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The present study tends to investigate unsteady MHD flow of a Casson fluid near a vertical 

oscillating plate through a non-Darcy porous medium. The impact of Joule heating, viscous 

dissipation, thermo-diffusion and Newtonian heating are taken into consideration. 

Incorporating dimensionless variables and parameters, governing non-dimensional equations 

are solved by implicit finite difference technique of Crank-Nicolson type. Numerical 

simulation for the fluid velocity, fluid temperature and species concentration are carried out 

for a range of values of regulatory flow parameters that characterize the physics of the flow 

graphically whereas skin friction coefficient, Nusselt number and Sherwood number for the 

several values of the emerging flow parameters at the plate are presented in tabular form. 

One of the significant findings of this analysis include that an intensification in the 

Newtonian heating effect causes a downfall in the rate of heat transfer at the plate whereas 

another important outcome of the present study is that the concentration of species will 

gradually increase when we consider higher order chemical reactions, but the incremental 

effect will almost extinguish after a certain level. The present investigation may have 

bearings on several engineering processes such as glass blowing, paper production, extrusion 

of plastic sheet, annealing and tinning of copper wire, spinning of fibers and continuous 

casting of metals. 
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1. INTRODUCTION

The non-Newtonian fluids possess the property of non-

linear relationship between the shear rate and the shear stress 

unlike the Newtonian fluids which have a very limited 

application. This model of Newtonian fluid is unable to 

describe various facts noticed for the fluids involved in 

nature and other technological use such as soap, paints, 

emulsions, polymer solutions and so on. Nowadays, non-

Newtonian fluid mechanics is throwing a special challenge to 

mathematicians, physicists and engineers. Rheological 

properties of non-Newtonian fluids are defined by their 

constitutive equations. There is a popular non-Newtonian 

fluid, proposed by Casson [1] for the forecast of flow 

characteristic of pigment-oil suspension and the model is 

known as Casson model. Casson fluid belongs to the class of 

pseudo plastic fluids which is also a type of shear thinning 

fluid. Non-Newtonian fluids depend on shear rate history. 

The shear thinning fluids are more viscous than Newtonian 

fluids at low shear rates while at high shear rates they are less 

viscous. So, the study of Casson fluid has found outspread 

applications in various chemical, pharmaceutical and 

cosmetic industries such as in the production of several 

chemicals, oil, gas, syrup, juice, cleanser etc. In the context 

of fluid mechanics, the study of Casson fluid flow was 

investigated by several scientists, engineers, mathematicians 

and researchers depending upon different situations. Studies 

based on Casson fluid flow are due to Khalid et al. [2], 

Kataria and Patel [3], Hussanan et al. [4] and Seth et al. [5].     

The consequence of thermal radiation finds important 

applications in various scientific and industrial processes 

such as electrical power generation, furnace design, glass 

production, design of fins etc. Keeping in mind its 

significance, Makinde [6] described the behavior of transient 

MHD flow along a vertical plate of a thermally radiating 

fluid. Das et al. [7] have researched hydromagnetic flow of a 

Casson fluid near a vertical oscillating plate. Some other 

research works in this context are due to Seth et al. [8], Ali et 

al. [9], Singh and Kumar [10], etc.    

It may be worthy to mention that when the considered 

fluid is sufficiently viscous, the consequence of viscous 

dissipation becomes very much important in heat transfer 

analysis. Significant applications of this effect can be found 

in food processing, instrumentation, tribology, lubrication, 

polymer manufacturing etc. Thus, keeping in mind such a 

fruitful impact of viscous dissipation, several leading 

research works have been carried out. Recently, the effect of 

viscous dissipation in case of a chemically reactive mixed 

convection MHD Casson nanofluid flow over a permeable 

stretching sheet was explored by Ibrahim et al. [11]. Apart 

from viscous dissipation, a volumetric heat source viz. Joule 

heating, also appears into the scenario in case of 

hydromagnetic flows. In particular, mutual influence of Joule 

heating and viscous dissipation finds applications in heat-

treated materials traveling between a wind-up roll or 

materials produced by extrusion and feed roll. Mahatha et al. 

[12] utilized Spectral Relaxation Method (SRM) to analyze

the two dimension MHD boundary layer Newtonian
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nanofluid flow over stretching sheet considering both Joule 

and viscous dissipations whereas Hayat et al. [13] discussed 

the effects of viscous and Joule dissipation including 

Newtonian heating of Williamson fluid past over the 

stretching sheet. Singh and Kumar [14] examined the impact 

of thermal radiation on mixed convection flow of a micro-

polar fluid with heat generation and viscous dissipation. 

Some of the relevant research investigations are by Yih [15], 

Abo-Eldahab and El Aziz [16], Jaber [17], Singh and Kumar 

[18] and Seth et al. [19].      

However, in all the above mentioned research 

investigations, the effect of thermo-diffusion has been 

generally neglected. But, when a flux in concentration is 

induced due to gradient in temperature, this effect becomes 

more significant. The study of Soret effect finds several 

important applications in metal casting industry, refinement 

of crude oil etc. In the space science, NASA has created a 

laser spectroscopy instrument called the SCOF/ FACET 

interferometer that can measure Soret phenomena which can 

be used to study thermodynamic effects in the space. Eckert 

and Drake [20] discussed the consequence of Soret effect in 

the cases concerning isotope separation and in the mixing of 

gasses having very light molecular weight (He, H2) and of 

medium molecular weight (air, N2). Seth et al. [21] explored 

the Soret and Dufour effects in natural convection flow over 

an inclined stretching sheet. Jha and Singh [22] examined the 

effect of thermo-diffusion on transient free convection 

hydromagnetic flow along an impulsively started infinite 

vertical plate. Other remarkable research works are due to 

Reddy and Rao [23], Seth et al. [24] and Kataria and Patel 

[25].   

Most of the research studies are generally based on the 

problems of steady case governed by Darcy model. Darcy’s 

law is valid for viscous flow and if Reynolds number is less 

than unity for any flow. Darcy model is not acceptable for the 

porous media which have large pore radius because the 

inertial impact of porous medium is ignored by Darcy model. 

Keeping in view, the importance of such studies Kaviany 

[26] investigated natural convection flow in non-Darcy 

porous medium within concentric horizontal cylinders. Yang 

et al. [27] have analyzed numerically flow through non-

Darcy porous medium using iterative MAC (Marker and 

Cell) and chorin pressure iterative technique. Related 

noticeable studies are due to Mahmoud [28] and Olanrewaju 

[29]. 

The study of mass transfer flow taking into account the 

chemical reaction has found numerous important applications 

in various hydrometallurgical and chemical industries such as 

exothermic chemical reaction, food processing, production of 

glassware and ceramics, undergoing endothermic and 

catalytic chemical reactors etc. There are two major 

categories of chemical reactions, viz. homogeneous and 

heterogeneous chemical reactions. Some fruitful research 

works in this context are due to Refs. [30-34]. 

The current work intents to analyze the influence of 

viscous dissipation, thermo-diffusion and Joule heating on a 

transient MHD double diffusive flow of a Casson fluid along 

an oscillating vertical flat plate which is embedded in a non-

Darcy porous medium. Darcy-Forchheimer Model is 

considered for non-Darcy porous medium which is actually 

an upgradation of the original Darcy law by adding the 

quadratic inertial term. In order to find the numerical 

solutions an implicit finite difference scheme of Crank-

Nicolson type is implemented. Numerical findings are well 

demonstrated either by graphs or in tabular form under the 

action of various regulatory flow parameters. 

 

 

2. FLOW ANALYSIS 

 

Consider transient hydromagnetic flow of an electrically 

conducting, heat radiating, incompressible and chemically 

reactive Casson fluid along a vertical oscillating flat plate 

embedded in a non-Darcy porous medium under the 

influence of thermo-diffusion, Joule heating and viscous 

dissipation. A cartesian coordinate system is selected to 

represent the flow formation of the problem. The oscillating 

plate is in upward direction along the 𝑥 ′-axis, the alignment 

of 𝑦′-axis is perpendicular to the plane of the plate and 𝑧 ′-

axis is chosen normally to 𝑥 ′𝑦′ -plane. A magnetic field of 

uniform strength 𝐵0 is applied transversely to the motion of 

the plate. Initially, there is no movement of both the fluid and 

the plate. At time 𝑡 ′ ≤ 0, the fluid is maintained at uniform 

species concentration 𝐶∞
′ and uniform temperature 𝑇∞

′ . At time 

𝑡 ′ > 0,  the plate begins to oscillate in 𝑥 ′𝑧 ′ -plane with the 

velocity 𝑢′ = 𝑈0 𝑐𝑜𝑠(𝜔′𝑡 ′),  where 𝜔′𝑡 ′  and 𝑈0  denote phase 

angle and the amplitude of the plate oscillations respectively. 

The heat transfer characteristics of the present problem is 

governed by Newtonian heating condition in which heat 

transfer from the oscillating plate with a finite heat capacity, 

is directly proportional to plate temperature 𝑇 ′.  Moreover, 

species concentration is elevated from 𝐶∞
′  to 𝐶𝑤

′ .  A 

homogenous chemical reaction of order n  is assumed to 

occur at a constant rate 𝐾𝑟
′  between the fluid and the 

dispersing species. The magnetic field induced by the 

movement of the liquid is considered to be small compared to 

the applied one and can therefore be ignored. Since the plate 

has an infinite extent in 𝑧 ′and 𝑥 ′ directions, all the governing 

variables depends on 𝑡 ′ and 𝑦 ′except pressure. The schematic 

theme of the model is illustrated in Figure 1. 

The rheological equation for the state of the Cauchy stress 

tensor for the isotropic and incompressible Casson fluid flow 

can be written in the form [1] 

 

2 e , ,
2

2 e , ,
2

y

B ij c

ij

y

B ij c

c

P

P

  




  


  
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  
= 

 
+    

                                                (1) 

 

where 𝑃𝑦  denotes the yield stress, 𝜙  is the product of the 

component of deformation rate with itself, namely, 𝜙 =
𝑒𝑖𝑗𝑒𝑖𝑗,𝑒𝑖𝑗  indicates the (𝑖, 𝑗)th component of the deformation 

rate, 𝜙𝑐 is the critical value of 𝜙 based on the non-Newtonian 

model, 𝜏𝑖𝑗  is the stress tensor of the fluid, and 𝜇𝐵 is the 

plastic dynamic viscosity of the Casson fluid. From (1) we 

obtain (for 𝜙 < 𝜙𝑐) 

 

1
2 1 ,ij B ije 



 
= + 

                                                                   (2) 

 

where 𝛼 =
𝜇𝐵√2𝜋𝑐

𝑃𝑦
 denotes the Casson fluid parameter. The 

nature of non-Newtonian fluid vanishes and it behaves as 

Newtonian fluid when 𝛼 → ∞.  
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Figure 1. Schematic theme of the model 

 

Under the above assumptions, the governing equations of 

momentum, energy and concentration of the fluid flow, are 

given in the form [7, 25, 35]  
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The appropriate initial and boundary conditions for the 

governing equations are: 

 

0, ,u T T C C 
    = = =

 for all 
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0, ,u T T C C 
    → → →

  as 
y → 

       for 0t                  (6c) 

 

where ℎ𝑠 is the heat transfer coefficient.  

The radiative flux vector 𝑞𝑟
′  under Rosseland 

approximation is as follows: 

 
44
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3

r

T
q

k y
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where 𝜎∗  and 𝑘∗ denote Stefan-Boltzmann constant and 

Rosseland mean absorption coefficient respectively. 

Assuming that the difference in temperature within the flow 

is small enough, 𝑇 ′4 becomes linear function of temperature, 

by carrying out Taylor series expansion of 𝑇 ′4 about the free 

stream temperature 𝑇∞
′  and ignoring the terms beyond the first 

order. Thus    

 
4 3 44 3 .T T T T 
    −

                                                                 (8) 

 

On the use of Eqs. (7) and (8), Eq. (4) becomes     
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To convert dimensional Eqs. (3), (5) and (9) into non-

dimensional form, following dimensionless parameters and 

variables are introduced:        
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Incorporating dimensionless variables (10) into Eqs. (3), (5) 

and (9), we obtain the governing non-dimensional equations 

as:  
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The associated initial and boundary conditions are as 

following: 
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0, 0, 0u T C→ → →
 as y→     for     0t                     (14c) 

 

where 𝛾 = ℎ𝑠
𝜈

𝑈0
 is the Newtonian heating parameter. 

 

2.1 Skin friction coefficient, Nusselt number and Sherwod 

number 

 

Physical quantities of engineering interests such as skin 

friction coefficient 𝜏, Nusselt number 𝑁𝑢 [36] and Sherwood 

number 𝑆ℎ are given by  
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where 𝜏𝑤 ,  𝑞𝑤  and 𝑞𝑚  are, respectively, the plate surface 

shear stress, heat flux from the plate surface and mass flux 

from the plate, which are given by 
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Now, using non-dimensional variables and parameters 

given by Eq. (10) we obtain skin friction coefficient, Nusselt 

number and Sherwood number in dimensionless form as  
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3. METHOD OF SOLUTION 

 

Equations (11) - (13), being coupled nonlinear partial 

differential equations, restrict us to obtain analytical or exact 

solutions. So we take the help of numerical methods in order 

to solve these equations. Finite difference method is one of 

the most frequently used numerical techniques, which is 

comparatively simple, precise and effective and has better 

stability characteristics. We obtain solutions of these 

equations by implicit scheme of Crank-Nicolson type and 

another essential feature of this method is the iterative 

procedure and a tri-diagonal matrix operation. The equivalent 

finite difference scheme for equations (11) to (13) is as 

follows: 
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The associated initial and boundary conditions take the 

following form: 

 
0 0 00, 0, 0i i iu T C= = =
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The region considered here is in the form of a rectangular 

grid where grid lines are parallel to the coordinate axes with 

spacing and 𝛥𝑦 in time and space directions respectively. The 

grid points are specified by 𝑦𝑖 =
𝑖𝛥𝑦, 𝑖 = 1,2,3, . . . , 𝑀 − 1 and 𝑡𝑗 = 𝑗𝛥𝑡, 𝑗 = 1,2,3, . . . , 𝑁.  The 

spatial nodes on the 𝑗th  time grid form the 𝑗th  level. For 

computation purpose, the physical domain is converted into 

computational domain bounded by the lines 𝑦 = 0  and 

max 7,y =
 where 𝑦∞ corresponds to 𝑦 → ∞ which is enough to 

satisfy the asymptotic free stream. After experiment with 

several sets of grid sizes, the grid size in y -direction is taken 

as 𝛥𝑦 = ℎ = 0.025  and time step 𝛥𝑡 = 0.01.  The complete 

solution of discretized equations (18) to (20) proceed as 

follows: 

1. Knowing the values of 𝐶, 𝑇  and 𝑢  at all points of the 

grid at a time 𝑡 = 𝑗 from the initial condition, we find 𝑇 and 

𝐶 at time 𝑡 = 𝑗 + 1  using the previous level of time ′𝑗′ 
calculated as follows via solving tridiagonal system of 

equations as explained by Carnahan et al [37]. 

2. Knowing the values of 𝑇and 𝐶  at times 𝑡 = 𝑗 and 𝑡 =
𝑗 + 1 and 𝑢  at time 𝑡 = 𝑗, the values of 𝑢  at 𝑡 = 𝑗 + 1 time 

level are calculated in similar manner. This process is 

repeated to obtain a solution to the desired time 𝑡.  
The Crank-Nicolson technique has a truncation error of 

𝑂{(𝛥𝑦)2 + (𝛥𝑡)2}, that tends to zero as 𝛥𝑦  and 𝛥𝑡  tend to 

zero. This method is unconditionally stable [38]. 
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Compatibility and stability together provide a convergence 

scheme.  

 

3.1 Grid independence analysis 

 

In order to obtain accuracy, the grid independence analysis 

has been carried out. The developed code has been executed 

taking different mesh (element) sizes. For this we have 

calculated the values of skin friction coefficient 𝜏 under the 

influence of Casson parameter 𝛼 and permeability parameter 

𝐾𝑝 taking mesh sizes ℎ = 0.10, ℎ = 0.05, ℎ = 0.025 and ℎ =

0.01 and keeping the value of 𝛥𝑡 fixed at 𝛥𝑡 = 0.01 and the 

results are presented in Table 1. From Table 1 it is found that 

when we make a reduction in the mesh size by 50% from the 

initial mesh size ℎ = 0.10,  the numerical values of skin 

friction coefficient become similar upto second decimal place 

with the previous one. In the next step, when the mesh size is 

again lowered to ℎ = 0.025, a resemblance in the values of 

skin friction coefficient is noticed upto fourth decimal place. 

Further, if we consider the mesh size ℎ = 0.01, we observe 

that the numerical values of skin friction coefficient become 

convergent upto sixth decimal place to those obtained atℎ =
0.025.  Hence, we can conclude that at ℎ = 0.025  the 

numerical solutions become stable and turn out to be 

independent of the size of the mesh upto sixth decimal place.               

 

Table 1. Comparison of values of skin friction coefficient τ for different mesh sizes 

 

  pK
 .0 10=h  .0 05=h  .0 025=h  .0 01=h  

0.2 
0.2 0.62739541 0.62695498 0.62691364 0.62691358 

0.5 0.16620469 0.16589831 0.16587992 0.16587984 

0.4 
0.2 0.77927836 0.77908712 0.77906543 0.77906541 

0.5 0.31924667 0.31894793 0.31891657 0.31891654 

 

3.2 Validation of numerical result 

 
 

Figure 2. Comparison of temperature profile with Das et al. 

[7] for different values of 𝑡 

 

 
 

Figure 3. Comparison of concentration profile with Das et al. 

[7] for different values of 𝑆𝑐 

To validate our developed code, the numerical solutions 

are compared from the used scheme with the exact solutions 

found by Das et al. [7] for several values of 𝑡  and 𝑆𝑐  by 

taking 𝛤 = 𝐸𝑐 = 𝑆𝑟 = 𝐾𝑝
−1 = 0 and 𝑛 = 1.  The exact 

solutions obtained by Das et al. [7] are presented by solid 

straight lines while the numerical solutions obtained by our 

developed code of are presented by solid-circled lines. As 

one can see from Figs. 2 and 3 that there is an excellent 

agreement within the exact solutions obtained by Das et al. [7] 

and the numerical solutions computed in the present study. 

 

 

4. RESULTS AND DISCUSSION 

 

To obtain the physical vision of the considered model, 

comprehensive numerical calculations have been performed. 

The graphical representations for fluid velocity, fluid 

temperature and species concentration are shown in Figs. 4 to 

18 for different values of regulatory flow parameters that 

characterize the physics of the flow. The quantities of 

engineering interests i.e. skin friction coefficient, Nusselt 

number and Sherwood number for different values of 

regulatory flow parameters are presented in Tables 2 to 4. 

The numerical calculations are performed for all the 

governing flow parameters by selecting default values 𝛼 =
0.4, 𝐾𝑝 = 0.2, 𝐺𝑐 = 2, 𝐺𝑟 = 3, 𝛤 = 0.2, 𝑃𝑟𝑒𝑓𝑓 = 3, 𝐸𝑐 = 0.1, 

𝑡 = 0.7,  𝛾 = 0.5,  𝑆𝑟 = 0.5,  𝐾𝑟 = 0.5,  𝑛 = 1  and 𝜔𝑡 = 𝜋/4, 
until otherwise specified particularly.  

Figures 4 to 6 elucidate the three-dimensional plot for the 

velocity, temperature and concentration profiles respectively. 

These profiles are drawn due to the variation in time. As one 

can observe from Figure 4 that velocity profiles are drawn for 

a maximum time period of t=0.7. This is because with the 

gradual increment in the time we can notice that the velocity 

profile tends to become convergent. From Figure 5 it can be 

perceived that curves representing temperature of the fluid 

start from different points. This trend is because of 

Newtonian heating condition. In the same way from Figure 6 

we can conclude that species concentration of the fluid is also 

maximum when t=0.7and then after a certain time the 

solutions start to converge.   
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Figure 4. Three-dimensional plot of velocity profile for 

variation of .t  

 

 
 

Figure 5. Three-dimensional plot of temperature profile for 

variation of .t  

 

 
 

Figure 6. Three-dimensional plot of concentration profile for 

variation of .t  

 

The behavior of fluid velocity under the influence of 

regulatory flow parameters such as permeability parameter 

𝐾𝑝, Casson parameter 𝛼, thermal Grashof number 𝐺𝑟 , solutal 

Grashof number 𝐺𝑐 , and local inertia parameter (Forchheimer 

number)  are depicted in Figs. 4 to 8, respectively. Figure 4 

portrays the impact of Casson parameter 𝛼 on the velocity 

field. It is perceived that velocity of the fluid decreases with 

the increment in 𝛼. This phenomena can be attributed to the 

fact that a rise in the value of 𝛼  means increment in the 

plastic dynamic viscosity of the Casson fluid 𝜇𝐵,  thereby 

producing a resistance to the fluid flow and as a result, 

velocity of the fluid gets reduced.  Figure 5 describes the 

effect of permeability parameter 𝐾𝑝, on the velocity field. As 

we see that the velocity is getting increased with the 

enhancement in permeability parameter. The physics behind 

this fact can be justified, as an increment in permeability 

means bigger pore sizes within the porous medium. Thus an 

increasing fluid velocity is observed. The effects of thermal 

and solutal Grashof numbers 𝐺𝑟  and 𝐺𝑐  are demonstrated in 

Figs. 6 and 7 respectively. The trend of the graphs in Figs. 6 

and 7 indicate that velocity increases as we increase values of 

both 𝐺𝑟  and 𝐺𝑐 . Physically, this is acceptable because 𝐺𝑟  is 

defined as the ratio of thermal buoyancy force to viscous 

force and 𝐺𝑐 as the ratio of solutal buoyancy force to viscous 

force. So, growing values of 𝐺𝑟  and 𝐺𝑐  make thermal and 

solutal buoyancy forces stronger, which consequently 

accelerate the velocity of the fluid. Figure 8 displays the 

impact of Forchheimer parameter   on the velocity profile. 

When 𝛤 = 0,  it represents a Darcy porous media. An 

enhancement in the Forchheimer parameter reduces the fluid 

velocity due to increase in the quadratic drag.  

In order to highlight the impact of regulatory flow 

parameters: Eckert number 𝐸𝑐 , effective Prandtl number [39] 

𝑃𝑟𝑒𝑓𝑓 =
𝑃𝑟

1+𝑁
,  Newtonian heating parameter 𝛾  and time 𝑡  on 

fluid temperature 𝑇,  we have plotted the graphs of fluid 

temperature versus these parameters, which are shown in 

Figs. 9 to 12. Figure 9 elucidates that the increasing value of 

effective Prandtl number 
Preff  reduces the temperature of the 

fluid. Since 𝑃𝑟𝑒𝑓𝑓 = 𝑃𝑟/( 1 + 𝑁),  𝑃𝑟𝑒𝑓𝑓  increases when 

𝑃𝑟  increases whereas 𝑃𝑟𝑒𝑓𝑓 decreases when 𝑁increases. 

An enhancement in 𝑃𝑟  weakens the thermal diffusivity of the 

fluid, hence the fluid temperature is getting decreased. One 

can perceive from Figure 9 that fluid temperature increases 

on decreasing 𝑃𝑟𝑒𝑓𝑓 . Thus we arrive to conclusion that fluid 

temperature is enhanced due to strengthening of thermal 

radiation. A gradual elevation in fluid temperature T is noted 

with the enhancement in Eckert number, as observed from 

Figure 10. Eckert number is expressed as the relationship 

between the flow of kinetic energy and enthalpy difference of 

boundary layer. 𝐸𝑐 signifies the conversion of kinetic energy 

into internal energy, generated by the work done against the 

viscous fluid stresses. Therefore, higher viscous dissipative 

heat results in enhanced temperature of the fluid. Figure 11 

portrays the impact of Newtonian heating parameter 𝛾 on the 

temperature profile. Here one can observe that Newtonian 

heating parameter tends to increase the fluid temperature. As 

𝛾 → ∞, the Newtonian heating condition becomes prescribed 

wall temperature case. Figure 12 shows that with the progress 

of time 𝑡, fluid temperature gets enhanced.   

The graphical results are described for concentration 

profiles 𝐶  against Soret number 𝑆𝑟 ,  chemical reaction 

parameter 𝐾𝑟 , order of chemical reaction 𝑛and time 𝑡. Figure 

13 reflects thermo-diffusion effect on species concentration. 

One can observe that Soret number 𝑆𝑟  uplifts the 

concentration of the species. Physical clarification of this fact 

is that a mass flux from lower to higher species concentration 
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driven by temperature gradient is produced by Soret effect 

and that is why the diffusive species with higher values of 

Soret number corresponds to thicker concentration boundary 

layer. Figure 14 implies that a rise in the positive values of 

chemical reaction parameter 𝐾𝑟  results in a significant 

downfall of species concentration. The central reason behind 

this fact is that positive 𝐾𝑟  represents the destructive kind of 

chemical reaction. Thus an enhancement in positive values of 

𝐾𝑟  decreases the species concentration with a healthier rate 

which in consequence produces a retarding effect on 

concentration distribution. It is evident from Figs. 15 and 16 

that species concentration is an increasing function of both n

and 𝑡. This suggests that concentration of the species will be 

gradually increasing as we consider higher order chemical 

reactions but the incremental effect almost die out after a 

certain level. Likewise, with the progress of time, an 

improvement in species concentration is observed.  To 

analyze the nature of physical quantities of interests viz. 

Sherwood number 𝑆ℎ, skin friction coefficient   and Nusselt 

number 𝑁𝑢  with respect to various governing parameters, 

Tables 2 to 4 have been prepared. Table 2 displays the 

numerical values of skin friction coefficient under the 

influence of 𝛼, 𝐾𝑝, 𝐺𝑟 , 𝐺𝑐  and 𝛤. It is evident from Table 2 

that there is an increment in the values of skin friction 

coefficient on increasing 𝛼 and 𝛤 whereas a reverse trend for 

skin friction coefficient is noted for 𝐾𝑝 , 𝐺𝑟  and 𝐺𝑐 .  This 

implies that Casson parameter and Forchheimer number have 

the tendency to elevate the skin friction coefficient whereas 

permeability parameter, thermal and solutal Grashof numbers 

tend to lower this physical quantity. Variation of Nusselt 

number 𝑁𝑢 are displayed in Table 3, for 𝑃𝑟𝑒𝑓𝑓 , 𝑡, 𝛾 and 𝐸𝑐 . It 

can be inferred from Table 3, that the rate of heat transfer at 

the plate is enhanced for increasing value of 𝑃𝑟𝑒𝑓𝑓  while 

an absolutely opposite trend is noticed for 𝑡, 𝛾 and 𝐸𝑐 . This 

signifies that Prandtl number and thermal radiation tend to 

rise the heat transfer rate at the plate while a downfall in this 

physical quantity occurs with the increment in Newtonian 

heating parameter, Eckert number and time. Table 4 portrays 

the behavior of Sherwood number with respect to 𝑆𝑟 , 𝐾𝑟  and 

𝑡.  From Table 4, one can notice that Sherwood number 

increases on increasing 𝐾𝑟  whereas an adverse effect is 

noticed in case of 𝑆𝑟  and 𝑡.  This suggests that chemical 

reaction parameter intensifies the rate of mass transfer at the 

plate while a decrement in the values of 𝑆ℎ is perceived on 

increment in Soret number and time. 

 

 
 

Figure 7. Influence of 𝛼 on fluid velocity 

 

 
 

Figure 8. Influence of 𝐾𝑝 on fluid velocity 

 
 

Figure 9. Influence of 𝐺𝑟  on fluid velocity 

 
 

Figure 10. Influence of 𝐺𝑐 on fluid velocity 

 
 

Figure 11. Influence of  on fluid velocity 
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Figure 12. Influence of 𝑃𝑟𝑒𝑓𝑓 on fluid temperature  

 
 

Figure 13. Influence of 𝐸𝑐 on fluid temperature 

 
 

Figure 14. Influence of 𝛾 on fluid temperature 

 
 

Figure 15. Influence of 𝑡 on fluid temperature 

 
 

Figure 16. Influence of 𝑆𝑟  on fluid concentration 

  
 

Figure 17. Influence of 𝐾𝑟  on fluid concentration  

 
 

Figure 18. Influence of 𝑛 on fluid concentration 

 
 

Figure 19. Influence of 𝑡 on fluid concentration 
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Table 2. Skin friction coefficient 𝜏 for differents values of 

regulatory flow parameter 

 
  pK

 rG
 cG

 
    

0.2 

0.4 

0.6 

 

0.2 

 

3 

 

2 

 

0.2 

3.88704208 

4.01464129 

4.19094113 

 

0.4 

0.1 

0.2 

0.5 

 

3 

 

2 

 

0.2 

5.65336650 

4.01464129 

2.41863134 

 

0.4 

 

0.2 

3 

5 

8 

 

2 

 

0.2 

4.01464129 

3.72198836 

3.27423418 

 

0.4 

 

0.2 

 

3 

2 

4 

6 

 

0.2 

4.01464129 

3.47584359 

2.93494351 

 

0.4 

 

0.2 

 

3 

 

2 

0.2 

0.4 

0.6 

4.01464129 

4.02568064 

4.03667082 

 

Table 3. Nusselt number 𝑁𝑢 for various values of regulatory 

flow parameters 

 

t  
  Preff  cE

 uN
 

0.3 

0.5 

0.7 

 

0.5 

 

3 

 

0.1 

3.22837666 

2.60946516 

2.29138066 

 

0.7 

0.1 

0.2 

0.5 

 

3 

 

0.1 

3.39849574 

3.02131142 

2.29138066 

 

0.7 

 

0.5 

1 

3 

5 

 

0.1 

2.03641453 

2.29138066 

2.33208074 

 

0.7 

 

0.5 

 

3 

0.1 

0.2 

0.5 

2.29138066 

1.82913637 

1.39620590 

 

Table 4. Sherwood number 𝑆ℎ for differents values of 

regulatory flow parameters  

 

rS
 rK

 t  hS
 

0.3 

0.5 

1 

 

0.5 

 

0.7 

0.58390597 

0.53380575 

0.40918457 

 

0.3 

0 

0.5 

1 

 

0.7 

0.46650980 

0.53380575 

0.68794317 

 

0.3 

 

0.5 

0.3 

0.5 

0.7 

0.84118512 

0.67079925 

0.53380575 

 

 

5. CONCLUSIONS 

 

In the present investigation, the numerical simulation of 

transient MHD flow of a Casson fluid with the consideration 

of Joule heating, viscous dissipation and thermo-diffusion 

near a moving infinite non-conducting oscillating vertical flat 

plate embedded in a non-Darcy porous medium is performed 

by implicit finite difference technique of Crank-Nicolson 

type. Noteworthy outcomes of this investigation are 

summarized as follows:  

• The three-dimensional plot for the velocity, 

temperature and concentration profiles explain 

completely to account for a certain level of time 

when the solution starts to converge.   

• Since Casson fluid parameter and local inertia 

parameter induce a resistance to the fluid flow, the 

fluid velocity gets lowered with the increment in the 

values of these parameters. On the other hand, an 

advancement in thermal and solutal Grashof 

numbers and permeability parameter lead to enhance 

the velocity of the fluid throughout the boundary 

layer region.   

• A significant downfall in fluid temperature is 

observed due to increase in effective Prandtl number 

whereas Newtonian heating parameter, Eckert 

number and time cause an elevation in the fluid 

temperature.  

• Species concentration of the fluid is reduced as we 

increase the values of chemical reaction parameter 

while an adverse effect is perceived in case of Soret 

number, order of chemical reaction and time.  

• Skin friction coefficient is getting improved on 

increasing either of Casson parameter and local 

inertia parameter whereas a reverse trend is 

followed by permeability parameter, solutal Grashof 

number and thermal Grashof number.   

• Nusselt number 𝑁𝑢 is enhanced with an increase in 

effective Prandtl number while a gradual decrement 

in this physical quantity is noted with increasing the 

values of Eckert number, Newtonian heating 

parameter and time.      

• Sherwood number 𝑆ℎ  is getting enhanced with an 

advancement in chemical reaction parameter 

whereas this physical quantity is getting diminished 

as we increase the values of Soret number, and time. 
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NOMENCLATURE 

 
g  acceleration due to gravity 

rq
 radiative heat flux 

u  velocity of the fluid along 𝑥 ′ −axis 

T   fluid temperature 

K p


 permeability of porous medium 

rK
 chemical reaction coefficient 

C  species concentration 

F  quadratic drag coefficient 

pc
 specific heat at constant pressure 

CTD
 soret diffusivity 

k  thermal conductivity of the fluid 
D  molecular mass diffusivity 

cE
 Eckert number 

rK
 chemical reaction parameter 

pK
 permeability parameter 

N  radiation parameter 

cG
 solutal Grashof number 

rG
 thermal Grashof number 

R  magnetic parameter 

Sc  Schimdt number 

rP
 Prandtl number 

Preff   effective Prandtl number 

rS
 Soret number 

 

Greek symbols 

 
  electrical conductivity 
  kinematic coefficient of viscosity 
  density of the fluid 

T  thermal expansion coefficient 

C  coefficient of volumetric expansion 
  Forchheimer number 
  frequency parameter 
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