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 It is certain that the human brain responds to all kinds of inputs such as feeling, sound, light, 

and odor. However, to the best of our knowledge, limited works have investigated the 

response of the human brain to different inputs, especially in eyes-open and eyes-closed (EO 

& EC) conditions. Due to its fine temporal resolution, portability, noninvasiveness, and low 

set-up costs, electroencephalography (EEG) is one of the most practical way to evaluate the 

response of the brain to different inputs. In this study, the brain reactions to olfactory were 

analyzed, and two identifications were done, which were odor and subject. The brain 

reactions were captured by EEG from five healthy subjects during smelling of valerian, lotus 

flower, cheese, and rosewater odors in EO & EC conditions. We tested band power, 

statistical data, Hjorth parameters, and autoregressive model features and achieved the 

highest average classification accuracy rates of 96.94% and 99.34% for odor and subject 

identifications, respectively. The obtained results proved that the olfactory response of the 

human brain in EO & EC conditions can be reliably used for odor and subject identifications.  
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1. INTRODUCTION 

 

The human brain controls daily functions, including motor 

control, sensation, learning, thoughts, and feelings, by 

interpreting signals from sense organs to sensory regions of 

the brain. These regions receive and process sensory 

information (including sight, touch, taste, smell, and hearing), 

which comes into the brain as electrical impulses. For example, 

when an odor molecule binds to a receptor, it produces an 

electrical signal that goes from the sensory neurons to the 

olfactory bulbs, which contain neuron cell bodies that transmit 

the electrical signal along the cranial nerves, which are 

extensions of the olfactory bulbs. They send the signal down 

the olfactory nerves toward the olfactory area of the cerebral 

cortex. Similarly, the other sensory receptors (sight, touch, 

taste, and hearing) convert physical stimuli into neural activity. 

The only difference is that the activity is sent to a related 

sensory area of the cerebral cortex [1-4]. 

The neural response of the brain to the signals from the 

sense organs can be evaluated by electroencephalography 

(EEG) [5]. Because of its fine temporal resolution, 

noninvasiveness, portability, and low set-up costs, EEG is 

generally the most preferred technique for recording neural 

activity [6]. In addition to providing a lot of information about 

brain, EEG also helps to evaluate functions of the nose. For 

example, EEG signals, which are acquired during smelling, 

can investigate any lack of smelling ability of a subject, or for 

the purpose of measuring the response of the brain. It is known 

that the lack of smelling ability is a prediagnosis for 

Parkinson’s disease [1-4]. Hence, it is crucial to objectively 

determine the lack of smelling ability. However, there is 

limited research into the response of the human brain to 

different odors [7-9]. Additionally, studies vary in terms of 

experimental methodology and outcomes. For example, while 

some papers investigated the classification of EEG signals 

recorded during imagination of odors [9-11], some of them 

classified only pleasant and unpleasant odor-based EEG 

signals [12-15]. 

In a pleasant/unpleasant-based odor study, researchers 

acquired EEG signals from five subjects in the eyes-closed 

condition (ECC). Although participants were asked to smell 

four odors during the experiment, researchers classified only 

the most unpleasant and pleasant odors among them. Finally, 

they obtained a 79.91% CA rate [13]. In other research, Kroupi 

et al. acquired electrical brain activity from five participants in 

the eyes-open and eyes-closed (EO & EC) conditions [14]. As 

with previous work, the researchers also classified pleasant 

and unpleasant odors after subjectively asking participants to 

define their choices and then calculated a 90% average CA rate. 

It can be commented that, in such pleasant/unpleasant 

classification problems, it is naturally expected that the brain 

would produce more discriminative responses. In a previous 

study, we classified only lotus flower (LF) and cheese (C) 

odors by representing the signals with wavelet transform 

features, which revealed 98.29% and 94.08% average CA rates 

on the EO & EC conditions, respectively [16]. In another study, 

we applied a wavelet-transform features-based method into the 

valerian (V), rosewater (R), and LF and C odors and achieved 

87.50% and 94.12% average CA rates in the EO & EC 

conditions, respectively [17]. 

In addition to the aforementioned studies, neural activity 

was also utilized for subject identification using EEG signals 

recorded during different tasks [18-20]. For example, Bajwa 

and Dantu applied their method to motor imagery EEG signals, 

which recorded the data set from seven subjects, and obtained 

a CA rate of 98.46% [21]. In another EEG-based biometry 

study, Falzon et al. used steady-state visual-evoked potentials 

for biometric measures [22]. The authors tested their method 
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on eight subjects and obtained an overall CA rate of 91.7%. 

Although different types of EEG signals, recorded under 

different conditions, have been noted in the literature, it is 

worthwhile to mention that the current study is the first attempt 

to use an olfactory-based EEG database for subject 

identification. 

In this study, we improved our odor-identification method 

not only in terms of CA but also in terms of computational 

complexity and proposed a subject-specific method to 

recognize multiclass electrical neural activity acquired during 

smelling of V, R, LF, and C odors in EO & EC conditions. 

Moreover, we proposed a subject-identification method, 

which uses olfactory-based EEG signals for EO & EC 

conditions. The electrical neural activity was represented by 

band power (BP), statistical data, Hjorth parameters, and 

autoregressive (AR) model features. Then, extracted features 

were classified by the k-nearest neighbor (k-NN) and naïve 

Bayes (NB) algorithms to categorize the EEG trials as V, R, 

LF, and C. The obtained results showed that subject-specific 

parameters, including feature extraction and classification 

methods, provide much better performance than a subject-

independent model for odor recognition. On the other hand, it 

was shown that EEG signals recorded during smelling can be 

used for biometry, regardless of which of the four odors were 

smelled. 

After the introduction, Section 2 provides descriptions of 

the data set, feature extraction, and classification algorithms, 

respectively. In Section 3, the classification results are given. 

In the last section, results are concluded and discussed.  

 

 

2. MATERIALS AND METHODS 

 

2.1 Data acquisition 

 

The data set was acquired from five healthy subjects 

(Subject 1 to Subject 5 ) during smelling of four kinds of odors, 

including V, LF, C, and R odors in the EO & EC conditions. 

It should be noted that, while V, LF, and R were used in liquid 

form, C was used in solid form. The subjects were right-

handed and between 26 and 32 years old. It should be noted 

that all subjects had no clinical disease. Participants sat on a 

chair, with a screen set 1 m away. 

 

 
 

Figure 1. Number of trials: (a) Number of eyes-open trials; 

(b) Number of eyes-closed trials 

The experimenter randomly chose a bottle with an odor. The 

random selection approach was important for recording only 

the brain’s response to physically smelling an odor and 

avoiding the activity of the imagination of the odor. Afterward, 

following a “smell” command, the experimenter placed an 

odor bottle under the participant’s nose for about 2 s. This 

process constituted a single EEG trial. The electrical brain 

activity was recorded at 250 Hz sampling rate with 256 

electrodes. The total number of trials for each of odor was 

between 94 and 114. The exact number of trials for each 

subject is given in Figure 1. In this figure, the dark and light 

colors, respectively, demonstrated the exact number of 

training and testing EEG trials, which were randomly selected 

[14]. This study has two main purposes: 1) to categorize the 

trials in the testing set into V, LF, C and R odors, which is 

called odor identification; 2) to identify the subjects as Subject 

1, Subject 2, Subject 3, Subject 4, or Subject 5 using the V, LF, 

C, and R trials. 

 

2.2 Feature extraction 

 

Feature extraction is one of the most important stages in 

pattern recognition and machine learning studies since its 

capability directly influences the performance of the classifier. 

Because it is known that capable feature extraction algorithms 

provide discriminative feature space, which helps to increase 

CA performance. In this research, we used BP, statistical data, 

Hjorth parameters, and AR model features. The BP features are 

calculated by fast Fourier transform (FFT). It is worthwhile to 

note that, because there is no certain suggested frequency band 

interval for EEG signals, the band powers were calculated for 

band intervals of 0-30 Hz, 0-40 Hz, and 0-50 Hz [23, 24]. 

To obtain BP features of the trials, first we calculated the 

FFT coefficients as follows: 
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where, N is number of EEG samples taken for analysis, xi is 

one discrete time point from an EEG trial, and X(k) is the kth 

FFT coefficient. Then, BP was computed by: 
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where, 
U

L

f

f
kX )(  indicates FFT coefficients between low (fL) 

and upper cut-off frequency (fU). The low cutoff frequency and 

upper cutoff frequency values are presented in Table 1.  

 

Table 1. Low and upper cut-off frequency limits 

 
Total Band fL (Hz) fU (Hz) 

1 0 30 

2 0 40 

3 0 50 

 

The statistical features, including kurtosis (K), skewness (S), 

standard deviation (SD), variance (V), and mean ( �̅� ), were 

calculated as follows: 
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where, �̅�  indicates the mean of the 𝑥𝑖  [25, 26]. Hjorth 

parameters are defined by three descriptors, i.e., activity (A), 

mobility (M), and complexity (C), which, respectively, are 

calculated as follows:  

 

𝐴 =
∑ (𝑥𝑖 −𝑁

𝑖=1 �̅�)2

𝑁
 (8) 

 

𝑀 =
√∑ (𝑥�̇� −𝑁

𝑖=1 �̅̇�)2

𝑁

√𝐴
 

(9) 

 

𝐶 =
𝑀(�̇�)

𝑀(𝑥)
 (10) 

 

where, �̇� and �̅̇� denote the first derivative of x and the mean of 

the first derivative of x, respectively [27]. 

A raw EEG trial, xi, can be written as an AR model in the 

following equation: 

 

𝑥𝑖 = 𝐴1𝑥(𝑖−1) + 𝐴2𝑥(𝑖−2) + ⋯ + 𝐴𝑝𝑥(𝑖−𝑝) + 𝑒𝑖 (11) 

 

where, A1, A2…, Ap are the AR model parameters, p is the AR 

model order, i is an integer that represents discrete time 

samples of the EEG signal, and ei is a white noise, which has 

zero mean and variance [28]. The forward–backward method 

was used to calculate the AR model parameter. In this study, 

the predicted AR model parameters were selected as features. 

It is worthwhile to note that p was determined as 5 based on 

the cross-validation process on training set. 

 

2.3 Classification 

 

In this study, the proposed method was tested by k-NN and 

NB classifiers. Although the k-NN classifier is called a “lazy 

algorithm,” it is also an easy algorithm to implement, highly 

efficient, and useful in solving multilabel machine-learning 

problems [29]. Based on the distance metric and k parameter, 

which indicates k-nearest data points (neighbors) in the training 

feature space, it determines the label of a test trial. A simple 

example for the k-NN classifier is illustrated in Figure 2, which 

shows 2D sample feature space, which are representations of 

four classes of data. Let’s consider in this case k=5. The 

unlabeled test trial (*) would be labeled by the category of the 

“Class 4,” because three out of its five closest data points are 

“Class 4.” Note that the k parameter can be up to the total 

number of trials of a class, which includes the lowest number 

of trials among other classes. For example, in Figure 2, the k 

parameter can be up to 7 because Class 1 includes the lowest 

number of trials as 7 among other classes. 

 

 
 

Figure 2. Example for the k-NN classifier 

 

It should be noted that we implemented the leave-one-out 

cross-validation technique in the training stage. Because it uses 

the training data set well and avoids the problems of random 

selections. In addition to this, because the number of trials is 

limited, we used leave-one-out cross-validation technique to 

reveal the most suitable value of k, which achieves the highest 

CA performance in training set. It should be emphasized that, 

since the lowest number of trials in a class in the training set 

was equal to 8, the biggest possible value of k was set to 8. 

In addition to k-NN, we also applied an NB classifier, which 

is a probabilistic technique and is mostly used in the literature. 

NB considers training feature space and applies Bayes’ 

theorem with naïve independence assumptions [30]. The class 

of an unknown trial is probabilistically calculated by the NB 

using the available training feature space to predict the most 

probable class. The highest probable class FNB of an unknown 

trial with the conjunction M=m1, m2, ..., mn was calculated by: 

 

𝐹𝑁𝐵=arg  max
𝑓𝜖𝐹

𝑝(𝑓\𝑀) (12) 

 

It should be noted that we calculated the CA metric to 

evaluate the performance of the classifiers as given in Eq. (13). 

In this equation, CCT and TNT indicate the correctly classified 

EEG trials and the total number of considered trials, 

respectively:  

 

𝐶𝐴 =
𝐶𝐶𝑇

𝑇𝑁𝑇
 (13) 

 

 

3. RESULTS 

 

In this study, the brain reactions during smelling of V, LF, C, 

and R odors in EO & EC conditions were classified for the 

purpose of olfactory and subject identification. In order to show 

robustness of the proposed method, we ran it one hundred times 

by randomly splitting the training and testing data sets. Thus, 

we calculated an average CA and its standard deviation value 

for each feature-extraction method. 

 

3.1 Results of odor identification 

 

Odor identification average test CA results with their 

standard deviations of BP features are provided in Tables 2 and 

3 for the EO & EC conditions, respectively. The achieved 
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highest performances are given in bold format. As seen from 

the tables, in the eyes-open condition (EOC), the best CA was 

obtained by k-NN classifier for Subject 1 as 91.70% in 0-30 Hz. 

Similarly, the best CA was again achieved for Subject 1 in 0-

40 Hz band as 92.32% for the ECC. In terms of average CA 

over the subjects, it could be said that the k-NN classifier 

proved more successful than the NB classifier. In EO & EC 

conditions, the highest classification accuracies were achieved 

by k-NN classifier in terms of average CA over the subjects. 

They were obtained in EO & EC conditions as 76.19% and 

77.89%, respectively.  

For the EOC, the average test CA results, with their standard 

deviations of statistical data, Hjorth parameters, and AR model 

features, are provided in Figure 3(a), Figure 3(b), and Figure 

3(c), respectively; for the ECC, they are, respectively, given in 

Figure 4(a), Figure 4(b), and Figure 4(c). Note that the lines 

above the bars represent the standard deviations; further, in 

each subfigure the last two bars show the average test CA 

values over the subjects. Based on the subfigures given in 

Figure 3, it can be obviously said that statistical features 

achieved better performance for EOC compared with the 

results of the Hjorth parameters and AR model features. The 

highest CA was obtained for Subject 2 as 92.61% with 

statistical features using an NB classifier. In terms of the 

average CA values over the subjects, the NB classifier also 

achieved the highest performance for statistical features as 

76.16%. On the other hand, the highest performance for Hjorth 

parameters and AR model features were obtained as 50.77% 

(with k-NN) and 48.69% (with NB), respectively.  

As shown in the subfigures of Figure 4, AR model features 

achieved better performance for ECC compared with the 

results of Hjorth parameters and statistical features. The highest 

CA was achieved for Subject 1 as 96.94% with AR model 

features using a k-NN classifier. In terms of the average CA 

values over the subjects, the k-NN classifier also achieved the 

highest performance for AR model features as 81.08%. On the 

other hand, the highest performance for statistical and Hjorth 

parameter features were obtained as 75.75% (with k-NN) and 

44.97% (with NB), respectively.  

Based on the average CA values over the subjects, it can be 

concluded that, for the EOC, the BP in 0-40 Hz with a k-NN 

classifier provided the highest performance. On the other hand, 

for the ECC AR model features achieved the best performance 

in terms of the average CA values over the subjects. On the 

contrary, the worst performances of EO & EC conditions were 

obtained with Hjorth parameter features. Individually, the 

proposed best performances of each subjects are summarized 

in Table 4. 

 

 
 

Figure 3. Results of statistical data, Hjorth parameters, and AR model features in the EOC. (a) Results of statistical features.  

(b) Results of Hjorth parameter features. (c) Results of AR model features 

 

 
 

Figure 4. Results of statistical data, Hjorth parameters, and AR model features. (a) Results of statistical features.  

(b) Results of Hjorth parameter features. (c) Results of AR model features 

 

Table 2. Results of band power features in the EOC 

 
 Band Power Features 

0-30 Hz 0-40 Hz 0-50 Hz 

k-NN NB k-NN NB k-NN NB 

S1 91.70±4.3 71.38±7.0 85.32±5.6 72.81±7.1 74.38±5.8 59.38±7.7 

S2 74.31±5.9 70.64±6.3 77.03±4.2 70.86±5.9 67.64±5.3 59.83±5.4 

S3 63.43±5.4 59.11±5.7 59.73±5.8 56.46±6.3 54.93±6.8 43.73±5.8 

S4 68.93±6.3 61.68±6.5 77.67±5.0 64.29±7.9 84.91±4.6 64.18±8.7 

S5 76.16±5.3 70.65±7.1 81.22±5.8 67.65±6.0 73.54±5.9 55.65±6.4 

Avg. 74.91±5.4 66.69±6.5 76.19±5.3 66.41±6.6 71.08±5.7 56.55±6.8 
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Table 3. Results of band power features in the ECC 

 
 Band Power Features 

0-30 Hz 0-40 Hz 0-50 Hz 

k-NN NB k-NN NB k-NN NB 

S1 90.20±3.6 74.14±6.6 92.32±4.2 76.76±7.2 78.49±6.4 60.73±7.5 

S2 82.67±4.5 75.90±5.2 79.49±5.0 75.02±6.2 69.85±4.8 64.95±6.4 

S3 69.00±5.8 59.48±7.5 50.10±4.8 46.33±6.9 47.82±6.2 40.62±7.0 

S4 76.02±4.5 62.55±8.9 77.25±4.5 64.75±5.4 71.20±5.4 56.07±6.9 

S5 71.55±5.5 48.08±6.7 69.43±6.3 46.40±5.8 64.44±6.4 48.63±6.9 

Avg. 77.89±4.8 64.03±7.0 73.72±5.0 61.85±6.3 66.36±5.8 54.20±6.9 

 

Table 4. Best performances of the proposed method 

 
 Eyes Open Eyes Closed 

CA Features Classifier CA Features Classifier 

S1 91.70±4.3 BP k-NN 96.94±3.2 AR  k-NN 

S2 92.61±5.3 Statistical NB 93.80±2.9 Statistical k-NN 

S3 66.05±8.7 Statistical NB 73.21±5.8 Statistical k-NN 

S4 81.76±5.7 Statistical NB 85.50±4.5 AR  k-NN 

S5 81.22±5.8 BP k-NN 75.20±5.9 AR  k-NN 

Avg. 82.67±6.0 - - 84.93±4.5 - - 

 

Table 5. Subject identification results 

 
 Eyes Open Eyes Closed 

Feature k-NN NB k-NN NB 

BP (0-30 Hz) 97.48±1.21 69.04±3.26 98.57±0.87 81.45±2.88 

BP (0-40 Hz) 95.82±1.33 69.07 ±2.58 97.00±0.97 73.43 ±3.51 

BP (0-50 Hz) 93.75±1.53 93.42±1.66 72.70 ±2.48 68.63±3.47 

AR 61.47±3.35 59.53 ±3.04 97.72±1.17 88.09±2.00 

Statistical 75.75±2.68 74.78±3.01 99.34±0.54 92.79±1.72 

Hjorth 57.16±2.33 52.95 ±2.34 47.68 ±2.57 58.87±2.61 

 

3.2 Results of subject identification 

 

The subject identification average CA test results with their 

standard deviations of each feature are provided in Table 5. For 

biometry results, we achieved the highest CA value with 

statistical features and k-NN classifiers as 99.34% in ECC. In 

this condition, the worst CA was calculated with Hjorth 

parameter features as 47.68%, which is under the random 

determination value of 50%. It is obviously seen that, except 

for this result, k-NN performed better than NB in other features 

for both EOC and ECC. The best CA was obtained for BP (0–

30 Hz) features as 97.48% in EOC. For the most optimal 

achievements of EO&EC conditions, the standard deviations 

were calculated as 1.21 and 0.54, which verified the robustness 

of the proposed method. 

 

 

4. CONCLUSION  

 

In this paper, the responses of the brain to V, LF, C, and R 

odors were analyzed in terms of odor and subject identification. 

In order to show its performance and robustness, the proposed 

method was run one hundred times, and the average 

classification accuracies and their standard deviations were 

calculated. The higher CA and smaller standard deviation 

values proved that the proposed method was successful and 

stable.  

In terms of the odor-identification approach, from the 

subject-independent point of view, it can be concluded that, 

while the band power features in 0-40 Hz with k-NN classifier 

provides better performance in EOC, the AR model features 

with k-NN classifier achieved better performance in ECC. 

Compared with the subject-independent results, it can be 

obviously said that the subject-specific parameters, including 

feature extraction and classifier method, remarkably improved 

the CA performances. Moreover, based on the results of BP 

features, it is worthwhile to note that electrical brain activity 

has a nonstationary property and its response to the stimulus 

generally differs from subject to subject. Therefore, it can be 

said that each subject might have one’s own dominant 

frequency band for extracting discriminative attributes. Hence, 

in this study, we proposed a subject-specific model for 

classifying V, LF, C, and R odors. 

While the minimum difference between EO&EC conditions 

was obtained for Subject 2 as 1.19%, the maximum difference 

was calculated for Subject 3 as 7.16%. On the other hand, since 

the EEG signals of Subject 1 were the most discriminative, it 

can be interpreted that his/her motivation to the task is higher 

or his/her olfactory system works better. The opposite can be 

said for Subject 3. Based on the achieved average CA rates, we 

improved the study of Aydemir (2017) [17], 5.11% and 2.82% 

for EO & EC conditions, respectively. 

In terms of the performance of feature extraction methods, it 

can be concluded that statistical features generally provide 

higher performances for many cases than other methods. 

Moreover, the computational complexity is easy and not time-

consuming, which takes only 0.04 s for extraction statistical 

features from a trial. Further, AR model and BP features also 

achieved better performance in some cases. However, Hjorth 

parameter features do not yield satisfactory results. On the 

other hand, the obtained classification results proved that the 

performance of the k-NN classifier is better than that of the NB 

classifier. 

The overall results verified that the olfactory response of the 
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human brain in EO & EC conditions can be reliably used for 

odor and subject identifications. The odor-identification 

model offers to measure the response of the brain. Furthermore, 

it can help in quantifying olfactory loss for clinical purposes. 

On the other hand, because of increased security and privacy, 

the proposed method is a potentially good alternative for EEG-

based biometry for person identification and authentication, 

especially compared with conventional biometric measures 

such as fingerprint, palm, iris, or voice. We believe that, due 

to the unique nature of EEG and its portability, EEG-based 

biometric systems can be easily employed with highly reliable 

performances in the real applications. 
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