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Malaria is an infectious disease that is caused by the plasmodium parasite which is a single-

celled group. This disease is usually spread employing an infected female anopheles 

mosquito. Recent statistics show that in 2017 there were only around 219 million recorded 

cases and about 435,000 deaths were reported due to this disease and more than 40% of the 

global population is at risk. Despite this, many image processing fused with machine 

learning algorithms were developed by researchers for the early detection of malaria using 

blood smear images. This research used a new CNN model using transfer learning for 

classifying segmented infected and Uninfected red blood cells. The experimental results 

show that the proposed architecture success to detect malaria with an accuracy of 98.85%, 

sensitivity of 98.79%, and a specificity of 98.90% with the highest speed and smallest input 

size among all previously used CNN models. 
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1. INTRODUCTION

Malaria is classified as a contagious disease which is caused 

by a single-celled microorganism which is belonging to the 

genus protozoan parasite of the plasmodium group where five 

of their species can infect humans. The disease is mainly 

spread by the mean of bite infected female Anopheles 

Mosquito. Based on recent statistics the malaria disease puts 

around 40% of the world population to risk with nearly 240 

million cases reported each year, African and especially the 

Sub-Saharan-Africa countries are the most due to malaria [1]. 

Figure 1 shows worldwide malaria new cases rates per 1,000 

population. 

World Health Organization (WHO) reports show that 

around 90% of the worldwide malaria infections and death 

cases happened in Africa were kids under 5 years are 

representing the highest percentage of the malaria-infected 

deaths [1, 2]. In general, usual malaria signs and indications 

are fever, nausea, and headaches. In some acute and severe 

cases, patients may have yellow skin, seizures, and coma 

which may lead to death. Every year, well-trained experts at 

hospitals around the world examined millions of blood films 

in order to detect malaria cases. The detection of malaria cases 

usually requires a manual process especially in counting the 

parasites and infected red blood cells, which is considered 

time-consuming and may cause some errors [3, 4]. 

Generally, there are two main scientific approaches 
commonly used to diagnose malaria: microscopy of thin 
blood cells and an antigen diagnostic examination. The 

former is a very time-consuming operation, typically with 

doctors a minimum of 5000 cells must be identified manually 

to validate, the condition, although the latter is much quicker 

than the former one, the antigen-based fast diagnostic tests are 

less effective. In addition, malaria is typically distributed 

across poverty and instability. In areas with poor psychiatric 

outcomes, patients cannot be admitted timely care or offer 

reimbursement for antigen-based accelerated treatment 

diagnostic research. Finding a book, effective, is very 

meaningful and a convenient method for diagnosing malaria 

[1, 3, 4]. 

However, this process is completely depending on the skill 

of the microscopist, and working in an environment with 

limited resource set-up and without helpful systems for 

improvement of the skills of microscopist or computer-aided 

diagnosis (CAD) systems will lead to affect the diagnostic 

quality and finally results to wrong diagnostic decisions, such 

systems can help and boost microscopist to enhance the 

accuracy of blood films classification and malaria detection 

[3-6].  

In recent years, several classification experiments have been 

performed on automated malaria-infected cells in medical 

pictures, such as approaches focused on machine learning and 

morphology [4]. However, these approaches usually have 

drawbacks, such as having a lot of advanced expertise and 

generally require the help of a trained and skilled surgeon [5]. 

 Recently, with the development of artificial intelligence 

(AI) based systems which is known as computer-aided 

diagnosis or decision support systems malaria detection using 

blood films became more efficient [3, 4]. One of the most 

recent AI techniques is Deep learning (DL) which can be used 

to classify cell images and help to prevent wrong diagnostic 

decisions [5].  

Deep learning is a sub-area of machine learning (ML) which 

gives exceptional performance in different medical fields. This 

is because DL deals with raw and multidimensional data (1D 

or 2D). The applications of deep learning are not limited to the 
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medical fields; in recent years deep learning pays the attention 

of researchers, and its applications grew exponentially [6]. In 

recent times, many artificial intelligence techniques have been 

applied for detecting malaria based on blood film images [5-

7]. Examples of these techniques are artificial neural networks 

(ANN’s), support vector machine (SVM), and convolutional 

neural networks (CNN’s). 

CNN is the most recent technological development and 

modern technique in the field of DL, and it is used widely in 

the field of computer vision for the diagnosis of medical 

disease and especially for data that are based on images. 

CNN’s have started to be used as a necessary approach to 

classify and diagnose medical images. They do not require any 

feature extraction before the training process [7, 8]. In general, 

CNN's are designed to minimize or eliminate data pre-

processing steps. They are compatible to deal with raw images 

or data [9, 10].  

This paper proposed a transfer learning of AOCT-NET 

CNN model for malaria detection using Red Blood Cells 

(RBCs), this research paper focuses on providing a new 

transfer learning CNN architecture rather than using the 

traditional transfer learning models (AlexNet, GoogleNet, 

VGG16, et al.), a method of deep learning, for malaria cell-

image classification. Our main contributions can be 

summarized as follows: 

(1) We used a new design, lightweight, and very efficient 

network architecture. 

(2) We train and evaluate our proposed design using different 

scenarios. 

Compare it with several well-established models. And the 

results prove that we have achieved state-of-art performance 

on malaria-infected red blood cell classification. 

 

 
 

Figure 1. Worldwide malaria new cases rates per 1,000 

population 

 

 

2. MATERIALS AND METHODS 

 

In this section, the used dataset of red blood cells (RBCs) 

and the methodology including the convolutional neural 

network (CNN) architecture and training process are discussed 

in detail. Figure 2 shows the flow diagram or a schematic of 

the proposed methodology.  

 

2.1 The dataset 

 

The dataset used in the implementation contains 27,558 

images of segmented red blood cells (RBCs) for both 

parasitized and uninfected cells and appeared for the first time 

[3]. The segmentation process was developed and applied on 

the dataset by Rajaraman et al. and can be found by Rajaraman 

et al. [4]. The Dataset is available online for free at the official 

website of the National Library of Medicine (NLM) at 

https://lhncbc.nlm.nih.gov/publication/pub9932. According to 

the dataset, the difference between malaria-infected and 

uninfected red blood cells (RBCs) can be noticed in Figure 3. 

Table 1 shows the total number of images for each class in the 

dataset. The images in the dataset we resized to a size of 64x64 

pixels instead of size 127x130 pixels. This input size of the 

used CNN architecture and all input images must have the 

same size. 

 

 
 

Figure 2. Flow diagram of the proposed methodology 

 

 
 

Figure 3. Sample Images of Infected and Uninfected Red 

Blood Cells (RBC) 

 

Table 1. Summary of the used dataset 

 

Class 
Training 

Images 

Validation 

Images 

Testing 

Images 

Total 

Images 

Parasitized 9645 2067 2067 13779 

Uninfected 9645 2067 2067 13779 

 

2.2 Convolutional Neural Network (CNN) 

 

Artificial neural networks (ANNs) and their enhancement 

like Convolutional Neural Network (CNN) type are the top, 

most recent, and widely used deep neural networks (DNNs) 

that can treat different types of raw data either images or 

signals [9]. The CNNs are composed of specified stacked 

layers. The layers are mainly, input layer, convolution layer, 

rectified linear unit (ReLU) layer, fully connected layer, 

classification layer, and output layer [8]. Basically, CNN is 

based on two main processes namely, convolution and 

downsampling.  

The convolution is done using a trainable and adaptive filter 

which has pre-specified size and weights that can be adjusted 

during the training phase and down-sampling [10]. In this 

research, the segmented red blood cells (RBCs) images are 

stored as an image datastore with two categories created, each 
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one of these categories consists of images for a specific class 

of parasitized and uninfected RBCs. The datastore is divided 

into three sub-datastores: training, validation, and testing sub-

datastores. In the training stage, 70% of the data is utilized, 

15% for validation, and the rest (15%) is used in the test stage 

[11, 12]. In this research, a new customized CNN architecture 

is investigated, and later we will explain the structure of the 

proposed CNN architecture. 

In this paper, a new transferred learning CNN architecture 

is used which was proposed by Alqudah [11] and known as 

AOCT-NET. The architecture is mainly consisting of 18 layers 

that able to grade the RBCs into two classes effectively, the 

architecture is applied to the image datastore mentioned before 

and the performance of the architecture was monitored. Figure 

4 shows the detailed structure of the used CNN. 

 

 
 

Figure 4. The used CNN architecture 

 

2.3 Performance evaluation 

 

To check the efficiency and the performance of the used 

customized CNN architecture in the classification of RBCs 

into parasitized and uninfected, a confusion matrix was 

generated [13]. In general, using the generated confusion 

matrix the following equations can be used to calculate the: 

accuracy, sensitivity, precision, and specificity, where these 

values measure how precisely the RBCs are classified [14]. 

Four statistical indices are used to measure the performance of 

the classification. These indices are true positive (TP), false 

positive (FP), false negative (FN), and true negative (TN). 

These four indices are calculated using the confusion matrix. 

The accuracy, sensitivity, and specificity, and precision were 

computed as [12-15]: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (1) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (5) 

 

 

3. RESULTS 

 

To evaluate the proposed methodology performance, the 

methodology was implemented, and it was run using a desktop 

computer with Intel Core-I5 computer with 12 Gb of RAM. 

The images were tested with a minibatch size of 128. The 

dataset was divided into three subsets: training, validation, and 

testing, with a percentage of 70%, 15%, and 15%, respectively. 

To validate the best smallest size that we can use in building 

the CNN architecture we run the structure on different input 

size which is 64x64, 128x128, and 256x256. Table 2 shows 

the performance results of these input sizes. Based on this table 

we can conclude that 64x64 is the best input size by making a 

trade-off between the performance values and time. 

 

Table 2. Performances of different input sizes on the used 

CNN architecture 

 
Input Size 64x64 128x128 256x256 

Accuracy 98.85 98.90 98.90 

Sensitivity 98.79 98.81 98.81 

Specificity 98.90 98.91 98.91 

Precision 98.90 98.91 98.91 

Time 0.1352 0.2796 0.5421 

 

The optimization algorithm was adaptive moment 

estimation (Adam) with an initial learning rate of 0.001 which 

results in 15000 iterations. These values have been selected 

based on trying different scenarios of optimization algorithms 

with different values. Table 3 shows these scenarios and their 

results. Based on the results shown in Table 3 we can conclude 

that the best scenario was the ADAM with a 0.001 learning 

rate. 

 

Table 3. Different optimization scenarios and the 

performances of the CNN architecture 

 

 
ADAM 

SGDM  RMSPROP 
0.001 0.01 0.1 

Accuracy 98.85 98.80 98.51 97.95 95.31 

Sensitivity 98.79 98.77 98.68 97.36 95.28 

Specificity 98.90 98.83 98.77 97.31 94.87 

Precision 98.90 98.83 98.77 97.31 94.87 

 

The following figures show the results of the proposed 

dataset with the designed CNN architecture. The accuracy and 

the loss of the training and validation data are shown in Figure 

5. The testing confusion matrix and ROC are shown in Figure 

6 A and B, respectively. Based on these figures, it can be 

noticed that the proposed system has classified the images (red 

blood cells) with an accuracy rate of 98.85%, sensitivity rate 

of 98.79%, specificity rate of 98.90%, and a precision rate of 

98.90%. 

 

573



 

 
 

 
 

Figure 5. Upper: The training and validation accuracy; 

Lower: The training and validation loss 

 

 
(A) 

 
(B) 

 

Figure 6. A: The Confusion Matrix; B: The ROC 

 

We can also use the trained CNN for deep feature 

extractions from cell images. These deep features are 

automated, discriminated, and powerful features that can be 

used to build hybrid systems like CNN-SVM and CNN-KNN. 

Figure 7 below shows the extracted feature distribution. 

 

 
 

Figure 7. The extracted deep features using CNN 

 

The proposed technique, using the CNN-based scheme for 

classifying cell images, proved to be effective in classifying 

high-performance colored images. Figure 8 displays the class 

activation mapping (CAM) for two cases: parasitized and 

uninfected using the last AOCT-Net ReLU layer.  

In general, deep learning networks and models are 

considered and deal with them as "black boxes". This means 

that there is no way to determine out what a network has 

learned or which part of an input to the network was 

responsible for the prediction of the network. When these 

models malfunction and make inaccurate assumptions, they 
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also fail spectacularly without any warning or clarification. 

Class activation mapping [16] is a method that can be used to 

visually illustrate the predictions of coevolutionary neural 

networks. Incorrect, seemingly unwise forecasts may also 

provide sound reasons. Using class activation mapping, you 

can verify whether a particular part of the input picture has 

"confused" the network to make an inaccurate assumption. 

Finally, CAM is a tool that is used to simulate where CNN 

looks and catches CNN's focus in the input image to retrieve 

the deep features [17]. Usage of Figure 8, we find that CNN 

architecture pays attention to places of concern cell has been 

affected (shown as a white spread area). 

 

 
(a)                             (b)                             (c) 

 
(d)                             (e)                              (f) 

 

Figure 8. Class activation mapping for parasitized and 

uninfected: a) input image of parasitized class; b) parasitized 

features using CAM; c) uninfected features using CAM; d) 

input image of uninfected class; e) parasitized features using 

CAM; f) uninfected features using CAM 

 

 

4. DISCUSSION 

 

The findings of our experiment have shown that they are 

relatively large and well-established networks do not perform 

very well malaria-infected function in the division of red blood 

cells, including ResNet50, DenseNet121, DPN92. These 

networks typically have a deep, complicated architecture and 

a huge number of parameters. They did not do as well, 

however, they're supposed to be worse than easy, personalized 

CNN models.  

The number of parameters for personalized models they are 

just 5% or fewer, relative to those broad and well-established 

networks. This finding proves that there are two things, the 

first is the architecture of deep learning networks needs to be 

understood. The basic condition of the activities of 

classification. Styles that are performing well in the role of 

natural image recognition does not perform well for medical 

pictures. The second is the rise in Blindly, network complexity 

and parameters do not necessarily lead to better outcomes. 

Specifically, in our task which is a binary classification of 

infected cells. The variability and complexity could not 

compare with and it is less than other tasks like a natural or 

medical image recognition task. Moreover, malaria-infected 

cell images usually have low recognition rates, large similarity, 

and blurred lesions areas. These reasons may affect the 

performance of models and lead the mentioned large, complex, 

and well-established networks did not work well. Therefore, it 

is important to use or design different models for different 

tasks that are simpler and more efficient in such tasks. 

As a summary, based on Figure 5 and Figure, it is obvious 

that using the proposed customized CNN all the performance 

evaluation metrics (accuracy, specificity, sensitivity, and 

precision) when it is utilized using the statistical performance 

of it was 98.85% for accuracy, 98.90% for specificity, 98.79% 

for sensitivity and 98.90% for precision. As aforementioned, 

using the new CNN architecture with softmax classifier results 

are comparable with pre-trained CNNs using the same dataset 

the same classifier.  

Table 4 shows that the proposed customer model beat all 

pre-trained CNNs in the time and required less time with a 

small difference (less than 0.5%) in the performance 

evaluation metrics and with the smaller number of layers and 

by employing the smallest input size which means that this 

model is suitable to be used as a mobile application in the 

future. Finally, Figures 7 and 8 shows that the used model is 

very efficient on feature extractions and extract features from 

the regions of interest areas that models must pay attention to. 

 

Table 4. Comparing the proposed architecture with other architectures in the literature (* Time Per Image) 

 

CNN Architecture 
Number 

of Layers 

Input 

Image Size 

Time Required for 

Classification* 

Accuracy 

(%) 

Precision 

(%) 

F-Score 

(%) 

VGG-19 [4] 47 224 x 224 0.2342 99.32 99.71 99.31 

SqueezeNet [4] 68 227 x 227 0.3546 98.66 99.44 98.64 

InceptionResNet-V2 [4] 825 229 x 229 3.8427 98.79 99.56 98.77 

AlexNet [3] 25 227 x 227 0.1729 93.70 -- 93.7 

ResNet-50 [3] 177 224 x 224 1.1517 95.7 -- 95.7 

Xception [3] 171 229 x 229 1.0073 89.0 -- 89.5 

DenseNet-121 [3] 709 224 x 224 3.0842 93.1 -- 93.1 

ADCN [18] 23 100 x 100 1.1332 97.47 -- 97.5 

DCNN [19] 32 128 x 128 2.2564 98.9 -- 98.70 

Proposed 23 64 x 64 0.1352 98.85 98.90 98.85 

 

 

5. CONCLUSIONS 

 

To improve the problem of the poor performance of 

traditional malaria detection methods, we propose a miniature 

and elegant novel CNN model named AOCTNet. In this paper, 

a customized convolutional neural network (CNN) model for 

the detection of malaria using a segmented RBCs image 

dataset was proposed. The proposed architecture success in the 

detection of malaria with high performance in accuracy and 

sensitivity, the less time, and the smallest input size for the two 

classes when compared to pre-trained CNNs. This model 

provides high accuracy and effective classification that can be 
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improved more by including more RBCs images with and 

without segmentation. Also, an improvement can be done for 

the proposed architecture and trying to optimize the 

hyperparameters using the genetic algorithm (GA) or any 

other optimization technique which can result in enhancing the 

training process. In the future, we hope that our proposed 

model can be extended to mobile devices using cloud 

technology, especially in areas with inadequate medical 

conditions and medical facilities. It would dramatically reduce 

the burden on doctors and improve the pace of diagnosis of 

malaria and decrease the damage caused by malaria. 
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