRAM 7/64,000 0.01

FF 7,252/407,600 1.78

BRAM 10/445 2.25

DSP 63/840 7.50

Note: LUT, LUTRAM, FF, and DSP stand for lookup table, flip-flop, lookup

table random-access memory, and block random-access memory, respectively.

6. CONCLUSIONS

Based on the BIL mode of CCSDS algorithm, this paper

designs a prediction module and an encoding module, and

implements them on FPGA board. The main innovations of the

proposed system are as follows:

(1) To enhance system resilience, the block compression

was adopted to process the data source. Through the

processing, the compression error of a single pixel will not

propagate into compression errors across the system.

(2) In the prediction module, forward prediction and the

full-pipeline construction were introduced, such that the

algorithm speed is no longer limited by the delay of the

feedback loop in weight update.

(3) The optimized feedback loop can adapt to the BSQ mode,

making it possible to compress BIL and BSQ data in real time.

The proposed system is faster, more flexible, and more

resource-efficient than the existing technology. In addition, the

system parameters can be configured dynamically at a low

resource cost, meeting the needs of satellite-borne missions.

ACKNOWLEDGMENT

This work is supported by the National Natural Science

Foundation of China (Grant No.: 61671310), and Program

Foundation by Liaoning Province Education Administration

(Grant No.: L2017044).

REFERENCES

[1] Wang, Y., Xing, L.N. (2015). Remote sensing satellite

networking technology and remote sensing system: A

survey. In 2015 12th IEEE International Conference on

Electronic Measurement & Instruments (ICEMI),

Qingdao, China, pp. 1251-1256.

https://doi.org/10.1109/ICEMI.2015.7494508

[2] Thakar, L., Dutta, C., Sura, P.S., Udupa, S. (2016).

Design & realization of multi mission data handling

system for remote sensing satellite. In 2016 International

Conference on Advances in Computing,

Communications and Informatics (ICACCI), Jaipur,

India, pp. 967-972.

https://doi.org/10.1109/ICACCI.2016.7732170

[3] Valsesia, D., Magli, E. (2017). Fast and lightweight rate

control for onboard predictive coding of hyperspectral

images. IEEE Geoscience and Remote Sensing Letters,

14(3): 394-398.

https://doi.org/10.1109/LGRS.2016.2644726

[4] Multispectral Hyperspectral Data Compression Working

Group. (2011). Lossless Multispectral & Hyperspectral

Image Compression CCSDS 123.0-R-1, ser. Red Book

(draft). CCSDS, May.

[5] Santos, L., Gómez, A., Sarmiento, R. (2019).

Implementation of CCSDS standards for lossless

multispectral and hyperspectral satellite image

compression. IEEE Transactions on Aerospace and

Electronic Systems, 56(2): 1120-1138.

https://doi.org/10.1109/TAES.2019.2929971

[6] Santos, L., Berrojo, L., Moreno, J., López, J.F.,

Sarmiento, R. (2015). Multispectral and hyperspectral

lossless compressor for space applications (HyLoC): A

low-complexity FPGA implementation of the CCSDS

123 standard. IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, 9(2):

757-770.

https://doi.org/10.1109/JSTARS.2015.2497163

[7] Mamun, M., Jia, X., Ryan, M.J. (2013). Nonlinear elastic

model for flexible prediction of remotely sensed

multitemporal images. IEEE Geoscience and Remote

Sensing Letters, 11(5): 1005-1009.

https://doi.org/10.1109/LGRS.2013.2284358

[8] Conoscenti, M., Coppola, R., Magli, E. (2016). Constant

SNR, rate control, and entropy coding for predictive

lossy hyperspectral image compression. IEEE

Transactions on Geoscience and Remote Sensing, 54(12):

7431-7441.

https://doi.org/10.1109/TGRS.2016.2603998

[9] Huo, C., Zhang, R., Peng, T. (2009). Lossless

compression of hyperspectral images based on searching

optimal multibands for prediction. IEEE Geoscience and

Remote Sensing Letters, 6(2): 339-343.

https://doi.org/10.1109/LGRS.2008.2012135

[10] Wu, X., Memon, N. (2000). Context-based lossless

interband compression-extending CALIC. IEEE

Transactions on Image Processing, 9(6): 994-1001.

https://doi.org/10.1109/83.846242

[11] Song, J., Zhang, Z., Chen, X. (2013). Lossless

compression of hyperspectral imagery via RLS filter.

Electronics Letters, 49(16): 992-994.

https://doi.org/10.1049/el.2013.1315

[12] Aiazzi, B., Baronti, S., Alparone, L. (2009). Lossless

compression of hyperspectral images using multiband

751

lookup tables. IEEE Signal Processing Letters, 16(6):

481-484. https://doi.org/10.1109/LSP.2009.2016834

[13] Lin, C.C., Hwang, Y.T. (2010). An efficient lossless

compression scheme for hyperspectral images using two-

stage prediction. IEEE Geoscience and Remote Sensing

Letters, 7(3): 558-562.

https://doi.org/10.1109/LGRS.2010.2041630

[14] Mielikainen, J., Huang, B. (2012). Lossless compression

of hyperspectral images using clustered linear prediction

with adaptive prediction length. IEEE Geoscience and

Remote Sensing Letters, 9(6): 1118-1121.

https://doi.org/10.1109/LGRS.2012.2191531

[15] Fjeldtvedt, J., Orlandić, M., Johansen, T.A. (2018). An

efficient real-time FPGA implementation of the CCSDS-

123 compression standard for hyperspectral images.

IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, 11(10): 3841-3852.

https://doi.org/10.1109/JSTARS.2018.2869697

[16] Gong, Z.M., Yang, J.X., Li, S.W. (2015). FPGA

implementation of parallel frame synchronization system

based on CCSDS. Microelectronics & Computer, 32(7):

82-85.

[17] Báscones, D., González, C., Mozos, D. (2017). Parallel

implementation of the CCSDS 1.2.3 standard for

hyperspectral lossless compression. Remote Sensing,

9(10): 973-990. Doi:10.3390/rs9100973

[18] Sun, J.W., Xue, C.B., Zhen, T., Zhang, Z.W. (2019).

Sequential imagery lossless compression algorithm for

space astronomical observation. Chinese Journal of

Space Science, 39(6): 847-852.

https://doi.org/10.11728/cjss2019.06.847

[19] Báscones, D., González, C., Mozos, D. (2020). An FPGA

accelerator for real-time lossy compression of

hyperspectral images. Remote Sensing, 12(16): 2563.

https://doi.org/10.3390/RS12162563

752

