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 The existing insect recognition methods mostly segment the target region by traditional 

classification technology, failing to achieve a high accuracy in complex background. To 

solve the problem, this paper introduces the morphology-based edgeless active contour 

strategy to segment insects in complex background. The strategy integrates the 

morphological operation of gray image, and detects insect contours by narrow-band fast 

method. To enhance the background diversity of new samples, the authors improved the 

synthetic minority over-sampling technique (SMOTE) algorithm into a variable weight edge 

enhancement algorithm. Based on the SMOTE algorithm, the proposed algorithm increases 

the weight of the edge area as adjacent images are superimposed into a new image, making 

the background of the new image more complex. Finally, the proposed method was coupled 

with DenseNet-121 to recognize insects in images with complex background. The results 

show that the accuracy of the network was nearly 10% higher on the balanced set than on 

the unbalanced set, suggesting that our method is feasible and accurate. 
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1. INTRODUCTION 

 

The traditional insect recognition methods mainly rely on 

human vision: the insect in the target image is compared with 

known insect species in texture, color, and shape to determine 

its category. This subjective strategy inevitably leads to human 

errors and misjudgments. The recognition effect solely 

depends on the expertise and experience of the researcher. 

With the advent of artificial intelligence (AI), great progress 

has been made in the deep learning (DL) technology for 

speech recognition, natural language processing, and 

computer vision. Considering its popularity in image 

recognition and face detection [1], this paper aims to utilize 

the DL to improve the accuracy of insect recognition in 

complex background.  

In fact, most of the current image recognition algorithms are 

based on the DL. Their recognition results largely depend on 

the features of the dataset. However, the image set of insects 

is often highly unbalanced, owing to the varied difficulties in 

shooting images on different insect species. Thus, the image 

set must be balanced before the insect recognition. 

Image segmentation, a key step of insect recognition, 

attempts to segment the region of interest (ROI) from the 

whole image. The segmentation quality directly affects the 

subsequent operations like feature extraction and image 

classification. Hence, the accuracy and stability of the 

segmentation algorithm are the prerequisite to effective insect 

recognition. 

The complex background in many images adds to the 

difficulty in image segmentation. In many cases, the natural 

environment is complex and susceptible to the influence of 

various interference factors (e.g. sunlight and climate). Before 

insect recognition, it is important to eliminate the complex 

background and green leaves from the original image. 

This paper mainly puts forward a novel edge-based image 

segmentation model. Firstly, a morphology-based edgeless 

active contour algorithm was designed to detect insect 

contours by narrow-band fast method. Then, a variable weight 

edge enhancement algorithm was extended from the synthetic 

minority over-sampling technique (SMOTE) algorithm to 

enhance the diversity of image background. Through 

contrastive experiments on eight convolutional neural 

networks (CNNs), it is proved that the proposed method can 

achieve the best recognition effect on the DenseNet-121. 

 

 

2. LITERATURE REVIEW 

 

Since the 1980s, computer vision has been applied in insect 

recognition. Due to the limited computing speed, it is 

impossible to realize real-time recognition. Therefore, this 

technology was merely used to recognize insect images in 

specific environment. For instance, Wen and Guyer [2] 

binarized the collected insect images into black and white 

images, and recognized the insects by the morphological 

features. 

With the advancement of computer technology, emerging 

technologies like digital image technology, support vector 

machine (SVM), and neural network (NN) have been adopted 

for insect recognition. Manickavasagam et al. [3] detected 

parasites on crops with SVM classifier. Zhang et al. [4] 

proposed an insect detection and recognition system, which 

captures video data with a camera and detects insects on crops 

through video analysis. Malvade et al. [5] extracted texture 

features in hue-saturation-intensity (HSI) space by color co-

occurrence method, and effectively identified objects in 
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complex background. 

Thanks to AI development, the DL has gradually replaced 

traditional image processing in target recognition. Hinton et al. 

[6] presented the unsupervised method for weight initialization 

in artificial neural network (ANN), and finetuned the initial 

weights through supervised training, thereby solving the 

problem of vanishing gradients. Shen et al. [7] recognized 11 

insect species with the DL network, and achieved a mean 

accuracy above 99%. Zhu et al. [8] compared the recognition 

effects of several convolutional neural networks (CNN) on 

insect images, and concluded that DenseNet-121 realizes the 

best effect in the shortest time. 

The key to insect image segmentation is to separate the 

complex background. After all, the insects usually vary in tilt 

and deformation, owing to the complexity of natural 

environment and the interference of numerous factors (e.g. soil, 

and weeds). Chen et al. [9] combined the local entropy 

threshold and Otsu’s method to segment insect images. 

Moughal [10] studied insect classification and image 

segmentation, using hyperspectral reflectance and SVM. Arif 

and Akram [11] designed an insect classification method 

based on fuzzy least squares (LS) SVM, which segments 

insects in complex background in the YCbCr color space. Wen 

et al. [12] extended ant colony algorithm into an expert 

diagnosis system suitable for the discrimination between 

different insects: the system automatically selects a group of 

best features from various extracted features by ant colony 

algorithm, and performs SVM segmentation of insect images 

with complex background. 

To sum up, fruitful results have been achieved on image 

recognition of insects based on computer vision. However, 

there is ample room to improve the application range and 

classification efficiency of the existing insect recognition 

methods, especially the recognition accuracy in complex 

environment. 

 

 

3. MORPHOLOGICAL EDGELESS ACTIVE 

CONTOUR ALGORITHM 

 

Edge-based image segmentation draws the ideal edge curve 

of the original image to determine the ROI, before formally 

segmenting the image. This paper puts forward a novel edge-

based image segmentation model, which can be expressed as 

a mathematical function of the energy functional: 

 

Es = ∫[Ein(v(s)) + Eex(v(s))]ds (1) 

 

Thus, the drawing of the ideal edge curve is transformed 

into the search for the minimum energy functional. Formula 

(1) shows the energy structure is divided into internal energy 

Ein and external energy Eex Due to the interaction between the 

two kinds of energies, the edge curve shrinks continuously 

until reaching the ROI edge. 

The external energy Eex is generally defined empirically. It 

is easily affected by image features. The gradient of Eex 

changes proportionally with the gray value of the image. The 

gradient change curve of Eex skews outward under the 

guidance of the energy: 

 

Eex(x, y) = −|G(x, y) ∗ ∇f(x, y)|2 (2) 

 

where, f(x,y) is gradient change of the image; G(x,y) is the 

two-dimensional (2D) Gaussian function of image; * is the 

convolution of external energy. 

The internal energy Ein can be defined by: 

 

Ein(v(s)) = μ(s) |
dv

ds
|

2

+ ϑ(s) |
d2v

d2s
|

2

 (3) 

 

where, μ(s) is the weight coefficient of elastic energy; dv/ds is 

the first-order derivative of elastic energy, which is inversely 

proportional to the elongation of the curve; d2v/d2s is the 

second-order derivative of curve energy, which is inversely 

proportional to the change degree of the ideal edge curve. 

Under the action of internal and external forces, the 

proposed model seeks the minimum energy of elastic 

deformation through a given initial contour model. The search 

is not restricted by the morphology of the ROI. Instead, the 

proposed model can quickly detect the edge of any shape, 

merge various information (e.g. edge, initial estimation, and 

target constraint) into a whole, and accurately pinpoint the 

edge of the target. 

Next, this paper designs a morphology-based edgeless 

active contour algorithm. Traditionally, image segmentation 

models need to solve a partial differential equation on floating-

point array, which is time- and compute-intensive. Based on 

the edge-based image segmentation model, morphological 

gray scale and narrow-band were introduced to realize 

efficient image segmentation. The designed algorithm is 

robust against noise interference, providing a desired tool for 

the segmentation of images with complex background. 

In the designed algorithm, the curve weight coefficients 

were adjusted and combined in the optimal manner to segment 

insects in complex background. The energy functional state of 

the algorithm can be expressed as: 

 

E(C, g1, g2) = αL(C) + βA(inside(C))

+ ρ1 ∫ |g − g1|2dxdy
inside(C)

+ ρ2 ∫ |g − g2|2dxdy
inside(C)

 

(4) 

 

where, C is the boundary part enclosed by a contour; g1 and g2 

are the mean gray values of the inner and outer parts of 

edgeless contour; α and β are constant parameters limiting the 

length L and area A of the enclosed part, respectively; g is the 

pixel value of the image; ρ1 and ρ2 are the weights used to 

adjust contour changes. 

The object of this research is the insect image after the 

removal of complex natural background. To realize automatic 

segmentation, the algorithm must be highly applicable and 

efficient at the same time. The proposed algorithm processes 

gray image with alternating sequence filter (ASF) [13] 

morphological operator: open and close operations are 

conducted as per the gray image cycle of insects, followed by 

the calculation of the area of smooth region. Once the preset 

termination condition is satisfied, the operations are 

terminated to obtain a smooth image of the insect area in the 

original image. The foreground, namely, insects, is 

highlighted through smoothing, reducing the gray redundant 

information of the complex background. This lays a good basis 

for subsequent operations like edge detection and contour 

segmentation. 

In addition, the narrow-band fast method was employed to 
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accurately segment the foreground: when the contour moves 

to the narrow band range, a new narrow band is redefined 

based on the center of the current contour line; by limiting the 

time step, the calculation range is reduced to the narrow-band 

network of the contour lines; the expansion of contour line is 

stopped, once the contour line gets close to the edge of the 

image. Figure 1 illustrates the initial contour and narrow band. 

 

 
 

Figure 1. The initial contour and narrow band 

 

The narrow-band fast method can be implemented in the 

following steps: 

Step 1: Define initial contour and narrow band. Summarize 

the current situation of distance by searching for the shortest 

distance from all points in the narrow band to each point of the 

contour line. 

Step 2: Define the boundary points that currently appear in 

the narrow band, and set up observation points. The boundary 

points and observation points are close to the inner loop curve 

and within the outer loop curve, respectively. 

Step 3: Define the termination condition. If the contour 

curve approaches the observation point in the preset narrow 

band, terminate the contour search, and redefine a new narrow 

band centering on the current contour. Since the width of 

narrow band is fixed, define the velocity of the nearest point 

in the contour line as the curvature velocity of each point in 

the new narrow band. 

Step 4: Add a time step to each point of the redefined 

narrow-band, and calculate the new distance function. Since 

the value of the new function is zero, the points on the next 

contour curve can be identified, and the new initial contour 

lines can be connected in sequence.  

Step 5: Repeat Steps 2 and 3 until meeting the preset number 

of iterations or the zero-level set curve does not change. Guide 

the movement of the closed contour curve in the ROI until 

meeting the termination condition. 

By the morphological-based edgeless active contour 

algorithm, the insect segmentation can be implemented in six 

steps: 

Step 1: Input an insect-containing gray image. 

Step 2: Remove corner convexity and fill holes to obtain a 

smooth part through ASF morphological operation. 

Step 3: Determine the location and size of the mask 

according to the insect area, and choose the rectangular mask 

based on the insect shape. 

Step 4: Generate the initial contour and narrow band 

corresponding to the mask size. 

Step 5: Generate a new narrow band based on the position 

of the next contour line, using the narrow-band fast method. 

Step 6: When the contour curve shrinks to the image 

boundary or the number of iterations meets the preset value, 

the edge curve meets the definition of minimum energy 

functional. 

Through the above steps, the authors obtained the edge 

contour of an insect image (Figure 2). 

 

 
 

Figure 2. The result of insect segmentation by our algorithm 

 

 

4. VARIABLE WEIGHT EDGE ENHANCEMENT 

 

Dataset imbalance can be solved by four popular methods: 

dataset expansion by data mining; dataset expansion through 

repeated sampling; supplementing small class samples with 

artificial data; modifying the classification algorithm. The first 

strategy continuously mines and increases the data of small 

classes to the mean size of the other classes. The second 

strategy expands the data in small classes by duplicating these 

small class samples. The third strategy obtains varied sample 

attributes from the diverse attribute space of small class 

samples, and uses them to produce new samples. The fourth 

strategy improves the classification algorithm based on 

balanced data, without changing the dataset. 

The third strategy is the simplest among the four. But the 

small class samples in artificial data tend to be distorted, 

flipped, or compressed. Without considering the relationship 

between attributes, this strategy might destroy the linear 

relationship of each attribute. For this reason, the SMOTE 

algorithm [14] came into being, which does not undermine the 

linear relationship in unbalanced datasets. Nevertheless, the 

SMOTE algorithm has two obvious disadvantages: 

(1) The number K of the nearest neighbors needs to be 

determined manually, and confirmed by the user based on 

his/her experience. The nearest neighbors are selected 

randomly, without a fixed direction. 

(2) During the continuous selection of the nearest neighbors, 

the new samples tend to concentrate on edges, because the data 

samples in small classes gather on the edges. Thus, it is 

difficult for the classifier to distinguish between different 

classes.  

In addition, the SMOTE algorithm uses the same weight for 

the original data, during the generation of new small class 

samples, while insects are mainly located at the center of the 

images. To enhance the background diversity of new samples, 

this paper improves the SMOTE algorithm into a variable 

weight edge enhancement algorithm. Based on the SMOTE 

algorithm, the proposed algorithm increases the weight of the 

edge area as adjacent images are superimposed into a new 

image, making the background of the new image more 

complex. The workflow of the proposed algorithm is 

explained as follows: 

Step 1: Unify the size of original images to M*M through 
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linear interpolation. 

Step 2: Expand the red-green-blue (RGB) channels of each 

image into a one-dimensional (1D) array with a length of 

3*M*M. 

Step 3: Iteratively process each array X in small class, 

compute the Euclidean distance, and identify the K nearest 

neighbors in the array. 

Step 4: Let Xn be the n-th nearest neighbor, and (𝑥1, 𝑥2) be 

the position of each element x in the original image. If position 

satisfies 20 < 𝑥1, and 𝑥2 < 204, set the weights of the center 

area and the edge as 𝑤𝑐 = 𝑟𝑎𝑛𝑑(0,1) , and 𝑤𝑏 = 2 × 𝑤𝑐 , 

respectively. Then, generate a new sample by: 

 

Xnew = {
X + wc × (Xn − X), 20 < x1, x2 < 204

X + wb × (Xn − X),               otherwise
    (5) 

 

Step 5: Divide new array into the three channels and restore 

the original image. 

 

 
 

Figure 3. The result of the variable weight edge 

enhancement algorithm  

 

As shown in Figure 3, the new image generated by our 

algorithm have more complex background than, yet similar 

object as the original image. 

 
 

5. CNN-BASED INSECT RECOGNITION IN 

COMPLEX BACKGROUND 

 

To verify its effectiveness, the proposed morphology-based 

edgeless active contour algorithm and variable weight edge 

enhancement algorithm were tested on DenseNet-121 trained 

by the insect image set processed by them. In the DenseNet 

[15], the layers are connected in the feedforward way (Figure 

4). 

General CNNs involve multiple operations, namely, 

convolution, pooling, and transition. To streamline the 

information flow in the network, a direct connection between 

any layer to all subsequent layers is designed as follows: 

Suppose layer 1 of the network receives feature maps 

x0, … , xl−1 from all previous layers: 

 

xl = Hl([x0, x1, … , xl−1]) (6) 

 

where, Hl()  is the composite function of three continuous 

operations; [x0, x1, … , xl−1] is the feature map set output by 

0, … , l − 1-th layer. Because of this dense connection, this 

network is called DenseNet. 

The cascade operation in formula (6) is not feasible if any 

change takes place to the size of the feature map. Thus, it is 

necessary to modify the size of the down sampling layer. To 

facilitate down sampling, the network needs to be divided into 

multiple interconnected dense blocks (Figure 5). 

In a DenseNet with three dense blocks, the layer between 

two adjacent blocks is called a transition layer. In this paper, 

the transition layers include a batch normalization layer, a 1*1 

convolution layer, and a 2*2 average pooling layer. The last 

layer of the network is a softmax classifier. Figure 6 shows the 

effect of automatic insect recognition by DenseNet-121. 

 
 

Figure 4. The structure of the DenseNet 
 

 
 

Figure 5. The dense blocks of the DenseNet 
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Figure 6. The effect of automatic insect recognition 

Table 1. The recognition accuracies and training times of 

eight CNNs 

CNN Accuracy Training time (s) 

ResNet 50 95.93% 618 

ResNet 101 96.08% 1,024 

ResNet 152 96.31% 1,387 

Fractal Net 96.29% 760 

DenseNet 121 96.65% 732 

Mobile Net 83.48% 466 

Mobile Net V2 84.11% 452 

Mobile Net-Beta 86.27% 490 

Figure 7. The results of DenseNet-121 on unbalanced and balanced insect image sets 

Figure 8. The recognition accuracies of eight CNNs 

Figure 9. The training times of eight CNNs 
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Figure 7 compares the results of DenseNet-121 on 

unbalanced and balanced insect image sets. It can be seen that 

the accuracy of the network was nearly 10% higher on the 

balanced set than on the unbalanced set. 

Next, eight CNNs, including ResNet-50, ResNet-101, 

ResNet-152, Fractal Net, DenseNet-121, Mobile Net, Mobile 

Net V2, and Mobile Net-Beta, were compared on the balanced 

insect image set. As shown in Table 1 and Figure 8, DenseNet-

121 achieved the highest recognition accuracy (96.65%). 

In terms of training speed (as shown in Figure 9), MobileNet 

V2 with linear bottleneck inverse residual structure was the 

fastest, taking up only 452s in each iteration. Overall, 

DenseNet outperformed MobileNet, ResNet, and their 

improved networks. 

6. CONCLUSIONS

This paper proposes a CNN-based automatic insect image 

recognition algorithm. Firstly, the morphology-based edgeless 

active contour was adopted to segment insect image with 

complex background. Next, the SMOTE algorithm was 

improved to enhance the background diversity of new samples. 

Through contrastive experiments, it is confirmed that the 

proposed method can achieve the best recognition effect on the 

DenseNet-121. The research results provide new insights to 

the automatic recognition of targets in images with complex 

background. 
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