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Fusion image is the method of extracting the relevant information from two or more identical 

input images into one scene and creating a new image. This method allows the new image 

to provide comprehensive information about the wand, leading to a visual understanding of 

the human being. Fusion image application in image processing is an important issue. 

Applications in many fields such as photography, microscopy, astronomy, medical imaging, 

satellite imagery, machine vision, biology are monitored. In this study first, an image fusion 

method, suggested recently based on transform empirical wavelet, was implemented in 

which coefficients were obtained by processing the input images. Then they were combined 

by applying the rules. The aim of this study is to investigate the noise effect and to remove 

the noise in the aforementioned suggested method. First, the noise was added to the images, 

and the images were decomposed into layers or coefficients. Second, by thresholding the 

coefficients, the noise was removed. Then the coefficients were combined based on the rules 

to obtain the final coefficients. In the end, the final coefficients were used to obtain the fused 

image. The results show that the noise removal of images during image fusion is much better 

and more effective than denoising before image fusion, and the demonstration of the method 

is proved by obtaining better results in comparison to some existing methods.  
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1. INTRODUCTION

Image fusion is the combination of two or more different 

images from a similar scene by an algorithm to create a new 

image [1]. As a result, it displays more and more relevant 

information. 

Image fusion is used in a variety of processes, including 

microscopic, satellite, and medical imaging  that in this article, 

the medical application is considered [2]. The integration of 

medical images is an essential process in creating an image of 

several different images to increase the power of diagnosis in 

medical discussions. The purpose of any medical information 

retrieval system is to provide relevant information to the 

appropriate user promptly. Images are of particular importance 

as a form of documentation that can convey a significant 

amount of information. One of the most important applications 

of images is in the field of medicine - education, research, and 

diagnosis, which on the one hand, due to the increasing 

number of medical images as a result of imaging, has become 

particularly important. On the other hand, recent advances in 

medicine, including decision-making support systems and 

evidence-based medicine, have multiplied the need to 

integrate images. CT scans, computed tomography scans, are 

examples of this type of imaging that are used to understand 

the details of an image and to integrate images [3]. Researchers 

have divided the methods of merging images into two 

categories; the transform domain and the spatial domain [4]. 

For example, in the field of space, we can refer to the Fast 

Intensity Hue Saturation (FIHS method), and in the field of 

transformation, we can refer to the Discrete Wavelet 

Transform (DWT) method that in this article the Transform 

domain method is considered [5]. 

A method [6] is proposed to integrate images based on 

discrete waveform conversion. In this type of conversion, the 

image is transferred from the spatial domain to the frequency 

domain. The image is first divided into horizontal and vertical 

components. Then the image is separated into four sections, 

LL1, LH1, HL1, HH1. Besides, these four sections display the 

four frequency zones in the image. For the low-frequency 

domain, LL1 is sensitive to the human eye. The problem with 

this method is that it decomposes the images based on 

predefined and fixed waves, which leads to poor image quality. 

Another method that is used to analyze images is called the 

empirical mode decomposition (EMD) [7]. EMD is a widely 

used algorithm for analyzing nonlinear and non-static signals. 

This method is based on the analysis of the signal to its 

constituent IMFs that each of them has a significant 

instantaneous frequency [8]. The EMD method is used in 

various fields, including image fusion [9]. However, the 

biggest drawback of this nonlinear algorithm is that it does not 

have a closed mathematical relationship, so we cannot predict 

or even estimate the output and behavior of this algorithm. In 

addition, EMD is a method based on sequential calculations 

and repetition that usually takes a long time. Sometimes we 

want to predict our output shape before performing the 

calculations. However, the EMD method does not allow us to 

do so under the stated conditions [10] . After this method, 

another method called empirical wavelet transform EWT was 
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introduced [11]. 

EWT is a new way to create filters for suitable banks 

(similar to DWT) to extract signal-forming modes that leads 

us to a new violet conversion, called empirical wavelet 

transform. The most important difference between this 

conversion and EMD is that the relationship is closed, which 

allows us to estimate the behavior and even the overall shape 

of the conversion output [12]. 

The EWT method causes images to be thrown in different 

sets while being decomposed, which makes them less 

desirable when reconstructing images. Finally, Zhang et al. [13] 

provides a method called Simultaneous Empirical Wavelet 

Transform (SEWT) to overcome this weakness. 

In this method, all input images can be decomposed into the 

same sets and created according to their input images. Our goal 

is to investigate the noise effect of noise and noise in the 

proposed method. The first step is to deal with adding noise to 

the images and dividing the images into layers or coefficients. 

Then, the noise is removed by applying coefficients to it. Then, 

after eliminating the noise, the coefficients are applied. We 

combine the rules to obtain the final coefficients. Ultimately, 

the final coefficients to get the imagined image is used. Test 

results show that it is a more effective method to remove the 

noise of images during image integration instead of deleting 

them.  

The structure of the present manuscript is as follows: the 

second section presents the methodology and method of 

proposed method. The third section evaluates the methods 

examined along with the results and their comparison and 

analysis, and the conclusions are presented in the fourth 

section. 

 

 

2. METHODS 

 

2.1 2D simultaneous empirical wavelet transform 

 

Since in the real world, two-dimensional signals need to be 

processed, in the one-dimensional SEWT method, the shape 

of the signals was changed, and it was written to the 

approximate layer and the minor layers to the two-dimensional 

space. In such processes, some vital location information may 

be lost among adjacent pixels. That's why the Littlewoods-

Paley two-dimensional wave converter was used [13]. 

Ii(p)(i=1,…….,Ni) Processed images (two-dimensional 

signals) with p where the pixel locations are displayed and 

𝔉P(Ii)(θ,|ω|) The Fourier Transform shows the polarity that 

"θ" refers to the Fourier Transform angle. Before identifying 

the February boundary for each image, it is necessary to 

calculate the mean spectrum with respect to "θ" such as 

relation (1): 

 

𝔉(𝐼𝑖)(|𝜔|) =
1

𝑁𝜃

∑ 𝔉𝑝(𝐼𝑖)(θ,|ω|)

𝑁𝜃

𝑘=1

 (1) 

 

In relation (1), the Fourier spectrum indirectly affects the 

experimental Littlewoods-Paley waves. So, all the images that 

need to be decomposed are calculated. In relation (2), the 

average of the spectrum is calculated twice, according to i: 

 

F(|ω|)=
1

Ni

∑ F(Ii)

Ni

i=1

(|ω|)=
1

NiNθ

∑ ∑ 𝔉p(Ii)(θl,|ω|)

Nθ

l=1

Ni

i=1

 (2) 

The mean range then identifies the Fourier boundary as in 

relation (2). Therefore, the diagnostic results are stored in the 

set, ωi
m(m=1…M) . So the set of two-dimensional 

simultaneous experimental wavelet transforms as that 

B={ϕ
1
(p),{φ

m
(p)}𝑚=1

𝑀−1}, and ϕ
1
(ω) refers to the function of the 

experimental scale, and the set {φ
m

(t)} }m=1
M-1  shows the 

experimental wave transform function. Finally, the 

approximation layer of Ii(p ) is defined as the relation (3): 

 

W(Ii)(0,p)=𝔉ω
−1(𝔉p(fi)(ω)𝔉P(ϕ

1
)(ω)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) (3) 

 

The detail layers of image Ii(p) are defined as relation (4): 

 

W(Ii)(m,p)=𝔉p
−1(𝔉p(Ii)(ω)𝔉P(φm)(ω)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) (4) 

 

Finally, the inverse of the two-dimensional simultaneous 

Empirical Wavelet Transform is defined by Eq. (5): 

 

Ii(p)=W(Ii)(0,p)⋄(ϕ
1
)(p)+ ∑ W(

M-1

m=1

Ii)(m,p)⋄φ
m

(p) (5) 

 

2.2 Image fusion algorithm 

 

IA  and IB show the input images with the size of M×N, and 

IF shows the output or fusion image [13]. The process of fusion 

images is done in three steps: 

(1) According to the two input images IA  and IB, the 

Simultaneous Empirical Wavelets is simultaneously created 

as B={ϕ
1
(p),{φ

𝑖
(p)} 

𝐿−1
𝑖=1

} . These two images are then 

decomposed into sub-bands  by using Eq. (3) and Eq. (4), 

𝑊𝐴 = {𝑊𝐴
0, 𝑊𝐴

1, … , 𝑊𝐴
𝐿}  and 𝑊𝐵 = {𝑊𝐵

0, 𝑊𝐵
1, … , 𝑊𝐵

𝐿} 

respectively. 

W*
0  represents the approximation layer and W*

1,…,W*
L 

represents the details layers. 

(2) According to the designed rules, the approximation layer 

and details layers are combined to obtain the fused layers 

W𝐹={W𝐹
1 ,WF

1 ,…,W𝐹
L}.  Also, r={𝑟0{𝑟𝑖}

𝐿
𝑖=1

} shows the fusion 

map set, in which 𝑟0 is fusion map for approximation layer, 

and {𝑟𝑖} 𝐿
𝑖=1

 are fusion map for detail layers.  

 

𝑊𝐹
0 = 𝑟0𝑊𝐴

0 + (1 − 𝑟0)𝑊𝐵
0 (6) 

 

and 

 

𝑊𝐹
𝑖 = 𝑟𝑖𝑊𝐴

𝑖 + (1 − 𝑟𝑖)𝑊𝐵
𝑖       (i=1,….L) (7) 

 

(3) Conducts inverse 2D SEWT on W𝐹 . This is done to 

obtain the merged image using relation (5) [9]. 

 

2.3 Fusion rules 

 

For each input image in the approximation layer, relation (8) 

is used [13]. 

 

𝒮 (W*
0(p)) =

1

M×N
 ∑ D (W*

0(p),W*
0(q))

w
(q)∈W*

0

 
(8) 

 

where, D (W*
0(p),W*

0(q)) indicates the distance between the 

intensities of the coefficients P and 
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Q,  D (W*
0(p),W*

0(q)) =|W*
0(p)-W*

0(q)| . According to the 

sigmoid function, approximation layer rule is stated: 

 

r0 =
1

1 + e−a(𝒮(wA
0 )−𝒮(wB

0 ))
 (9) 

 

In which a is set to 0.5. The fusion rule is defined for detail 

layers by Eq. (10) as, 

 

𝑟𝑖 = {
1  |𝑊𝐴

𝑖|  > |𝑊𝐴
𝑖| 

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
         (i=1,….L) (10) 

 

In the final step, the approximation layer and the partial 

layers are obtained using Eq. (6) and Eq. (7) [13]. 

 

2.4 Denoising proposed 

 

In digital image processing, de-noising technique is used to 

reduce, or if possible remove, noise without losing detail. 

There are various techniques for de-noising digital images. 

Gaussian noise can be reduced using a spatial filter. While 

smoothing an image, the blurring of fine-scaled image edges 

and details are possible for corresponding to the high 

frequencies blocked by the process [14, 15]. Among the spatial 

filtering techniques, the most prevalent noise removal 

techniques are comprised of mean (convolution) filtering, 

median filtering and Gaussian smoothing. Most of the standard 

de-noising algorithms are dealt with an individual filtering 

process [16]. The result decreases the noise, but the image is 

blurred or smoothed at lines and edges due to high frequency 

losses [17, 18].  

In order to effectively reduce the noise together with 

minimum adverse outcome, this research is developed to 

examine and evaluate various filters and wavelet transform for 

analyzing a digital image in useful sub-bands. Wavelet 

transform and filtering, as well as a median filter are 

individually used for image de-noising in various domains 

[14]. In this work, we explore some combinations, which have 

the ability to produce better outcomes for digital image de-

noising. 

Application of empirical Wavelet Transform (DWT) 

approach is highlighted for digital image de-noising in the 

following six steps. 

(1) Apply EWT on a noisy image to Divide into four sub-

bands (A, H, V, D) by using wavelet filter families [14]. 

(2) Choose one of the suitable threshold rule methods to 

compute a threshold value for one of the detail bands H, V, D. 

(3) Implement a comparison between pixels in the sub-

bands (H, V, D) and specific threshold value for that band. Set 

the pixel to zero if its value is less than the threshold of the 

band. Otherwise, test the next pixel value. This process is 

repeated for all of the pixels in the selected sub-band. 

(4) The inverse EWT (IEWT) is used for selected substrates 

to obtain a noise-free image. 

(5) Apply median filter within WT alone. It is done either 

before or after threshold as needed in each case. The median 

filter is applied to the entire image using a 3x3 mask  filter. Sort 

all of the pixel values from surrounding neighborhood in an 

ascending manner. Exchange the pixel to the centeral pixel 

value [14]. 

(6) implement a comparison between the de-noised and 

original image. It is accomplished by computing image quality 

for the denoising technique. 

Thresholding is a simple and effective method for image 

segmentation, which is used for generating digital images from 

a grayscale image. As such, threshold technique is utilized for 

digital image de-noising in a beneficial manner. In this study, 

the threshold technique is used in digital wavelet domain. 

Because the conversion of the experimental waveform 

decomposes the images into details layers and the 

approximation layer, the details layers with different scales 

and resolutions are examined. The details layers have a higher 

frequency, and noise can be eliminated by different methods 

of thresholding.  

With developing this method, the noise, from the image of 

the loss of vital information, should be significantly reduced, 

which is of interest to medical [14]. Therefore, a good 

threshold value would lead to less image distortion. Threshold 

value is computed by applying Eq. (11) as follows: 

 

Th =
𝜎2

𝜎𝑥

 (11) 

 

where, 𝜎2  is related to noise value of noisy image. It is 

computed by Robust Median Estimator, which is estimated 

from HH sub-band. It is defined by Eq. (12). 

 

𝜎2 = [
median |{x

i,j
: i,j ∈ HH1}|

0.6745
]2 (12) 

 

and 𝜎𝑥 refers to standard deviation (STD) of the sub-bands. It 

is computed by Eq. (13). 

 

𝜎 = √
∑ (𝑥𝑖 − 𝑚)2𝑛−1

𝑖=0

𝑛
 (13) 

 

where: 

σ: standard deviation (STD),  

m: mean, 

n: Indicates the number of pixels in each sub-band, 

xi: Indicates each sub-band. 

 

 
 

Figure 1. Denoising proposed 

 

In the proposed denoising technique, EWT is applied on a 

noisy image to obtain detail sub-bands. Then, median filter is 

applied on each sub-band independently using Eq. (11), (12) 

and (13). Then, IEWT is considered for the sub-bands to 

obtain a de-noisy (de-noised) image. Figure 1 shows the block 

diagram for the third case and Median filter before threshold. 

 

 

 

705



 

3. EXPERIMENTAL RESULT 

 

Today, medical imaging plays an essential role in clinical 

diagnosis and treatment. CT images, for example, are widely 

used in fractures because they can record bone condition. MRI 

scans can be used to diagnose brain diseases such as brain 

tumors and the like. CBF (Cerebral Blood Flow) images can 

objectively reflect changes in the tension and tension of 

cerebral arteries. SPECT images can measure the biological 

activity of cells and molecules. However, these images have 

limitations that may limit their use in real applications. Single-

photon emission computed tomography (SPECT) images, for 

example, cannot be clear enough to absorb brain structures. 

Therefore, SPECT images are always used with computed 

tomography (CT) or MRI images for clinical diagnosis. 

Finally Medical images 

(http://www.med.harvard.edu/AANLIB/home.html) were 

captured by the SEWT method [13].  

Also, in order to demonstrate the proposed method, some 

experimental results are elaborated in this section. The 

computer that has been used has the following specifications: 

Windows 8, 64-bit, Intel Core i7-4720 CPU @ 2.60 GHz, 8 

GB memory, and MATLAB R2018a. 

At the following, the proposed fusion method of denoising 

SEWT is compared with other methods, Discrete wavelet 

transform based algorithm (DWT) [19], Guided filtering based 

fusion algorithm (GFF) [2], as well as the algorithm Liu et al. 

(LIU) [3], Nonsubsampled contourlet transform based 

algorithm (NSCT) [1] and a DCT based Laplacian Pyramid 

(DCTLPIF) [4]. 

At the end, for a quantitative comparison of the proposed 

noise elimination algorithm, the proposed algorithm is tested 

on several pairs of medical images and the results are 

compared with some existing methods. In this study, five 

criteria, QAB
F , MI, VIFF, PSNR, and MSE, have been selected 

to compare algorithms. QAB
F  Expressive edge information is 

integrated from the input images to the fused image. MI 

Indicates the amount of information of input images to the 

output image. Peak-Signal-to-Noise ratio (PSNR) and Mean 

Square Error (MSE) express improved image quality [20]. 

 

3.1 Experiments on multi-modal medical images 

 

In Figure 2, examples of such images are shown as input 

images. There are four images in each row, with the first two 

images being the same as the input images and the second two 

images being noisy images with a standard deviation value of 

10. 

Now, to confirm the superiority of the proposed method, it 

has been compared with other methods in Figure 3. 

As shown in Figure 3(a1) to (f3), denoising SEWT are 

compared with the other five methods, and all but the first row 

contains color images. In fused color images, visual 

information must be preserved, in addition to preventing any 

color distortion, which is involved in methods such as images 

b and c. Also, the c and e images have a more pronounced 

mode, which weakens their performance, and it makes it 

difficult to see the details. 

However, in the proposed method, despite the elimination 

of noise, the soft texture and color information are still well 

preserved. 

Now in Table 1, we compare the denoising SEWT with 

other methods in terms of five quantitative criteria. 

As shown in Figure 4, despite the denoising, the PSNR and 

MSE criteria have higher values and the less error rate. 

As shown in Table 1, the three criteria for merging the 

proposed method images are better than the other methods. 

The performance of PSNR and MSE is shown with sigma=15 

in Figure 4. 

 

 
(a). Input images 

 
(b). Noisy images with 𝜎 = 10 

 
(c). Input images 

 
(d). Noisy images with 𝜎 = 10 

 
(e). Input images 

 
(f). Noisy images with 𝜎 = 10 

 

Figure 2. Input images and noise images 
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3.2 Experiments on VISIBLE-IR images 
 

In the real world, visual images and infrared images are 

always integrated into one image. Visual images can only 

capture surface information, while infrared images can reflect 

internal information based on temperature. The integration of 

infrared and visible images allows us to improve the detection 

and identification of the part of the target in the infrared image, 

according to its background in the visual images. Figure 5 

shows visible and infrared images, while the first two images 

in each row represent the primary images, and the second two 

images show the noisy images. 

Also, From Figure 6(a1) to (f3), we list six groups of color 

fused denoised images. 

Figure 6 shows the output images of the proposed method 

with other methods. 

Despite the noise deletion in Figure 6(f3), In the proposed 

method, i.e., denoising SEWT final images, it can show more 

comprehensive and appropriate information than other 

methods. This case does not happen when we employ other 

methods. However, the final image loses when it is fused by 

other methods. It is due to the noise deletional, which makes 

some details invisible. Table 2 examines the quantitative 

criteria of the proposed method with other methods. 

According to the results of the Table 2, it can be concluded 

that QAB
F  has a lower amount in the proposed method. We lose 

some detail information for the sake of high noise. Figure 7 

shows the performance of PSNR and MSE for 𝜎 = 15. 

According to Figure 7, the proposed method performs better 

than other methods, while in the same method as GFF, it is in 

the second place. Other methods, such as LIU, are third, and 

NTCF is fourth. The DWT and DCTLPIF methods are in the 

next ranks, respectively. 

In summary, according to Figures 3 and 7, when noise-free 

input images in both medical and infrared images, are 

combined (σ = 0), this criterion is superior to that of other 

methods. Nevertheless, when input images contain high 

amounts of noise (by applying large values of standard 

deviation), a great amount of the edge information is lost due 

to denoising by applying soft thresholding (due to its property) 

on the coefficients during image decomposition. This causes 

the merged image to be more blurred and a small amount of 

the edge information is lost. However, except for the LIU 

method, other methods have not addressed denoising during 

image merging process. 

 

 
 

Figure 3. Fused denoised medical images obtained by different algorithms 

 

 
 

Figure 4. Comparison of denoise performance of the proposed method with the other methods with sigma=15 
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Table 1. Average percentage of performance measurements for the proposed denoising method with respect to different Standard 

deviations on multi-modal medical images 

 
Standard deviation Evaluation criterion a b c d e f 

𝜎 = 0 

VIFF 0.5528 0.5930 0.0716 0.4803 0.5105 0.6735 

MI 0.2484 0.2594 0.3496 0.2851 0.2818 0.3589 

QAB
F  0.6205 0.6707 0.7569 0.6527 0.0669 0.7135 

PSNR 26.21 30.29 30.91 29.52 24.30 35.25 

MSE 0.41 0.30 0.29 0.31 0.59 0.21 

𝜎 = 5 

VIFF 0.5476 0.5883 0.0388 0.4814 0.5273 0.5947 

MI 0.2196 0.2342 0.3164 0.2823 0.2920 0.3971 

QAB
F  0.5847 0.6357 0.7332 0.6308 0.0493 0.6263 

PSNR 27.42 31.58 31.45 30.12 25.25 34.15 

MSE 0.51 0.42 0.31 0.45 0.64 0.27 

𝜎 = 10 

VIFF 0.5174 0.5595 0.0225 0.4765 0.5151 0.5565 

MI 0.2071 0.3241 0.2971 0.2578 0.3010 0.4063 

QAB
F  0.5416 0.5944 0.6745 0.5419 0.0093 0.5641 

PSNR 26.32 29.49 28.99 29.66 27.30 32.25 

MSE 0.51 0.32 0.31 0.32 0.66 0.32 

𝜎 = 15 

VIFF 0.4725 0.5230 0.0192 0.4951 0.4521 0.5211 

MI 0.2189 0.1968 0.2169 0.2856 0.3664 0.4097 

QAB
F  0.5054 0.5569 0.6415 0.4545 0.0035 0.5206 

PSNR 25.21 27.39 28.51 27.22 22.35 31.25 

MSE 0.42 0.33 0.32 0.35 0.69 0.40 

 

Table 2. Average percentage of performance measurements for the proposed denoising method with respect to different Standard 

deviations on fused Visible-IR images 

 
Standard deviation Evaluation criterion a b c d e f 

𝜎 = 0 

VIFF 0.5422 0.5836 0.0617 0.4719 0.5266 0.6621 

MI 0.2312 0.2616 0.3399 0.2844 0.2789 0.3499 

QAB
F  0.6122 0.6614 0.7469 0.6441 0.0665 0.7078 

PSNR 29.52 30.33 30.42 29.77 22.96 33.45 

MSE 0.45 0.30 0.31 0.34 0.62 0.24 

𝜎 = 5 

VIFF 0.5316 0.5789 0.0245 0.4712 0.5166 0.5847 

MI 0.2236 0.2455 0.3079 0.2911 0.2879 0.3846 

QAB
F  0.5778 0.6243 0.7012 0.6200 0.0564 0.7089 

PSNR 28.44 31.26 29.90 30.15 23.330 34.78 

MSE 0.45 0.40 0.35 0.40 0.65 0.26 

𝜎 = 10 

VIFF 0.5033 0.5478 0.0221 0.4600 0.5172 0.5533 

MI 0.3014 0.3345 0.2866 0.2478 0.3125 0.4175 

QAB
F  0.5314 0.5879 0.6699 0.5327 0.009 0.5547 

PSNR 27.40 29.60 29.45 29.30 21.31 33.20 

MSE 0.52 0.32 0.37 0.38 0.70 0.30 

𝜎 = 15 

VIFF 0.4822 0.5133 0.0189 0.4876 0.4423 0.5147 

MI 0.2236 0.1889 0.2056 0.2578 0.6441 0.4078 

QAB
F  0.5011 0.5289 0.6322 0.4725 0.0036 0.5147 

PSNR 25.96 28.13 29.88 29.34 21.87 31.02 

MSE 0.42 0.37 0.32 0.35 0.74 0.34 

 

 
 

Figure 5. Visible-IR input images and noisy images 
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Figure 6. Fused visible-IR images obtained by different algorithms 

 

 
 

Figure 7. Comparison of denoise performance of the proposed method with the other methods for visible-IR images with 

sigma=15 

 

 

4. CONCLUSIONS AND FUTURE WORK 

 

This study is first dealt with implementing an image fusion 

method, which has recently been suggested based on transform 

empirical wavelet. In this research, coefficients are obtained 

by processing input images. Then, they are combined by 

applying rules. The aim of the proposed method is to 

investigate the amount of noise during the implementation of 

the image integration algorithm. In the first step, after adding 

noise to images, they were decomposed into layers or 

coefficients. In the second step, the noise was removed by 

thresholding the coefficients. Then, the coefficients were 

combined based on rules to obtain final coefficients. 

Ultimately, the final coefficients were used to obtain a fused 

image. The results showed that it is much better and more 

effective to remove the noise of images during image fusion 

than denoising before image fusion. Because of in the merging 

process after the image decomposition, since applying the 

thresholding on the coefficients is realized in the frequency 

domain, better image denoising is obtained than in the space 

domain.  

Also, proposed method provided better results in 

comparison with some other methods. Despite the removal of 

noise, the amount of information transferred from the input 

images to the merged image was still higher, but in terms of 

edge information, we lose a little bit of information when 

removing noise, and of course, this is quite normal in the noise 

removal process. In future researches, Various denoising 

methods can be considered on the images so that the details of 

the images are increased, and we have enough edge 

information when removing the noise. 
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