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The importance of image compression is now essential during transmission or storage 

processes in various data applications, especially in medical and biometric systems. To 

perform the effectiveness of the compression process on images and evaluate degradation 

caused by this process, image quality assessment becomes an important tool in image 

services. We note that the objective criteria in image quality depend especially on the image 

type and image texture composition. The actual tendency is to find metrics making better 

qualification on errors in compressed images and correlate with the human visual system. 

This paper presents an investigation to examine and evaluate image compression 

degradation by the use of a new tendency concept of image quality assessment based on 

texture and edge analysis. To perform and practice this evaluation, we compress the medical 

and biometric images using second-generation wavelet compression algorithms and study 

the degradation of texture information in these images. 
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1. INTRODUCTION

In the field of medical or biometric imaging, the exchange 

and storage of data started to take a crucial consideration. For 

this, compression and reduction of the size of these images 

becomes a necessary tool [1]. The principal goal of 

compression is representing an image with a small number of 

bits with the best fidelity for an available communication or 

storage bit rate capacity archiving. We also know that to have 

fairly important compression rates, we must use lossy 

compression techniques, which essentially induce changes of 

information in the compressed images and create considerable 

degradation during the exploitation of the reconstructed 

images [2]. The foremost important concern will therefore be 

to prevent this degradation from affecting the final use of those 

images; in diagnostic in medical images and 

identification/authentication in biometric images; like 

identification and diagnostic in medical images [3] and 

classification, identification, or authentication in biometric 

images [4]. 

The most used lossy compression techniques use a generally 

three-step scheme [1, 2]: A transform phase followed by a 

quantization and entropy coding phases. Within the first phase, 

image pre-processing is used to manipulate and decorrelate the 

raw image data by the use of a transform method. In the second 

step, a quantization scheme is employed to reduce the amount 

of unnecessary information decreasing as well as the size of 

these images without affecting its quality when used by any 

system. Finally, a coding process, generally of entropic type, 

that offers a binary representation to these images during 

storage or transmission. In the JPEG standard (ISO/CEI 

10918-1), acronyme de Joint Photographic Experts Group, the 

basic used transform is the Discrete Cosine Transform (DCT). 

However, the Discrete Wavelet Transform (DWT) is used in 

JPEG2000 standard (ISO/CEI 15444-1). To optimize 

compression algorithms, many scientists attempt to present 

and use other combinations of algorithms in goal to reduce 

compression-induced degradation by having high 

compression ratios, the most of these techniques use wavelet 

transforms of one kind or another [5, 6]. 

To decompose any image using the DWT, we use two 

complementary waveform functions [7]. The primary 

represents the low frequencies corresponding to the 

approximation parts of an image and the second stands for the 

high frequencies which correspond to the detailed parts. 

Technically and by using two functions representing a 

combination of filters bank for low and high pass, an image 

can be decomposed into four sub-bands over rows and 

columns namely; Low-Low band (or approximation band), 

High-Low band (or horizontal detail band), Low-High band 

(or vertical detail band), and High-High band (or diagonal 

detail band). To realize another level decomposition, we 

decompose only the approximation image to generate a second 

level approximation and details sub-bands. 

Unlike the decomposition with the DWT which allows a 

multi-level decomposing only in the approximation band 

without touching the other details bands, the Wavelet Packet 

Transform (PWT) makes it possible to analyze and decompose 

all the sub-bands approximation and details to carry out a true 

multi-resolution analysis [8]. This version of Wavelet 

decomposition has proven effective in compressing signals 

and images [9]. On the other hand, the use of separable dyadic 

in image analysis with classical wavelets presents a 

disadvantage when requiring three families of wavelets and 
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the expansion factor between two successive scales is 

generally equal to 4. This has motivated scientists to create a 

non-separable wavelet transforms with a new analysis using 

only one family of wavelets with an expansion factor equal to 

2 between two successive resolutions. This analysis is called 

Quincunx Wavelet Transform (QWT) [10], which suggests 

good results applied to image compression [11]. 

Generally and to perform compression algorithms and 

evaluate the quality of the obtained images, two ways are used 

[12]. Subjective methods with several measures developed 

involving the human observer for assigning a note to degraded 

image and respecting recommendations of ISO 3664-2000 and 

ITU-BT.500-13. Objective methods allowing scientists to use 

numerical image quality assessment (IQA) methods to qualify 

various image processing applications such as image 

compression methods. With the reference to the original image, 

full reference methods (FR-IQA) use the total original image 

as a reference, reduced reference ones (RR-IQA) use partial 

reference parameters from the original image and no reference 

methods (NR-IQA) don’t use any reference from the original 

image [12]. 

The classical quality techniques that use a full-reference 

image, aim to calculate the differential errors induced by 

compression on the spatial approach of the image [13], on the 

structural composition of the image [14], or even on the image 

spacio-frequency representation [15]. Other concepts focused 

on the quality evaluation using the textural aspect of images 

[16] or by studying geometrical structures including edges or 

boundaries in these images to evaluate the degradation level 

during the compression process [17].  

Based on all these considerations, our goal in this work is to 

study and evaluate the degradation in compressed medical and 

biometric images to qualify the impact of some compression 

algorithms applied to this kind of images using an analysis 

over three ways of quality assessment; a classical structural 

evaluation quality, a textural analysis quality and finally an 

evaluation quality of edge degradation. 

For this aim, our paper presents in the first section the 

related works that investigate compressed image quality, 

especially those who study and evaluate medical images and 

biometric images. Our chosen methodology that describes the 

image quality evaluation in the textural and edge approach is 

presented in the second section. Finally, an experimental study 

is also presented with a discussion of the obtained textural 

degradation analysis results applied to compressed medical 

and biometric images. 

 

 

2. RELATED WORKS 

 

Some interesting research works investigate the quality 

evaluation of compressed images in general. Sakuldee and 

Udomhunsakul [18] and Khosravy et al. [19] resume and 

review the objective performance in compressed image quality 

assessments. Vishal et al. proposed a structural content 

Laplacian mean square error developed from a few 

fundamental objective quality measurements [20] and Hu et al. 

[21] study the quality in compressed images using a weighted 

distortion in term of the MSE. A content-weighted mean-

squared error used in quality assessment of compressed 

images was proposed by Gu et al. [22]. Another work uses the 

fine-grained present in compressed images to evaluate the 

quality of compression [23] and Krivenko et al. [24] proposed 

an approach to predict visual quality metrics for lossy 

compressed images. 

In medical images, Kocsis et al. [25] proposed a set of 

quantitative measurements related to medical image quality 

parameters, Perez-Diaz in his work [26] presents a study using 

some known quality metrics to evaluate the quality in medical 

images, and Chow and Paramesran [27] publish a review and 

a classification of medical image quality assessment. An 

improved SSIM quality for compressed medical images was 

developed by Kumar et al. [28]. Gaudeau et al. [29] used some 

compressed image quality assessment in interactive upper 

limb radiology images and Liu et al. [30] studied a perceptual 

quality assessment used in medical images. 

In biometric images, the most founded works in literature 

evaluate and study the quality of images only in acquisition 

condition and evaluate their impact on biometric recognition 

[31-34]. In the compression biometric image quality, we can 

find a study of the evaluation of some compression algorithms 

applied in fingerprint and face recognition systems [35] or 

only in the fingerprint system [36]. Thanki et al. [37] studied 

the compressive sensing concept applied in biometric systems 

and in another work [38] exploited the compressive sensing 

concept in the hybrid compression method for various 

biometric and biomedical data. 

 

 

3. TEXTURE IMAGE ANALYSIS 

 

To perform and evaluate the effect of compression on the 

medical and biometric images, we focus our analysis on the 

use of textural structure degradation. The texture is an 

elementary characteristic that defines a structural content of all 

or a specified area of an image. It offers data content in the 

color or intensity spatial structure of an image [39]. Generally, 

we cannot describe any texture for a single point but it will be 

defined by using spatial neighborhoods distribution of 

intensity rates. For this, the texture performance is affected by 

various texture attributes: such as density, depth, size, 

orientation, and others. We note also that the resolution and 

coding at which an image is identified defines the perception 

scale of the texture [39]. 

In quality standards and to evaluate the structural quality of 

compressed images, the most used full-reference objective 

metrics are based on pixel-wise error, the Peak Signal-to-

Noise Ratio (PSNR) [13] which represents the error noise that 

affects the fidelity on the power image signal. As shown in Eq. 

(1) and (2), this parameter is calculated, according to the 

(𝑀𝑆𝐸) parameter, between the original image (𝑋0) and the 

compressed image (𝑋𝑐): 

 

𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10 (
𝑑2

𝑀𝑆𝐸
)  (1) 

 

With the Mean Squared Error (MSE) is calculating by: 

 

𝑀𝑆𝐸 =
1

𝑁×𝑀
∑ (𝑋0(𝑖, 𝑗) − 𝑋𝑐(𝑖, 𝑗))

2𝑁,𝑀
𝑖,𝑗=1   (2) 

 

The objective of the PSNR parameter is to evaluate the 

induced error at pixel energy and to calculate it according to 

the squared intensity differences of distorted and reference 

image (𝑀𝑆𝐸 ) relative to the maximum energy peak in the 

image. This parameter informs about the structure average of 

the peak image signal to the error noise ratio. 

The other important parameter is the Multiscale Structural 

Similarity (MS-SSIM) proposed by Wang et al. [40]. This 
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metric is an ameliorate form of the Structural Similarity Index 

(SSIM) [41], which qualify the original and compressed 

images by comparing the brightness, contrast, and structure, 

derived from the principle that the information relating to the 

human eye is extracted from the structure of the scene and 

considered as a perceptual HVS-based index. The MS-SSIM 

provides more flexibility than a single-scale SSIM approach 

and better performance in the quality image assessment [38]. 

In the MS-SSIM the operation, based on SSIM, is iteratively 

repeated to M scales with the application of a low-pass filter 

and downsampling by a factor of 2. This metric is presented 

by the following formula [40]: 

 

𝑀𝑆 − 𝑆𝑆𝐼𝑀(𝑋0, 𝑋𝑐) =
1

𝑀
∑ 𝑆𝑆𝐼𝑀(𝑋0

(𝑘)
, 𝑋𝑐

(𝑘)
)𝑀

𝑘=1   (3) 

 

With the SSIM parameter, Eq. (4), is a single-scale 

similarity index calculated by a combined comparison of the 

properties of brightness, contrast, and structure information 

between pair of vectors x and y of compared images [41]: 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 𝑙(𝑥, 𝑦) × 𝑐(𝑥, 𝑦) × 𝑠(𝑥, 𝑦)  (4) 

 

With this metric, we calculate the similarity between the 

original and compressed images on the structural level using 

the parameters relating to the human vision model like 

brightness, contrast, and structural composition. However, 

some research papers present and evaluate other’s proposed 

full-reference image quality assessment like VIF, FSIM, UQI, 

NQM, VSNR, GSM, IFC, RFSIM [12, 19, 42]. 

In a context allowing us to analyze the textural quality in an 

image, we must use one of the techniques allowing the 

extraction of the texture features present in this image. In 

literature, there are a lot of texture features analysis techniques. 

In resume, there are five basic categories classifying types of 

features texture as shown in Figure 1 [39, 43]: 

(1) Statistical methods that calculate distinct texture 

features. The basic concept of these methods evaluates the 

spatial distribution of gray values by calculating local features 

at each step of the image and extracting a collection of 

statistics from the local feature distributions.  

(2) Structural methods that describe the texture through 

well-defined primitives (micro-texture) with a structure of 

spatial relations between these primitives (macro-texture). The 

texture primitives are often viewed as regions with uniform 

gray levels, pixels, gray level peaks, line, repetition of edges 

in different orientations, etc.  

(3) Model-based methods that attempt to represent the 

image texture using the stochastic and generative image model. 

These methods include, among others, fractal models, 

autoregressive models, random field models, epitomic model 

and complex lattice model.  

(4) Transform-based methods that use signal processing 

analyzes. Usually, these features are extracted from 

transformed images in the frequency domain. Most of the 

characteristics based on signal processing are usually extracted 

by applying filter banks to the image and calculating the 

energy of the filter responses. 

(5) Edge and Boundary based methods that analyze 

contours and edge descriptors in images based on geometric 

concepts and thus determine the equivalent textural properties. 

The dominant approach in the analysis of texture edges is to 

construct a description of the local neighborhood around each 

pixel. 

In our study, we use a recent form of performing a textural 

analysis called GLCM method (Gray Level Co-Occurrence 

Matrix). This method uses a statistical analysis based on 

selected angle and distance parameters [44]. It allows the 

extraction of statistical information from the image concerning 

the distribution of pairs of pixels [45]. The principle of 

statistical representations of the matrix of co-occurrences was 

proposed by Julesz in 1975 [46]. Subsequently, Haralick 

defined textural indicators or descriptors describing these 

matrices [47]. This approach has been greatly appreciated 

because of its ease of implementation and its performance, 

which makes it a reference approach [48-51]. 
 

 
 

Figure 1. Classification of texture analysis techniques 
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A recent form of performing a textural analysis, textural 

image quality was proposed in our previous work [52]. It helps 

us to calculate the textural image quality by using the 

elementary (GLCM) texture features like Contrast, 

Correlation, Energy, Entropy, or Homogeneity between 

original and compressed images. 

Each elementary feature quality 𝐼𝑇𝑄𝐹 , between the 

compressed image (𝑋𝑐 ) and the original image (𝑋0 ), is 

calculated according to the following equation: 

 

𝐼𝑇𝑄𝐹 = 1 −
|𝐹𝑋0−𝐹𝑋𝑐|

𝐹𝑋0
  (5) 

 

where, 𝐹𝑋0  and 𝐹𝑋𝑐  are respectivly the elementary textural 

feature of original and compressed images. 

The final image texture quality (𝐼𝑇𝑄) is obtained by the 

following weighted summation equation: 

 

𝐼𝑇𝑄 = ∑ 𝜔𝑖 × 𝐼𝑇𝑄𝐹(𝑖)
5
𝑖=1   (6) 

 

with 𝜔𝑖  is the weight ponderation, ∑𝜔𝑖 = 1  and 𝐼𝑇𝑄𝐹(𝑖) 

correspond to the five quality of elementary feature (1-contrast, 

2-correlatio, 3-enenergy, 4-homogeneity and 5-entropy). 

Using this quality parameter helps us to determine the 

textural degradation according to the texture parameters with 

the GLCM texture features, more details are presented in the 

work [52]. 

In another way and to improve the efficiency of the 

compression algorithms, we study the edge degradation in a 

compressed image. Since images are composed of textured 

structures, the discontinuity of the pixel intensities makes it 

possible to form borders of an outline shape. The importance 

of edge detection helps to represent borders of different 

textural structures and objects contained in images [53]. 

Technically, many edge detection algorithms have been 

proposed. Referring to some works [54-56], there are several 

ways to proceed with the detection of contours, but the most 

used are those based on the gradient or the Laplacian. Gradient 

methods are effective at detecting ramp edges where grayscale 

pixels change very slowly. The Roberts operator makes it 

possible to calculate the two-dimensional gradient of an image 

quickly and easily. The Prewitt operator calculates the gradient 

of the image intensity at each point, giving the direction of the 

greatest possible increase in light and the rate of change in that 

direction. The classical Sobel algorithm has advantages such 

as the computation of small quantities and a high 

computational speed; thus, it has been widely applied in many 

fields. Among other things, the Canny operator, having several 

variants, is known as one of the best first gradient detection 

operators compared to other early gradient detection operators.  

Using the Canny operator, the edges appear clearer, the 

difference between the edges and the background of the image 

is obvious. This operator uses an adaptive thresholding with 

hysteresis that eliminates streaking in edge contours. This 

threshold is evaluated according to the noise in an image with 

a noise estimation scheme [57]. Its basic concept is based on 

three steps; a filtering step to reduce image noise and to 

eliminate the isolated pixels, the application of a gradient to 

return the intensity of contours, and finally, the determination 

of the orientations of edges. 

When using this algorithm for edge detection, we obtain the 

binary edge images 𝐸𝑜𝑟𝑔
(𝑡ℎ)

 and 𝐸𝑐𝑜𝑚𝑝
(𝑡ℎ)

 corresponding 

respectively to the original and compressed images at a 

specific threshold (𝑡ℎ). These binary edge images are defined 

within {0, 1}, the 0 value denotes a non-edge point and the 1 

value denotes an edge point.  

To evaluate the edge image quality, we propose to calculate 

the common edges between 𝐸𝑜𝑟𝑔
(𝑡ℎ)

 and 𝐸𝑐𝑜𝑚𝑝
(𝑡ℎ)

 at a selected 

threshold (𝑡ℎ), Eq. (7): 

 

∆𝐸(𝑡ℎ) = 𝐸𝑐𝑜𝑚𝑝
(𝑡ℎ)

∩ 𝐸𝑜𝑟𝑔
(𝑡ℎ)

  (7) 

 

To obtain our proposed edge image quality, we use the 

following normalized formula that calculates the sum of the 

common preserved edge points in the compressed image 

compared to the original image: 

 

𝐸𝑑𝑔𝑒𝐼𝑄𝐴(𝑡ℎ) =
∑∆𝐸(𝑡ℎ)

∑𝐸𝑜𝑟𝑔
(𝑡ℎ)⁄   (8) 

 

The efficiency of the edge detection depends essentially on 

the choice of the threshold parameter (𝑡ℎ). In our work, we 

use the optimal calculating of the threshold parameter 

determined by the grayscale histogram of the gradient of the 

image proposed by Jiang et al. [58]. 

In resume, our goal is to evaluate degradation in medical 

and biometric images caused by second-generation Wavelet-

based compression algorithms. For this, we use three ways of 

evaluation based on structural quality, textural quality, and 

edge quality as shown in the flowchart in Figure 2. 

 

 
 

Figure 2. The basic flowchart of our study scenario 

 

 

4. EXPERIMENTAL RESULTS 

 

In this article, our experiments were designed to give a 

numerical evaluation of the compression effect on images. For 

this, we choose the use of two kinds of images presenting a 

textural structure; medical images and bimetric images as 

shown in Figure 3: 

Medical images with a gray Head Brain T2 Axial slice by 

a Magnetic resonance imaging (MRI) (Patient #1060) 

downloaded from 

https://wiki.idoimaging.com/index.php?title=Sample_Data, 

shown in Figure 3-a, and an MRI 3t_c spine (File #04364899) 

taken by a Magnetom Symphony TIM Siemens downloaded 

from http://www.siemens-healthineers.com, Figure 3-b. 

Biometric images representing an Iris gray image 

downloaded from the IIT Delhi Iris database 

(http://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database_I

ris.htmi), in Figure 3-c, and a Fingerprint image downloaded 

from the FVC2002 DB1_B Fingerprint database collected by 

the International Competition for Fingerprint Verification 

Algorithms 
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(http://www.cbsr.ia.ac.cn/english/Palmprint%20Databases.as

p) in Figure 3-d. 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 3. The original images used in our paper 

 

With these concepts, our experience is to compare the 

textural efficacy of five wavelet algorithms based on the lifting 

scheme of CDF 9/7 wavelet adopted by the JPEG2000 

standard coupled with the Set Partitioning in Hierarchical 

Trees encoder (SPIHT) or the Zigzag Set Partitioning in 

Hierarchical Trees encoder (SPIHT-Z) compared to the 

classical Discrete Wavelet decomposition (DWT):  

•Discrete wavelet transform with SPIHT with SPIHT 

(DWT-SPIHT) algorithm used from Beladgham et al. [59]. 

•Lifting wavelet transform with SPIHT (LWT-SPIHT) 

algorithm used from Bouida et al. [60].  

•Lifting wavelet packet transform with SPIHT (PWT-

SPIHT) algorithm used from Benyahia et al. [9]. 

•Lifting Quincunx wavelet transform with SPIHT (QWT-

SPIHT) algorithm used from Beladgham et al. [11]. 

•Lifting Quincunx wavelet transform with SPIHT-Z 

encoder (QWT-SPIHTZ) algorithm used from Bouida et al. 

[52] and Benyahia et al. [61]. 

A first analysis of the textural structure of the original 

images selected for our calculations using the GLCM 

parameters, allows us to observe their textural levels, see Table 

1. In this table, we present the elementary GLCM texture 

features like Contrast, Correlation, Energy, Homogeneity, and 

Entropy calculated from original images. When observing the 

variance of the intensity between a pixel and its neighbors over 

the entire image, we notice a high texture depth and 

smoothness only in the fingerprint image. However, in the 

other images, the texture depth is constant. The correlation 

feature in all images has a high value indicating a perfect 

correlation of texture in a horizontal direction or vertical 

direction. The energy values determine the regularity and 

uniformity across all images with the same interval slightly 

high in the fingerprint. 

 

Table 1. The textural features of original images 

 
 Brain Spine Finger Iris 

Contrast 0.08 0.18 0.81 0.20 

Correlation 0.97 0.97 0.82 0.97 

Energy 0.31 0.31 0.49 0.15 

Homogeneity 0.96 0.93 0.86 0.92 

Entropy 1.54 1.87 1.66 2.28 

 

In the case of homogeneity, all images present a high 

closeness of the distribution of texture elements according to 

the diagonal direction. Finally, the entropy property shows the 

image information and reflects the complexity of the texture 

distribution, with the high value in the iris images. 

Figures 4 to 7 show the structural quality assessment using 

PSNR [13], MS-SSIM [40], VIF [62], and FSIM [63] of the 

compressed images with the application of the selected 

Wavelet-based algorithms varying the compression ratios 

between 0.125 and 2.0 bpp. With PSNR in Figure 4, we can 

observe in medical images and for low compression ratios 

(<0.5 bpp) compression with QWT-SPIHTZ is a weakly better 

than the other techniques and almost equivalent in quality to 

PWT-SPIHT and QWT-SPIHT algorithms. These three 

techniques are better than DWT-SPIT and LWT-SPIHT one. 

In terms of structural similarity, we also note the same 

observation except that beyond 1.0 bpp almost all the 

algorithms have the same quality. Generally, the error in pixel 

energy shown by the PSNR is acceptable in Brain, Spine and 

Fingerprint images from 0.5 bpp, and in Iris image starts to be 

good from 1.0 bpp. 

However, when analyzing the structural similarity MS-

SSIM in Figure 5, we notice that the MS-SSIM is acceptable 

in all images with compression ratios >0.25 bpp with better 

quality in QWT-SPIHTZ, QWT-SPIHT and PWT-SPIHT 

compression. 

When observing the VIF quality factor in Figure 6, we 

conclude clearly that in accordance with natural scene 

statistical analysis [62], the conservation of the fidelity in the 

images (medical and biometric) compressed by the QWT-

SPIHTZ, QWT-SPIHT, and PWT-SPIHT especially in the 

very low ratios (<1.0 bpp). 

The same observation in Figure 7 is also remarkable with 

the Feature Similarity Index (FSIM) for the images 

compressed by the QWT-SPIHTZ, QWT-SPIHT, and PWT-

SPIHT algorithms, especially in ratios ≤0.75 bpp with a slight 

decrease for the finger image. 

When considering the texture analysis, we observe, as 

shown in Figures 8 and 9, that the texture quality is preserved 

when the compression ratio is >0.5 bpp with all compression 

algorithms in the case of medical and biometric images, 

especially with the use QWT-SPIHTZ, QWT-SPIHT, and 

PWT-SPIHT compression algorithms. 

 

 
 

Figure 4. The PSNR quality of compressed images 
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Figure 5. The MS-SSIM quality of compressed images 

 

 
 

Figure 6. The VIF quality of compressed images 

 

 
 

Figure 7. The FSIM quality of compressed images 

 

Before analyzing the edge quality of the compressed images, 

we can observe the degradation of edges on these images using 

some compression ratios and compared them to the original 

images. The determined Canny edges for only two samples are 

used in this comparison (medical brain image and the 

biometric iris image) as shown in Table 2 and Figure 10.  

In Table 2 and to understand and confirm the degradation 

quality in edges under compression, we use two factors to 

calculate the edge quality evaluation; the edge quality factor 

[64] and the Edge preservation Index [65]. With these factors, 

this table summarizes the values recovered during the analysis 

of edges for the Brain image and Iris image.  

From this result, we can observe the good preservation of 

the edge structure in compressed images, especially with 

PWT-SPIHT, QWT-SPIHT, and QWT-SPIHTZ. This gives a 

good appreciation of the quality of contour preservation in 

these kinds of images and will retain very useful texture 

information during their use. 

This remark is clearly observed in Figure 10. The presence 

of deformation in the contours of compressed images for 

different algorithms and using different compression ratios are 

easily remarkable. These degradations are remarkable for the 

low compression ratios and especially for compression using 

DWT and LWT for all images, but in the quincunx wavelet, 

these degradations are slight. 

In this case, it can be assessed that this geometric 

degradation can adversely affect the quality when exploiting 

these images during a medical analysis or biometric 

authentication. This is due to the distortion in the textural 

structure of the image that can deteriorate informational 

content. 

Finally and as shown in Figures 11 and 12, we conclude the 

same previous ascertainment for the edge quality. We can see 

clearly the preservation of edges when using PWT and QWT 

transforms with a slight difference in the case of the Finger 

image. The accepted edge quality values are observed from 0.5 

bpp only in QWT-SPIHTZ, QWT-SPIHT, and PWT-SPIHT 

compression algorithms. In DWT-SPIHT and LWT-SPIHT, 

the edge quality is very low for bitrates <1.5 bpp. This is 

probably caused by the non-separable decomposition 

technique in the used wavelets. 

After this investigation, we conclude that only QWT-

SPIHTZ, QWT-SPIHT, and PWT-SPIHT compression 

algorithms present a good preservation of structural, textural 

and, edge qualities with the use of medical and biometric 

images. We can say that these algorithms preserve the 

structural, textural and, edge quality in the chosen medical and 

biometric images. 

 

 
 

Figure 8. The texture quality of compressed medical images 

 

 
 

Figure 9. The texture quality of compressed images 
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Figure 10. The edge degradation in compressed brain and iris image 

 

Table 2. The edge factor quality of brain and Iris images under compression 

 

Brain Iamge 
0.125 0.25 0.50 1.0 

Fedge EPI Fedge EPI Fedge EPI Fedge EPI 

DWT-SPIHT 0.020 0.234 0.047 0.251 0.060 0.483 0.073 0.857 

LWT- SPIHT 0.019 0.211 0.050 0.279 0.060 0.451 0.073 0.742 

PWT- SPIHT 0.060 0.348 0.065 0.632 0.072 0.786 0.076 0.852 

QWT- SPIHT 0.067 0.347 0.066 0.561 0.077 0.781 0.076 0.851 

WT-SPIHTZ 0.072 0.642 0.074 0.745 0.076 0.809 0.077 0.854 

 

Iris Iamge 
0.125 0.25 0.50 1.0 

Fedge EPI Fedge EPI Fedge EPI Fedge EPI 

DWT-SPIHT 0.039 0.290 0.049 0.472 0.086 0.707 0.101 0.857 

LWT- SPIHT 0.020 0.237 0.44 0.388 0.076 0.586 0.096 0.821 

PWT- SPIHT 0.068 0.531 0.079 0.749 0.096 0.835 0.103 0.874 

QWT- SPIHT 0.066 0.578 0.088 0.699 0.104 0.818 0.105 0.866 

WT-SPIHTZ 0.093 0.714 0.099 0.790 0.103 0.841 0.105 0.872 

 

 
 

Figure 11. The edge quality of compressed medical images 

 

 
 

Figure 12. The edge quality of compressed biometric images 
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5. CONCLUSION 

 

In our investigation, we presented a new form of analyzing 

degradation in compressed images, especially in medical and 

biometric images. This analysis association a classical 

structural quality assessment to a textural feature degradation 

quality and an edge-oriented performing quality. With the 

textural quality assessment, we focused our calculation only 

on the most important texture features determinate by the 

GLCM method like Contrast, Correlation, Energy, 

Homogeneity, and Entropy. In the edge quality performing, we 

used the Canny edge performance in compressed images to 

determine the retention rate edges compared to those in the 

original one. 

The numerical experiment results study some second-

generation wavelet-based compression algorithms coupled 

with SPIHT and SPIHT-Z coding and applied on medical and 

biometric images. These results confirmed that the Quincunx 

based algorithm associated with SPIHT-Z (QWT-SPIHTZ) 

like QWT-SPIHT and PWT-SPIHT gives good results than 

other used algorithms (LWT-SPIHT and DWT-SPIHT). It is 

worth mentioning that at very low bitrates, these algorithms 

provide very important textural quality in medical and 

biometric images.  

As a future perspective, we suggest adding the development 

of a multi-threshold edge quality to allow a deep evaluation of 

the textural structure and thinking about the multi-resolution 

analysis of texture quality by wavelet transforms. 
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