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The float glass contains various defects for reasons of raw materials and production process. 

These defects can be observed on the end images of the glass. Since the defects are correlated 

with specific links of the production process, it is possible to discover the process problems 

by identifying the location and type of defects in end images. Based on faster region-based 

convolutional neural network (Faster RCNN), this paper proposes a deep learning method 

that improves the feature extraction network, and adds a Laplacian convolutional layer to 

preprocess the end images. Considering the defect features in end images, the anchor box 

size was adjusted to speed up the training. Besides, the lack of generalizability induced by 

small dataset was solved through data enhancement. With improved VGG16 as the feature 

extraction layer, a glass defect detection model was established, whose generalizability was 

improved through transfer learning. The experimental results show that the proposed model 

achieved a mean detection accuracy of 94% on actual test set, meeting the requirements for 

actual use in factories. 
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1. INTRODUCTION

The quality of float glass is directly related to the production 

process [1, 2]. If there is a problem with the glass quality, the 

normal countermeasure is to ask experts to analyze the end 

images and production technique, and find an empirical 

solution. However, only the engineers and technicians with 

rich experience in glass production can diagnose glass 

problems [3]. Some problems even require repeated 

experiments to adjust the links of the production process. Any 

process adjustment will consume lots of materials, and bring a 

heavy burden to the manufacturer. In addition, the manual 

diagnosis tends to be highly subjective. Different experts may 

come up with different conclusions on the same phenomenon. 

To guide glass production and save economic cost, it is of 

high necessity to realize the automatic diagnosis of problems 

in glass production. A possible solution is to learn the massive 

data on end images and the corresponding technical problems 

through deep learning, and then disclose the correlations 

between image features and the links of the production process. 

However, there is no report that applies deep learning to such 

problems. Therefore, the basic idea of this paper is as follows: 

With the aid of machine learning, design an algorithm to 

automatically learn the massive data on production process, as 

well as the corresponding end images, of the manufacturer on 

the computer, and reveal the hidden laws in the massive data. 

These laws will guide the glass production and end the 

dependence on human experts. 

This paper applies the faster region-based convolutional 

neural network (Faster RCNN) to glass image defect detection. 

First, the number of data samples was expanded through image 

enhancement, and a Laplacian convolutional layer was added 

before the input layer of the Faster RCNN to sharpen the 

images, highlighting the texture features. Besides, the VGG16 

model was used as the feature extraction network. Considering 

the defect features of glass images, the original anchor box size 

was adjusted to improve training and detection speeds. 

Moreover, the generalizability of our model was enhanced 

through transfer learning. 

2. LITERATURE REVIEW

There are already many methods for defect detection 

through computer recognition of images. The conventional 

image processing algorithms are usually adopted to detect the 

defects of glass images, namely, grayscale-based image 

segmentation and shape-based defect detection. These 

conventional algorithms first establish a feature model through 

manual analysis on glass defect features, and then identify 

these features through image processing. The feature 

extraction and recognition completely depend on the image 

processing algorithm. The universality is severely lacking, for 

one algorithm only applies to one kind of features. As a result, 

the conventional algorithms cannot satisfactorily detect the 

various and combinatory defects in glass images. 

In recent years, machine learning has given rise to many 

classification methods, such as support vector machine (SVM), 

and random forest (RF). These methods extract features by 

conventional algorithms, and classify the extracted features 

through machine learning. The machine learning improves the 

performance and accuracy of classification to a certain extent. 

Nevertheless, these new classification methods fail to achieve 

an ideal effect in actual production, because the sliding 
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window method, which is adopted by them to locate the target, 

has a high time complexity and computing load. 

The boom of deep learning has brought many academic 

achievements. In 2006, Hinton G. proposed a layer-by-layer 

greedy algorithm, setting off an upsurge in the development of 

artificial intelligence. Bengio and Lencun created the 

convolution neural network (CNN), which has been 

successfully applied in digital image processing and widely 

used in computer vision. Since then, many networks have been 

derived from the CNN for image classification, image 

segmentation, and target detection. In 2014, Grischichk 

applied deep learning to target detection, and put forward the 

R-CNN, which combines region proposal with CNN, relies on 

SVM for classification, and locates target with linear 

regression. In 2015, Girshick added spatial pyramid pooling 

(SPP) to R-CNN, and proposed the Faster-RCNN model, 

which greatly shortens the training time. In the same year, 

Grishick and He designed a Faster-RCNN capable of end-to-

end training through an additional region proposal network 

(RPN) [4]. 

 

 

3. GLASS DEFECT DETECTION BASED ON FASTER-

RCNN  

 

In essence, the detection of glass defects is to determine the 

type and location of each defect [5]. This task can be solved 

effectively through target detection in computer vision. With 

the development and application of deep learning, many target 

detection algorithms have emerged. The mainstream target 

detection algorithms: Region proposal-based R-CNN 

algorithms, and one-stage algorithms like you look only once 

(YOLO) and single shot detector (SSD) [6].  

The R-CNN algorithms need to generate the candidate area, 

i.e. target position, and then classify and regress the candidate 

boxes. The accuracy of these algorithms has been slowly 

improving through the evolution from R-CNN, Fast R-CNN, 

to Faster R-CNN. But the high accuracy of these algorithms 

comes at the cost of computing speed. The one-stage 

algorithms can rapidly predict the type and location of 

different targets, using only one CNN. But the prediction 

accuracy is rather low [7]. 

In this paper, computing speed is not a priority, because 

glass defect detection does not require real-time detection on 

the production line. The detection accuracy is relatively 

important, as it directly bears on process adjustment [8, 9]. 

Each process adjustment needs a lot of resources. Therefore, 

this paper adopts the highly accurate Faster R-CNN algorithm 

to detect glass defects. 

Considering the defect features of end images, this paper 

improves the original Faster R-CNN: A Laplacian 

convolutional layer was added after the input layer to enhance 

the texture features and speed up training convergence; the 

VGG16 network was taken as the feature extraction layer [10], 

and the last fully connected layer was removed; the original 

anchor box size was modified such that the box attaches 

greater importance to large features and obvious defects than 

details. In addition, the training data were expanded through 

data enhancement, to increase the labeled data in the original 

dataset. 

 

3.1 Data enhancement 

 

The deep CNN has a huge amount of training parameters. 

The training demand cannot be satisfied without lots of labeled 

data [11]. However, it is very laborious to label the data on end 

images: The glass images need to be collected in actual 

production, and then the location and type of defects need to 

be judged manually and labeled in turn. 

This paper expands the small labeled dataset through data 

enhancement. The common methods for data enhancement 

include cropping, rotation, color change, brightness change, 

and contrast change [12]. The location of a glass defect, which 

is related to the link of the production process that leads to the 

defect, is a major feature of the defect. Thus, the data 

enhancement should not change the position of any pixel. Here, 

the data are enhanced by changing brightness and contrast. 

 

3.2 Laplacian convolutional layer 

 

The end images generally present a striped form. 

Sharpening the image can provide the grayscale difference of 

edge pixels, making the texture boundary clearer and the 

features more obvious. During image sharpening, the 

difference operation can reflect the grayscale of each pixel 

[13], determine every edge pixel, and enhance its pixel value. 

The common image sharpening methods include gradient 

method, Roberts operator method [14], Laplacian operator 

method [15], high-pass filtering, and template matching [16]. 

Considering the merits and defects of various sharpening 

methods, this paper adds convolutional sharpening as a 

network layer behind the output layer, with the aim to sharpen 

the input image at a low cost. With Laplacian operator as the 

convolution kernel [17], the added layer does not alter the size 

of the output image. 

Laplacian algorithm is a linear quadratic differential 

operator with rotation invariance. This algorithm can sharpen 

image edges in different directions, and output results with 

refined boundaries and rich details. As a typical second-order 

derivative operator, Laplacian operator enhances the 

discontinuity of the gray value in the image, and reduces the 

gradual change of the gray area. The gradient of image f(x, y) 

can be described as [18]: 
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In formula (1), the original image gradient is a vector, 

pointing to the direction with the greatest change rate of 

function f(x, y). In this paper, the four-adjacent Laplacian 

operator is used, whose value depends on the gray difference 

of four adjacent pixels. The Laplacian operation can be 

achieved through template convolution [19] (Figure 1). 
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Figure 1. The Laplacian convolution kernel 
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The four-adjacent Laplacian operator was taken as the 

convolution kernel to construct a layer of Laplacian 

convolutional layer [20] that processes the input image. While 

retaining the original information of the image, the added layer 

enhances the contrast on the edges with suddenly changing 

grayscale. When applied to glass images, the added layer helps 

to highlight the contour of defect, making the blurred image 

clearer and easier to detect. 

 

3.3 Faster-RCNN 

 

Based on R-CNN and Fast RCNN, Ross B. Girshick put 

forward the Faster RCNN in 2016 [21]. In network structure, 

Faster RCNN integrates feature extraction, proposal extraction, 

bounding box regression, and classification into one network, 

and realizes end-to-end training. The Faster RCNN greatly 

outperforms the R-CNN and Fast RCNN, especially in 

detection speed. As shown in Figure 2, Faster-RCNN can be 

divided into four parts: 

(1) Feature extraction layer 

Faster RCNN produces a feature map through a series of 

convolutions, activations, and pooling operations, and shares 

the feature map with the subsequent RPN layer and fully 

connected layer [22]. 

(2) RPN 

The PRN, which produces region proposals, is the biggest 

difference between Faster and Fast RCNNs. Specifically 

designed for recommending regions of interest (ROIs), the 

RPN can be understood as a full convolutional network (FCN) 

that supports end-to-end training. In this layer, the softmax 

judges whether an anchor is positive or negative, and obtains 

an accurate proposal by modifying the anchors through 

bounding box regression. 

(3) ROI pooling layer 

This layer extracts the proposal feature maps from the 

feature maps and the proposals generated by the RPN. The 

ROIs are mapped into the feature maps, and pooled into 

regional feature maps with the same size [23]. Then, the 

regional feature maps are forwarded to the subsequent fully 

connected layer for target classification. 

(4) Fully connected layer 

This layer calculates the class of each proposal based on 

proposal feature maps [24], and determines the final location 

of the detection box through another bounding box regression. 
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Figure 2. The structure of Faster R-CNN 

 

3.4 Improvement of Faster RCNN 

 

(1) Improved feature extraction layer 

To detect the defect features of end images, the feature 

extraction layer must inherit the merits of deep networks in 

extracting high-level abstract features, while reducing the 

model complexity and training time. Since the glass defect 

detection is a binary classification problem, it is desirable to 

adopt the VGG16 network. 

The VGG16 network includes 13 convolutional layers, 13 

activation layers, 4 pooling layers, and a fully connected layer. 

In actual training, the image edges were supplemented through 

convolution, using a 3*3 kernel, padding=1, stride=1, 

pooling=2*2, and stride=2. This simplifies the computing 

process. 

Image textures are less complex than the features of other 

objects. It is sufficient to directly use VGG16 network for 

feature extraction. However, the complex structure of VGG 

will incur additional computing cost, increasing the risk of 

overfitting. Moreover, the parameters of the fully connected 

layer in the VGG account for a large portion of network 

parameters [25]. To simplify the network, the last two fully 

connected layers were replaced with a fully connected layer of 

1,024 nodes. In addition, transfer learning was adopted to use 

the weight of ImageNet, thereby overcoming overfitting. 

(2) Anchor box size 

Anchors can be understood as some boxes of preset size. Let 

k be the number of types of anchors [26]. In the original 

network, k=9, i.e. the anchor boxes have three different areas 

and aspect ratios. The anchor size was selected as per the 

specific target image. 

To train the RPN, the first step is to generate anchor boxes. 

In the original network, anchor boxes of three different aspect 

ratios were generated with each pixel as the center. In total, 
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nine kinds of anchor boxes were produced, whose aspect ratios 

are 0.5, 1, and 2, and sizes are 8, 16, and 32.  

Using the original anchor boxes, the receptive field 

corresponding to each pixel of all feature maps is 16*16 in size 

after pooling. By the smallest scale mapping, the anchor box 

size fell between 128 and 512. The anchor box size should be 

increased to suit the relatively large scale of glass defects. 

Therefore, the anchor box sizes were changed into 8, 16, and 

32. Finally, the anchor box areas were defined as 256*256, 

512*512, and 1,024*1,024, which are in line with the scales of 

glass defects. 

Each anchor box thus generated was trained with positive 

and negative samples selected by intersection over union (IoU). 

The IoU values are as shown in Table 1. 

 

Table 1. The IoU values for anchor boxes 

 
Class Criteria 

Positive IOU>0.7 or the IoU between anchor box 

and target box maximized 

Negative IOU<0.3 

Others Image boundaries and other discarded 

samples not for training 

 

By reducing the number of anchors and increasing the area 

of the anchor box, the authors reduced the computing load and 

increased the training speed. In addition, some minor defects 

were neglected, allowing the model to focus on the defects 

with more obvious features and large coverage. In fact, only 

these features can accurately reflect the features of the 

production process. 

(3) Adding Laplacian convolutional layer 

A Laplacian convolutional layer was added before the 

Faster RCNN. Like other convolutional layers, the Laplacian 

convolutional layer aims to extract image features of different 

scales, except that the parameters of this layer are fixed, 

without needing to participate in training. This layer enhances 

the defect features in end images, and speeds up network 

convergence in training. 

 

 

4. EXPERIMENTS AND RESULT ANALYSIS  

 

First, the glass end images were collected on the production 

line by a float glass streak instrument. Under expert guidance, 

the type and location of glass defects were labeled, and the 

technical reasons and solutions of these defects were provided. 

Then, the defect data were organized into training sets to train 

our detection model. The trained model was tested on a test set. 

The effectiveness of the model was evaluated by mean 

accuracy, mean loss, and mean error. In addition, the model 

was compared with the original Faster RCNN. 

 

4.1 Sample production 

 

The experimental data were collected from major float glass 

manufacturers. The raw data, consisting of 1,200 images, 

contain the end images, and an XML file of defect labels and 

reasons. 800 images were allocated by random to a training set, 

and 400 to a test set in an independent manner (Table 2). 

 

Table 2. The sample number and scale of datasets 

 
Datasets Sample number Minimum resolution 

Training set A 800 4,200768 

Training set B 3,200 4,200768 

Test set C 400 4,200768 

 

As shown in Table 2, training set A contains original data, 

while training set B adopts enhanced data. The data 

enhancement was realized by changing contrast and brightness, 

creating 3,200 training images for set B. The image sizes in 

the datasets were different, because the float glasses produced 

by different manufacturers vary in width and thickness. Here, 

only the minimum resolution is presented in the above table. 

 

 
 

Figure 3. The flocculant defects 

 
 

Figure 4. The curly defects 

 

 
 

Figure 5. The hook-shaped defects 
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In the experimental data, each image covers 1-3 kinds of 

defects, including 733 hook-shaped defects, 923 flocculent 

defects, and 812 curly defects (Figures 3-5). Different kinds of 

defects are distributed evenly. Some defect-free images were 

added to enhance the model generalizability. 

 

4.2 Software and hardware 

 

As shown in Table 3, the experimental framework was 

constructed on TensorFlow and Keras, programmed in Python, 

accelerated by graphic processing unit (GPU), and developed 

with PyCharm. 

 

Table 3. The hardware and software of the experiments 

 
Hardware Software 

CPU: Intel Zeon CentOS 

Memory: 32GB CUDA8.0 + CUDNN5.1 

GPU: Tensla V100 Python3.6 + TensorFlow + Keras 

 

4.3 Results analysis 

 

Our model was trained under the TensorFlow+Keras 

framework in CentOS environment. The training was 

accelerated by Tesla V100GPU. Before initialization, the 

training parameters were pretrained by improved VGG16 

under ImageNet.  

 

4.3.1 Influence of Laplacian convolutional layer 

 

 
 

Figure 6. The loss curve after the addition of Laplacian 

convolutional layer 

 

 
 

Figure 7. The loss curve before and after the addition of 

Laplacian convolutional layer 

In this paper, a Laplacian convolutional layer is added to the 

original model. The parameters of this layer are fixed, without 

participating in training. The function of such parameters is to 

enhance the defect boundaries. Figures 6 and 7 compare the 

convergences of the original model and the model after adding 

the Laplacian convolutional layer. It can be seen that the 

addition of this layer sped up the convergence of the model: 

the model in Figure 6 converged after 20 cycles, while that in 

Figure 7 converged after 35 cycles. 

 

4.3.2 Influence of the improved VGG16 model 

In this paper, the feature extraction layer is improved from 

VGG16 model by replacing the last two fully connected layers 

were replaced with a fully connected layer of 1,024 nodes. The 

replacement simplifies the training parameters, and reduces 

the training time.  

Table 4 compares the training times per cycle of the model 

before and after the replacement. Obviously, the improved 

VGG16 consumed 1/4 fewer time per cycle than the original 

VGG16. 

 

Table 4. The training times per cycle of the model before and 

after the replacement 

 
 Original 

VGG16 

Improved 

VGG16 

Training time per cycle 5.23mins 3.76mins 

 

4.3.3 Influence of anchor box resizing  

Considering the relatively large scale of end images, this 

paper increases the anchor box size of Faster RCNN, and 

eliminates the relatively small anchor boxes, highlighting the 

large defects features in end images which are closely 

correlated with the production process.  

Table 5 compares the training times per cycle of the model 

before and after the resizing of anchor boxes. It can be seen 

that the fewer number of anchor boxes brought shorter training 

time and faster convergence. 

 

Table 5. The training times per cycle of the model before and 

after anchor box resizing 

 
 Before resizing After resizing 

Training time per cycle 3.23mins 2.76mins 

 

4.3.4 Actual detection effect 

During the test, the proposed glass defect detection model 

was applied on 400 test images, which contains 134 flocculant 

defects, 176 hook-shaped defects, and 121 curly defects.  

Table 6 records the actual number, correctly detected 

number, missed number, and incorrectly detected number of 

different kinds of defects. The results show that our model 

detected 94% of the three different kinds of glass defects 

accurately, satisfying the requirements for actual production. 

Figure 8 presents the test results of our model on actual glass. 

It can be seen that our model detected multiple flocculant 

defects and a hook-shaped defect. The flocculant defects 

spanned across the first of the glass flow layer, while the hook-

shaped defect resided in the third layer. The presence of 

flocculant defects in the first layer indicates that the raw 

materials are not fully melted in the production process. The 

operator should check whether the raw materials have ultra-

fine powder, and have rational participle size ratio. In addition, 

special attention should be paid to judge whether the calorific 
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value of the fuel is sufficient, and whether the air-to-fuel ratio, 

and heat load distribution are reasonable. The existence of 

hook-shaped defect demonstrates the difference between 

production links in process conditions. 

 

Table 6. The statistics on the detection of different kinds of defects 

 
Type Actual number Correctly detected number Missed number Incorrectly detected number Accurate 

Flocculant defect 134 131 2 0 97% 

Hook-shaped defect 176 167 9 4 94% 

Curly defect 121 114 5 2 94% 

 

 
 

Figure 8. The glass defects actually detected by our model 

 

 

5. CONCLUSIONS 

 

(1) The deep learning was applied to detect the defects in 

end images of float glass, and set up a glass defect detection 

model. 

(2) A Laplacian convolution layer was added to the target 

detection model Faster R-CNN, which improves the feature 

extraction layer, and the anchor box selection scheme was 

adjusted as per the features of glass defects. 

(3) The actual production data were collected from large 

float glass manufacturers across China, and complied into a 

raw dataset with defect labels. Then, the proposed model was 

trained and tested on the prepared dataset. The test results 

show that our model achieved excellent performance on the 

test set, with a mean detection accuracy of 94%. 
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