
Synchronization Control of High-Order Inertial Hopfield Neural Network with Time Delay 

Liang Ke 

School of Mechanical Engineering, Zhejiang Industry Polytechnic College, Shaoxing 312000, China 

Corresponding Author Email: 1310314@tongji.edu.cn

https://doi.org/10.18280/ria.340509 ABSTRACT 

Received: 19 April 2020 

Accepted: 26 August 2020 

This paper probes deep into the synchronization control of high-order inertial Hopfield 

neural network with time delay, considering both inertia term and high-order term. 

Specifically, a second-order differential system was transformed into a first-order 

differential system, through proper variable substitution. Then, the sufficient conditions for 

exponential synchronization of the response system were theorized, with the aid of the 

fundamental solution matrix of the differential equation. The theoretical conditions were 

verified through an example analysis. The research findings have great application potential 

in production, communication, and automation. 
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1. INTRODUCTION

In recent years, synchronous control has been widely 

applied in communication, automation, and other fields. 

Currently, there are many effective strategies for synchronous 

control. In essence, synchronous control aims to synchronize 

the neural network, and improve the network performance. 

However, it is a difficult task to synchronize the neural 

network, which is generally a large complex nonlinear system. 

To solve the synchronous control problem, the key lies in the 

proper setting of the controller. 

Compared with first-order neural network, high-order 

neural network boasts large capacity and strong power of 

approximation. The dynamic properties of high-order neural 

network have attracted much attention from the academia. For 

instance, Zhang [1] probed deep into pseudo almost periodic 

high-order cellular neural networks with complex deviating 

arguments. Alim et al. [2] explored the dynamics and 

oscillations of generalized high-order Hopfield neural 

networks with mixed delays. Aouiti [3] investigated the 

oscillation of generalized high-order Hopfield neural networks 

with impulsive neutral delay. Zhao et al. [4] discussed the 

weighted pseudo-almost automorphic solutions of high-order 

Hopfield neural networks with neutral distributed delays. 

Wang and Rathinasamy [5] examined double almost 

periodicity for high-order Hopfield neural networks with 

slight vibration in time variables. Huang et al. [6] and He et al. 

[7] studied the asymptotical stability and global exponential

stability of high-order neutral neural networks, respectively.

Dong et al. [8] measured the global exponential stability of

higher-order delayed discrete-time Cohen-Grossberg neural

networks based on a nonsingular M-matrix. Arbi et al. [9]

analyzed the stability of delayed high-order Hopfield neural

networks with impulses. Xu and Wu [10] searched for anti-

periodic solutions of high-order cellular neural networks with

mixed delays and impulses.

In the above studies, the damping coefficient of the neural 

network does not include inertia. From the perspectives of 

mathematics and physics, a neural network can be understood 

as a super model of infinitely large damping. But the dynamic 

properties of each neuron will change, once the inertia exceeds 

the critical value. In practice, many scholars have considered 

the dynamic properties of the system with weak damping, that 

is, the dynamic behaviors of neural network with inertia terms 

[11-18]. For example, Pecora and Carroll [19] put forward the 

concept of power system synchronization: the drive system 

(controlling neural network) and response system (controlled 

neural network) are synchronized, when the two systems have 

the same structure and parameters.  

Synchronization has been extensively applied in neural 

network, which stimulates the research into the 

synchronization stability of inertial neural network. Using 

variable transform and Lyapunov-Krasovskii functionals, Wan 

et al. [20] realized the global exponential synchronization of 

inertial reaction-diffusion coupled neural networks with 

proportional delay. Xiao et al. [21] achieved the global 

exponential synchronization of generalized discrete-time 

inertial neural networks. Based on the properties of Riemann-

Liouville fractional derivative, Gu et al. [22] tackled the 

stability and synchronization of inertial neural networks with 

Riemann-Liouville fractional-order delay through variable 

substitution. By integral inequality method, Zhang and Cao 

[23] constructed Lyapunov function, and provided the

sufficient condition of finite-time synchronization for inertial

neural networks with time delays. Tang and Jian [24] solved

the exponential synchronization of inertial neural networks

with periodic intermittent control and hybrid variable delay.

With the aid of integral inequality, Zhang and Ren [25] came

up with the new sufficient conditions for global asymptotic

synchronization of inertial delayed neural networks. Ke and Li

[26, 27] provided the sufficient conditions for exponential

synchronization of inertial neural networks and inertial Cohen-

Grossberg neural networks. Brahmi et al. [28] explored the

exponential synchronization of high-order Hopfield neural

networks. Li et al. [29] considered the almost automorphic

synchronization of quaternion-valued high-order Hopfield

neural networks. None of the above studies have discussed the

synchronization stability of high-order inertial Hopfield neural

networks.

To sum up, the inertia term [21-27] and high-order term [28] 
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have not been considered simultaneously in the previous 

research on the exponential synchronization of neural network. 

To make up for the gap, this paper explores the exponential 

synchronization of high-order inertial of Hopfield neural 

networks with time delay. Both inertia and high-order terms 

were investigated through innovative derivation method, 

producing novel results. 

The remainder of this paper is organized as follows: Section 

2 formulates the neural network model, and gives some 

preliminaries; Section 3 presents the main results of 

exponential synchronization; Section 4 proves the 

effectiveness of our synchronization strategy through example 

analysis; Section 5 puts forward the conclusions. 

 

 

2. PRELIMINARIES 

 
The high-order inertia Hopfield neural network with time 

delay can be formulated as: 

 

𝑑2𝑥𝑖(𝑡)

𝑑𝑡2
= −𝛽𝑖

𝑑𝑥𝑖(𝑡)

𝑑𝑡
− 𝛼𝑖𝑥𝑖(𝑡) 

+∑𝑎𝑖𝑗𝑓𝑗 (𝑥𝑗(𝑡))

𝑛

𝑗=1

+∑𝑏𝑖𝑗𝑓𝑗 (𝑥𝑗(𝑡 − 𝜏𝑖𝑗))

𝑛

𝑗=1

 

+∑

𝑚

𝑗=1

∑𝑐𝑖𝑗𝑘𝑓𝑗(𝑥𝑗(𝑡 − 𝜏𝑖𝑗))𝑓𝑘(𝑥𝑘(𝑡 − 𝜏𝑖𝑘)) + 𝐼𝑖

𝑚

𝑘=1

 

(1) 

 

where, i=1, 2, ···, n; αi and βj>0 are constants; xi(t) is the state 

variable of the i-th neuron; bij and cij are connection weights; 

fj is the activation function; τij is time delay; Ii is the input to 

the i-th neuron at time t. 

The initial conditions of system (1) can be expressed as: 

 

𝑥𝑖(𝑠) = 𝜑𝑥𝑖(𝑠),
𝑑𝑥𝑖(𝑠)

𝑑𝑡
= 𝜓𝑥𝑖(𝑠), −𝜏 ≤ 𝑠 ≤ 0 (2) 

 

where,  𝜏 = 𝑚𝑎𝑥
1≤𝑖,𝑗≤𝑛

{𝜏𝑖𝑗} , φxi(s), and ψxi(s) are bounded and 

continuous functions. 

The response system corresponding to system (1) can be 

described as: 

 

𝑑2𝑦𝑖(𝑡)

𝑑𝑡2
= −𝛽𝑖

𝑑𝑦𝑖(𝑡)

𝑑𝑡
− 𝛼𝑖𝑦𝑖(𝑡) 

+∑𝑎𝑖𝑗𝑓𝑗 (𝑦𝑗(𝑡))

𝑛

𝑗=1

+∑𝑏𝑖𝑗𝑓𝑗 (𝑦𝑗(𝑡 − 𝜏𝑖𝑗))

𝑛

𝑗=1

 

+∑

𝑚

𝑗=1

∑𝑐𝑖𝑗𝑘𝑓𝑗(𝑦𝑗(𝑡 − 𝜏𝑖𝑗))𝑓𝑘(𝑦𝑘(𝑡 − 𝜏𝑖𝑘))

𝑚

𝑘=1

+ 𝑢𝑖(𝑡) + 𝐼𝑖 

(3) 

 

where, ui(t) is the feedback controller; i=1, 2, ..., n. 

The initial values of the response system (3) can be defined 

as: 

 

𝑦𝑖(𝑠) = 𝜑𝑦𝑖(𝑠),
𝑑𝑦𝑖(𝑠)

𝑑𝑡
= 𝜓𝑦𝑖(𝑠), −𝜏 ≤ 𝑠 ≤ 0 (4) 

 

where, φyi(s) and ψyi(s) are bounded and continuous functions. 

Then, the following hypothesis was put forward: 

Hypothesis: Activation function fj is differentiable on xi and 

in line with Lipschitz condition, and there exists a constant lj>0 

making: |𝑓𝑗(𝑣1) − 𝑓𝑗(𝑣2))| ≤ 𝑙𝑗|𝑣1 − 𝑣2| , 𝑣1, 𝑣2 ∈ ℜ , j=1, 

2, ..., n. 

Definition 1. For systems (1) and (3), if there exist constants 

λ>0 and c>0, such that: ∥ 𝑥(𝑡) − 𝑦(𝑡 ∥= ∑ |𝑛
𝑖=1 𝑥𝑖(𝑡) −

𝑦𝑖(𝑡)| ≤ 𝑐𝑒
−𝜆(𝑡−𝑡0), t>t0. 

Then, systems (1) and (3) are exponentially synchronized. 

Lemma 1. [30] Suppose a>b>0. If function x(t) is non-

negative and continuous in [t0-µ, t], and satisfies the following 

inequalities in the interval: 𝐷+𝑥(𝑡) ≤ −𝑎𝑥(𝑡) + 𝑏𝑥(𝑡). Then, 

𝑥(𝑡) ≤ 𝑥(𝑡0)𝑒
−𝜆(𝑡−𝑡0) , t≥t0. where, 𝑥(𝑡) = 𝑠𝑢𝑝

𝑡−𝜇≤𝑠≤𝑡
{𝑥(𝑠)}, 

μ≥0 is a constant; λ is the unique positive root of 

transcendental equation λ=a−beλt. 

Lemma 2. [31] For (x1(t), x2(t), ..., xm(t))T, 

(𝑥1
∗(𝑡), 𝑥2

∗(𝑡),⋯ , 𝑥𝑚
∗ (𝑡))𝑇 ∈ 𝑅𝑚 , if hj(xj) is continuously 

differentiable in xj (j=1, 2, …, m). then: 

∑ ∑ 𝑏𝑖𝑗𝑘
𝑚
𝑘=1

𝑚
𝑗=1 [ℎ𝑗(𝑥𝑗)ℎ𝑘(𝑥𝑘) − ℎ𝑗(𝑥𝑗

∗)ℎ𝑘(𝑥𝑘
∗)] =

∑𝑚𝑗=1 ∑ (𝑏𝑖𝑗𝑘 + 𝑏𝑖𝑘𝑗)[ℎ𝑗(𝑥𝑗) − ℎ𝑗(𝑥𝑗
∗)]ℎ𝑘(𝜉𝑘)

𝑚

𝑘=1
. where, 

ξk is a value between xk and 𝑥𝑘
∗ ; j, k=1, 2, ..., m. 

 

 

3. RESULTS 

 

Through proper variable substitution, this section 

transforms a second-order differential system into a first-order 

differential system, and thus derives the sufficient conditions 

for exponential synchronization of the response system (3) 

with the drive system (1). 

The variable substitution can be expressed as: 𝑧𝑖(𝑡) =
𝑥�̇�(𝑡) + 𝜂𝑖𝑥𝑖(𝑡), 𝑤𝑖(𝑡) = �̇�𝑖(𝑡) + 𝜂𝑖𝑦𝑖(𝑡), ηi>0, i=1, 2, …, m. 

Then, systems (1) and (3) can be rewritten as: 

 

{
 
 
 
 

 
 
 
 

𝑥�̇�(𝑡) = −𝜂𝑖𝑥𝑖(𝑡) + 𝑧𝑖(𝑡)

𝑧�̇�(𝑡) = (𝛽𝑖𝜂𝑖 − 𝛼𝑖 − 𝜂𝑖
2)𝑥𝑖(𝑡)

+(𝜂𝑖 − 𝛽𝑖)𝑧𝑖(𝑡) +∑ 𝑎𝑖𝑗𝑓𝑗(𝑥𝑗(𝑡)
𝑛

𝑗=1

+∑ 𝑏𝑖𝑗𝑓𝑗 (𝑥𝑗(𝑡 − 𝜏𝑖𝑗))
𝑛

𝑗=1

+∑𝑛𝑗=1 ∑ 𝑐𝑖𝑗𝑘𝑓𝑗(𝑥𝑗(𝑡 − 𝜏𝑖𝑗))𝑓𝑘(𝑥𝑘(𝑡 − 𝜏𝑗𝑘))
𝑛

𝑘=1
+ 𝐼𝑖 ,

    (5) 

 

{
  
 

  
 

�̇�𝑖(𝑡) = −𝜂𝑖𝑦𝑖(𝑡) + 𝑤𝑖(𝑡)

𝑤𝑖̇ (𝑡) = (𝛽𝑖𝜂𝑖 − 𝛼𝑖 − 𝜂𝑖
2)𝑦𝑖(𝑡) + (𝜂𝑖 − 𝛽𝑖)𝑤𝑖(𝑡)

+∑ 𝑎𝑖𝑗𝑓𝑗 (𝑦𝑗(𝑡))
𝑛

𝑗=1
+∑ 𝑏𝑖𝑗𝑓𝑗(𝑦𝑗(𝑡 − 𝜏𝑖𝑗))

𝑛

𝑗=1

+∑𝑚𝑗=1 ∑ 𝑐𝑖𝑗𝑘𝑓𝑗(𝑦𝑗(𝑡 − 𝜏𝑖𝑗))𝑓𝑘(𝑦𝑘(𝑡 − 𝜏𝑖𝑘)) + 𝑢𝑖(𝑡) + 𝐼𝑖
𝑚

𝑘=1
.

 (6) 

 

The error can be described as: e1i(t)=yi(t)-xi(t), e2i(t)=wi(t)-

zi(t), i=1, 2, …, n. 

By Lemma 2, the following can be derived from formulas 

(5) and (6): 

 

{
  
 

  
 

𝑒1𝑖̇ (𝑡) = −𝜂𝑖𝑒1𝑖(𝑡) + 𝑒2𝑖(𝑡)

𝑒2𝑖̇ (𝑡) = (𝜂𝑖𝛽𝑖 − 𝛼𝑖 − 𝜂𝑖
2)𝑒1𝑖(𝑡)

+(𝜂𝑖 − 𝛽𝑖)𝑒2𝑖(𝑡) +∑ 𝑎𝑖𝑗𝑓𝑗 (𝑒1𝑗(𝑡))
𝑛

𝑗=1

+∑𝑚𝑗=1 [𝑏𝑖𝑗 +∑ (𝑐𝑖𝑗𝑘 + 𝑐𝑖𝑘𝑗)]𝑓𝑗(𝑒1𝑗(𝑡 − 𝜏𝑖𝑗))
𝑛

𝑘=1
+ 𝑢𝑖(𝑡),

 (7) 

 

where, 𝑓
𝑗
(𝑒1𝑗(𝑡)) = 𝑓𝑗 (𝑦𝑗(𝑡)) − 𝑓𝑗 (𝑥𝑗(𝑡)) ; j=1, 2, ..., n. 
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Theorem 1. If the Hypothesis holds for the following 

feedback controller: ui(t)=-λie1i(t), i=1, 2, ..., n. 

If 𝛽𝑖 − √|𝛽𝑖
2 − 4(𝛼𝑖 + 𝜆𝑖)| > 0 , and σ-

𝑚𝑎𝑥
1≤i≤n

{𝑀[∑ |𝑛
𝑗=1 𝑎𝑗𝑖|𝑙𝑖 + ∑ |𝑛

𝑗=1 𝑏𝑗𝑖 + ∑ (𝑐𝑗𝑖𝑘 + 𝑐𝑗𝑘𝑖)|𝑙𝑖
𝑛

𝑘=1
} >0 , 

then systems (1) and (3) are exponentially synchronized. 

where, 𝜎 = 𝑚𝑖𝑛
1≤i≤n

{
𝛽𝑖−√|(𝛽𝑖

2−4(𝛼𝑖+𝜆𝑖)|

2
,
𝛽𝑖

2
} , 𝑀 =

𝑚𝑎𝑥
1≤i≤n

{
2(1+𝛽𝑖+|𝜂𝑖𝛽𝑖−𝛼𝑖−𝜂𝑖

2−𝜆𝑖|+√|𝛽𝑖
2−4(𝛼𝑖+𝜆𝑖)|)

√|𝛽𝑖
2−4(𝛼𝑖+𝜆𝑖)|

}.  

Proof. 

Let 𝐷𝑖 = [
𝜂𝑖 −1

𝛼𝑖 + 𝜂𝑖
2 + 𝜆𝑖 − 𝜂𝑖𝛽𝑖 𝛽𝑖 − 𝜂𝑖

],  and 𝐸𝑖(𝑡) =

[
𝑒1𝑖(𝑡)

𝑒2𝑖(𝑡)
], 𝐹𝑖(𝑡) = [

0
𝑓�̅�(𝑒1𝑗(𝑡))

]. 

From formula (7), it can be derived that: 

 

𝑑𝐸𝑖(𝑡)

𝑑𝑡
= −𝐷𝑖𝐸𝑖(𝑡) +∑𝑎𝑖𝑗𝐹𝑖(𝑡)

𝑛

𝑗=1

 

+∑[𝑏𝑖𝑗 +∑(𝑐𝑖𝑗𝑘 + 𝑐𝑖𝑘𝑗)]

𝑛

𝑘=1

𝑛

𝑗=1

𝐹𝑖(𝑡 − −𝜏𝑖𝑗) 

(8) 

 

For the following linear differential equation: 

 

𝑊′(𝑡) = −𝐷𝑖𝑊(𝑡) (9) 

 

The eigenvalues of −Di can be obtained: 𝜉1 =

−𝛽𝑖+√𝛽𝑖
2−4(𝛼𝑖+𝜆𝑖)

2
, 𝜉2 =

−𝛽𝑖−√𝛽𝑖
2−4(𝛼𝑖+𝜆𝑖)

2
. 

The corresponding eigenvectors are: V1=(1, ξ1+ηi)T, V2=(1, 

ξ2+ηi)T. 

Thus, the fundamental solution matrix of system (9) can be 

obtained as: 𝜙(𝑡) = [
𝑒𝜉1𝑡 𝑒𝜉2𝑡

(𝜉1 + 𝜂𝑖)𝑒
𝜉1𝑡 (𝜉2 + 𝜂𝑖)𝑒

𝜆2𝑡
]. 

If 𝛽𝑖
2 − 4(𝛼𝑖 + 𝜆𝑖) ≠ 0 , then: 𝜙−1(0) =

1

𝜆2−𝜆1
[
𝜉2 + 𝜂𝑖 −1

−(𝜉1 + 𝜂𝑖) 1
]. 

Since e-Dit=ϕ(t)ϕ-1(0), we have: 

 

𝑒−𝐷𝑖𝑡=

1

ξ2−ξ1
[
(𝜉2 + 𝜂𝑖)𝑒

𝜉1𝑡 − (𝜉1 + 𝜂𝑖)𝑒
𝜉2𝑡 𝑒𝜉2𝑡 − 𝑒𝜉1𝑡

(𝜉1 + 𝜂𝑖)(𝜉2 + 𝜂𝑖)(𝑒
𝜉1𝑡 − 𝑒𝜉2𝑡) (𝜉2 + 𝜂𝑖)𝑒

𝜉2𝑡 − (𝜉1 + 𝜂𝑖)𝑒
𝜉1𝑡
]. 

 

If 𝛽𝑖
2 − 4(𝛼𝑖 + 𝜆𝑖) > 0, then 

 
∥ 𝑒−𝐷𝑖𝑡 ∥

≤
2(1 + 𝛽𝑖 + |𝜂𝑖𝛽𝑖 − 𝛼𝑖 − 𝜂𝑖

2 − 𝜆𝑖| + √𝛽𝑖
2 − 4(𝛼𝑖 + 𝜆𝑖)

√𝛽𝑖
2 − 4(𝛼𝑖 + 𝜆𝑖)

𝑒−
𝛽𝑖−√𝛽𝑖

2−4(𝛼𝑖+𝜆𝑖)

2 𝑡
 

 

If 𝛽𝑖
2 − 4(𝛼𝑖 + 𝜆𝑖) < 0, then 

 

∥ 𝑒−𝐷𝑖𝑡 ∥

≤
2(1 + 𝛽𝑖 + |𝜂𝑖𝛽𝑖 − 𝛼𝑖 − 𝜂𝑖

2 − 𝜆𝑖| + √|𝛽𝑖
2 − 4(𝛼𝑖 + 𝜆𝑖)|

√|𝛽𝑖
2 − 4(𝛼𝑖 + 𝜆𝑖)|

𝑒−
𝛽𝑖
2
𝑡 

 

Thus, if 𝛽𝑖
2 − 4(𝛼𝑖 + 𝜆𝑖) ≠ 0, then ∥ 𝑒−𝐷𝑖𝑡 ∥≤ 𝑀𝑒−𝜎𝑡 , t>0, 

where, 

 

σ = min
1≤i≤n

{
βi−√|βi

2−4(αi+λi)|

2
,
βi

2
}; 

M = max
1≤i≤n

{
2(1 + βi + |ηiβi − αi − ηi

2 − λi| + √|βi
2 − 4(αi + λi)|

√|βi
2 − 4(αi + λi)|

}. 

 

From formula (8), we have: 

 

𝑒𝐷𝑖𝑡 [
𝑑𝐸𝑖(𝑡)

𝑑𝑡
+ 𝐷𝐸𝑖(𝑡)] 

= 𝑒𝐷𝑖𝑡∑𝑎𝑖𝑗𝐹𝑖(𝑡)

𝑛

𝑗=1

 

+∑[𝑏𝑖𝑗 +∑(𝑐𝑖𝑗𝑘 + 𝑐𝑖𝑘𝑗)

𝑛

𝑘=1

]𝐹𝑖(𝑡 − 𝜏𝑖𝑗)

𝑛

𝑗=1

 

(10) 

 

From formula (10), we have: 

 

𝐸𝑖(𝑡) = 𝑒
−𝐷𝑖𝑡𝐸𝑖(0) 

+∫ 𝑒−𝐷𝑖(𝑡−𝑠){∑𝑎𝑖𝑗𝐹𝑗(𝑠) +

𝑛

𝑗=1

∑[𝑏𝑖𝑗

𝑛

𝑗=1

𝑡

0

+∑(𝑐𝑖𝑗𝑘 + 𝑐𝑖𝑘𝑗)

𝑛

𝑘=1

]𝐹𝑗(𝑠

− 𝜏𝑖𝑗)𝑑𝑠. }. 

(11) 

 

And 

 

∥ 𝐸𝑖(𝑡) ∥≤ ‖𝑒
−𝐷𝑖𝑡𝐸𝑖(0)‖ + ∫ ∥ 𝑒−𝐷𝑖(𝑡−𝑠) ∥ {∑ |𝑛

𝑗=1 𝑎𝑖𝑗| ∥
𝑡

0

𝐹𝑗(𝑠) ∥ + ∑ |𝑛
𝑗=1 𝑏𝑖𝑗 +∑ (𝑐𝑖𝑗𝑘 + 𝑐𝑖𝑘𝑗)| ∥ 𝐹𝑗(𝑠 − 𝜏𝑖𝑗) ∥

𝑛

𝑘=1
}𝑑𝑠 

≤ 𝑀𝑒−𝜎𝑡‖𝐸𝑖(0)‖ + 𝑀 ∫ 𝑒−𝜎(𝑡−𝑠)
𝑡

0
{∑ |𝑛

𝑗=1 𝑎𝑖𝑗|𝑙𝑗|𝑒1𝑗(𝑠)| +

∑ |𝑛
𝑗=1 𝑏𝑖𝑗 +∑ (𝑐𝑖𝑗𝑘 + 𝑐𝑖𝑘𝑗)|𝑙𝑗|𝑒1𝑗(𝑠 − 𝜏𝑖𝑗)

𝑛

𝑘=1
}𝑑𝑠 ≤

𝑀𝑒−𝜎𝑡‖𝐸𝑖(0)‖ + 𝑀∫ 𝑒−𝜎(𝑡−𝑠)
𝑡

0
{∑ |𝑛

𝑗=1 𝑎𝑖𝑗|𝑙𝑗|𝐸𝑗(𝑠)| +

∑ |𝑛
𝑗=1 𝑏𝑖𝑗 +∑ (𝑐𝑖𝑗𝑘 + 𝑐𝑖𝑘𝑗)|𝑙𝑗|𝐸𝑗(𝑠 − 𝜏𝑖𝑗)

𝑛

𝑘=1
}𝑑𝑠. 

 

Let 

 

𝑝𝑖(𝑡) = 𝑀𝑒
−𝜎𝑡 ∥ 𝐸𝑖(0) ∥ 

+𝑀∫ 𝑒−𝜎(𝑡−𝑠){∑ |𝑛
𝑗=1 𝑎𝑖𝑗|𝑙𝑗 ∥ 𝐸𝑗(𝑠) ∥ +∑ |𝑛

𝑗=1 𝑏𝑖𝑗 +∑ (𝑐𝑖𝑗𝑘 + 𝑐𝑖𝑘𝑗)|𝑙𝑗 ∥ 𝐸𝑗(𝑠 − 𝜏𝑖𝑗) ∥
𝑛

𝑘=1
}𝑑𝑠,

𝑡

0
                (12) 

𝑡 > 0, 𝑝𝑖(𝑡) = 𝑀 ∥ 𝐸𝑖(𝑡) ∥,−𝜏 ≤ 𝑡 ≤ 0. 
 

597



where, ∥ 𝐸𝑖(𝑡) ∥= 𝑠𝑢𝑝
𝑡−𝜏≤𝑠≤𝑡

||𝐸𝑖(𝑡) ∥ , ∥ 𝑝
𝑖
(𝑡) ∥=

𝑠𝑢𝑝
𝑡−𝜏≤𝑠≤𝑡

||𝑝𝑖(𝑡) ∥ . It can be derived that 𝑝𝑖(𝑡) ≥∥ 𝐸𝑖(𝑡) ∥

, 𝑝
𝑖
(𝑡) ≥∥ 𝐸𝑖(𝑡) ∥. 

Solving the upper right Dini derivative D+pi(t) of pi(t): 

 

𝐷+𝑝𝑖(𝑡) = −𝜎𝑝𝑖(𝑡) + 𝑀{∑ |𝑛
𝑗=1 𝑎𝑖𝑗|𝑙𝑗 ∥ 𝐸𝑗(𝑡) ∥

+∑ |𝑛
𝑗=1 𝑏𝑖𝑗 +∑ (𝑐𝑖𝑗𝑘 + 𝑐𝑖𝑘𝑗)|𝑙𝑗 ∥ 𝐸𝑗(𝑡 − 𝜏𝑖𝑗) ∥

𝑛

𝑘=1
} ≤

−𝜎𝑝𝑖(𝑡) + 𝑀{∑ |𝑛
𝑗=1 𝑎𝑖𝑗|𝑙𝑗 + ∑ |𝑛

𝑗=1 𝑏𝑖𝑗 + ∑ (𝑐𝑖𝑗𝑘 +
𝑛
𝑘=1

𝑐𝑖𝑘𝑗)|𝑙𝑗𝑝𝑗(𝑡)}. 

 

Let 𝑝(𝑡) = ∑ 𝑝𝑖(𝑡)
𝑛

𝑖=1
. From the above, it can be obtained 

that 

 

𝐷+𝑝(𝑡) ≤∑{−𝜎𝑝𝑖(𝑡) + 𝑀[∑|

𝑛

𝑗=1

𝑎𝑖𝑗|𝑙𝑗 +∑|

𝑛

𝑗=1

𝑏𝑖𝑗

𝑛

𝑖=1

+∑(𝑐𝑖𝑗𝑘 + 𝑐𝑖𝑘𝑗)|𝑙𝑗𝑝𝑗(𝑡)

𝑛

𝑘=1

] 

≤ −𝜎𝑝(𝑡) + 𝑁𝑝(𝑡)}, 
 

where 𝑁 = 𝑚𝑎𝑥
1≤𝑖≤𝑛

{𝑀[∑ |𝑛
𝑗=1 𝑎𝑗𝑖|𝑙𝑖 + ∑ |𝑛

𝑗=1 𝑏𝑗𝑖+∑
𝑛
𝑘=1 (𝑐𝑗𝑖𝑘 +

𝑐𝑗𝑘𝑖)|𝑙𝑖}. 

Since 𝜎 − 𝑚𝑎𝑥
1≤𝑖≤𝑛

{𝑀[∑ |𝑛
𝑗=1 𝑎𝑗𝑖|𝑙𝑖 + ∑ |𝑛

𝑗=1 𝑏𝑗𝑖 +

∑𝑛𝑘=1 (𝑐𝑗𝑖𝑘 + 𝑐𝑗𝑘𝑖)|𝑙𝑖} > 0, by Lemma 1, 

 

p(t) ≤ p(0)e−ξt, t ≥ 0 (13) 

 

where, ξ is the positive root of equation ξ=σ-Neξt. 

From formula (13), we have ∥ 𝑥(𝑡) − 𝑦(𝑡 ∥=
∑ |𝑛
𝑖=1 𝑥𝑖(𝑡) − 𝑦𝑖(𝑡)| ≤ 𝑐𝑒−𝜉𝑡 ,  ξ>0, t>0, where, 𝑐 =

𝑀∑ [|𝜓𝑦𝑖(0) − 𝜑𝑥𝑖(0)| + |𝜓𝑦𝑖(0) + 𝜂𝑖𝜑𝑦𝑖(0) −
𝑛

𝑖=1

𝜓𝑥𝑖(0) − 𝜂𝑖𝜑𝑥𝑖(0)|]. 

By Definition 1, systems (1) and (3) are exponentially 

synchronized. 

If cijk=0, i, j, k=1, 2, ..., m, then system (1) becomes an 

inertial neural network with time delay: 

 

𝑑2𝑥𝑖(𝑡)

𝑑𝑡2
= −𝛽𝑖

𝑑𝑥𝑖(𝑡)

𝑑𝑡
− 𝛼𝑖𝑥𝑖(𝑡) +∑𝑎𝑖𝑗𝑓𝑗 (𝑥𝑗(𝑡))

𝑛

𝑗=1

+∑𝑏𝑖𝑗𝑓𝑗 (𝑥𝑗(𝑡 − 𝜏𝑖𝑗))

𝑛

𝑗=1

 

(14) 

 

The corresponding response system can be represented as: 

 

𝑑2𝑦𝑖(𝑡)

𝑑𝑡2
= −𝛽𝑖

𝑑𝑦𝑖(𝑡)

𝑑𝑡
− 𝛼𝑖𝑦𝑖(𝑡) +∑𝑎𝑖𝑗𝑓𝑗 (𝑦𝑗(𝑡))

𝑛

𝑗=1

+∑𝑏𝑖𝑗𝑓𝑗 (𝑦𝑗(𝑡 − 𝜏𝑖𝑗))

𝑛

𝑗=1

. 

(15) 

 

where, ui(t) is the feedback controller; i=1, 2, ..., n. 

The following corollary can be obtained from Theorem 1. 

Corollary 1. Suppose the Hypothesis holds for the following 

feedback controller: ui(t)=-λie1i(t), i=1,2, ..., n. 

If 𝛽𝑖 − √|𝛽𝑖
2 − 4(𝛼𝑖 + 𝜆𝑖)| > 0 , and 𝜎 −

𝑚𝑎𝑥
1≤𝑖≤𝑛

{𝑀[∑ |𝑛
𝑗=1 𝑎𝑗𝑖|𝑙𝑖 + ∑ |𝑛

𝑗=1 𝑏𝑗𝑖|} > 0, 

Then, systems (14) and (15) are exponentially synchronized, 

where: 𝜎 = 𝑚𝑖𝑛
1≤𝑖≤𝑛

{
𝛽𝑖−√|(𝛽𝑖

2−4(𝛼𝑖+𝜆𝑖)|

2
,
𝛽𝑖

2
} , 𝑀 =

𝑚𝑎𝑥
1≤𝑖≤𝑛

{
2(1+𝛽𝑖+|𝜂𝑖𝛽𝑖−𝛼𝑖−𝜂𝑖

2−𝜆𝑖|+√|𝛽𝑖
2−4(𝛼𝑖+𝜆𝑖)|)

√|𝛽𝑖
2−4(𝛼𝑖+𝜆𝑖)|

}.  

 

 

4. EXAMPLE ANALYSIS 

 

This section illustrates the effectiveness of the above results 

with an example: 

Example: The high-order inertial Hopfield neural network 

with time delay can be described as: (n=2) 

 

xï(t) = −βixi̇(t) − αixi(t) 

+∑aijfj (xj(t))

2

j=1

+∑bijfj (xj(t − τij))

2

j=1

 

+∑

2

j=1

∑cijkfj(xj(t − τij))fk(xk(t − τjk))

2

k=1

+ Ii 

(16) 

 

The response system driven system (14) can be described 

as: 

 

𝑦�̈�(𝑡) = −𝛽𝑖𝑦�̇�(𝑡) − αiyi(t) 

+∑aijfj (yj(t))

2

j=1

+∑bijfj (yj(t − τij))

2

j=1

 

+∑

2

j=1

∑cijkfj(yj(t − τij))fk(yk(t − τjk))

2

k=1

+ ui(t)

+ Ii 

(17) 

 

where, ui(t)=-λi(yi(t)-xi(t)), λi>0, i=1, 2. 

The relevant parameters were configured as follows: λ1=1.2, 

λ2=1.5, η1=1.1, η2=1.15, β1=4, β2=4.5, α1=1.45, α2=1.4, 

a11=0.01, a2=0.02, a21=-0.01,a22=0.03, b11=0.02, b12=-0.02, 

b21=0.01, b22=0.03, c111=0.01, c121=0.02, c112=0.03, c122=-0.01, 

c211=-0.02, c221=0.025, c212=0.015, c222=-0.025, I1=0.5, I2=0.45, 

τ11=0.2, τ12=0.3, τ21=0.25, and τ22=0.46, 𝑓𝑖(𝑥𝑖(𝑡)) =
1

2
𝑐𝑜𝑠 (𝑥𝑖(𝑡)), i=1, 2. 

Obviously, |𝑓𝑖(𝑥𝑖) − 𝑓𝑖(𝑦𝑖)| ≤
1

2
|𝑥𝑖 − 𝑦𝑖|, 𝑙𝑖 =

1

2
. 

By simple calculation, we have: 

 

𝛽1 − √|𝛽1
2 − 4(𝛼1 + 𝜆1)| = 1.676209992, 

𝛽2 − √|𝛽2
2 − 4(𝛼2 + 𝜆2)| = 1.558911766, 

𝜎 = 𝑚𝑖𝑛
1≤𝑖≤2

{
𝛽𝑖 − √|𝛽𝑖

2 − 4(𝛼𝑖 + 𝜆𝑖)|

2
,
𝛽𝑖
2
} = 0.779455883, 

𝑀 = 𝑚𝑎𝑥
1≤𝑖≤2

{
2(1+𝛽𝑖+|𝜂𝑖𝛽𝑖−𝛼𝑖−𝜂𝑖

2−𝜆𝑖|+√|𝛽𝑖
2−4(𝛼𝑖+𝜆𝑖)|

√|𝛽𝑖
2−4(𝛼𝑖+𝜆𝑖)|

} =

6.76807283.  

𝜎 − 𝑚𝑎𝑥
1≤𝑖≤𝑛

{𝑀[∑|

𝑛

𝑗=1

𝑎𝑗𝑖|𝑙𝑖 +∑|

𝑛

𝑗=1

𝑏𝑗𝑖 +∑(𝑐𝑗𝑖𝑘 + 𝑐𝑗𝑘𝑖)

𝑛

𝑘=1

|𝑙𝑖}

= 0.37337151327 > 0. 
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System (16) satisfies the condition of Theorem 1, indicating 

that systems (16) and (17) are exponentially synchronized.  

Figures 1-3 were obtained through numerical simulation. It 

can be seen that the simulation results are consistent with 

Theorem 1. 

 

 
 

Figure 1. The synchronization trajectories between state x1(t) 

of the drive system (16) and state y1(t) of the response system 

(17) 

 

 
 

Figure 2. The synchronization trajectories between state x2(t) 

of the drive system (16) and state y2(t) of the response system 

(17) 

 

 
 

Figure 3. The evolution of synchronization errors e1(t) and 

e2(t) in the example1 

 

 

5. CONCLUSIONS 

 

This paper mainly discusses the exponential 

synchronization of high-order inertial neural networks with 

time delay, and gives two sufficient conditions for the 

exponential synchronization of between drive system (1) and 

response system (3). The research results are summarized in 

the form of Theorem 1.  

On the exponential synchronization of neural networks, the 

previous studies [20-31] either evaluate the synchronization 

stability of inertial neural networks or that of high-order neural 

networks. The inertia item complicates the dynamic features 

of the neural network, while the high-order term induces 

bifurcation and chaos. In other words, the inertia term and 

high-order term have never been discussed at the same time, 

despite their significant impacts on neural network. This paper 

looks at both inertia term and high-order term. The 

combination between the two terms in neural network enriches 

and improves the existing neural networks. The 

synchronization of high-order inertial neural networks has 

great application potential in production, communication, and 

automation. 

The research results provide a theoretical criterion for 

exploring system design and realizing practical application. 

Drawing on our results, the future research could tackle the 

synchronization of other high-order inertial neural networks 

with time delay, such as high-order inertial bidirectional 

associative memory (BAM) neural network and high-order 

inertial Cohen-Grossberg neural networks. 
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